分式全章练习题-初中二年级数学试题练习、期中期末试卷-初中数学试卷_7

合集下载

初二分式练习题及答案

初二分式练习题及答案

初二分式练习题及答案在初二阶段,分式是一个重要的数学概念。

掌握分式的运算方法对学生的数学学习至关重要。

下面是几道初二分式练习题及其答案,希望能帮助同学们巩固和加深对分式的理解和运用能力。

练习题一:计算下列分式的值,并将结果化简到最简形式:1. $\frac{3}{4} + \frac{5}{8}$2. $\frac{2}{3} - \frac{1}{6}$3. $\frac{3}{2} + \frac{1}{4} - \frac{1}{8}$4. $\frac{a}{2} - \frac{2a}{3}$5. $\frac{x-1}{5} - \frac{x+2}{3}$练习题二:将下列分数改写为带分数,并化简到最简形式:1. $\frac{11}{4}$2. $\frac{8}{3}$3. $\frac{12}{5}$4. $\frac{25}{6}$5. $\frac{10a}{3}$练习题三:将下列带分数改写为分数,并化简到最简形式:1. $1\frac{1}{2}$2. $2\frac{2}{3}$3. $5\frac{1}{4}$4. $3\frac{5}{6}$5. $4\frac{2a}{3}$练习题四:计算下列表达式的值,并将结果化简到最简形式:1. $\frac{2}{3} \times \frac{6}{5}$2. $\frac{3}{4} \div \frac{2}{5}$3. $\frac{1}{2} \times \frac{4}{7} \div \frac{2}{5}$4. $\frac{a}{2} \times \frac{3a}{4}$5. $\frac{x-1}{5} \times \left(\frac{x+2}{3}+\frac{3}{2}\right)$练习题五:解下列方程:1. $\frac{2x-1}{3} = \frac{x+4}{2}$2. $\frac{1}{x} + \frac{1}{2x} = \frac{3}{4}$3. $\frac{1}{2a} - \frac{1}{3a} = \frac{1}{6}$4. $\frac{3}{x-1} - \frac{1}{3} = \frac{2}{x}$5. $\frac{1}{x+2} + \frac{1}{2} = \frac{x}{2} - \frac{1}{x+2}$答案如下:练习题一:1. $\frac{13}{8}$2. $\frac{1}{2}$3. $\frac{21}{8}$4. $\frac{a}{6}$5. $\frac{-3x-3}{15}$练习题二:1. $2\frac{3}{4}$2. $2\frac{2}{3}$3. $2\frac{2}{5}$4. $4\frac{1}{6}$5. $\frac{10a}{3}$练习题三:1. $\frac{3}{2}$2. $\frac{8}{3}$3. $\frac{21}{4}$4. $\frac{23}{6}$5. $\frac{10a+8}{3}$练习题四:1. $\frac{4}{5}$2. $\frac{15}{8}$3. $\frac{2}{7}$4. $\frac{3a^2}{8}$5. $\frac{x^2+x-3}{10}$练习题五:1. $x = \frac{5}{2}$2. $x = \frac{2}{3}$3. $a = \frac{1}{4}$4. $x = \frac{5 \pm \sqrt{37}}{2}$5. 方程无解以上是初二分式练习题及答案,通过做题的过程,希望同学们能够熟练掌握分式的运算规则,提高数学解题能力。

初二数学分式练习题及答案

初二数学分式练习题及答案

初二数学分式练习题及答案分式是数学中的重要概念,也是初中数学的基础知识之一。

在初中数学学习中,分式的运算是一个关键的内容。

为了帮助同学们更好地掌握分式的运算,以下将提供一些初二数学分式练习题及答案。

一、基础练习题1. 计算下列分式的值:(1) $\frac{2}{3}+\frac{1}{6}$(2) $\frac{5}{7}-\frac{2}{7}$(3) $\frac{3}{4}\times\frac{2}{5}$(4) $\frac{6}{13}\div\frac{2}{3}$2. 按照要求变换下列分式:(1) 化简:$\frac{4x^2-2x}{2x}$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$3. 求解方程:(1) $\frac{7}{10}x=\frac{35}{4}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$二、提高练习题1. 小明在旅行中用一辆摩托车以每小时40千米的速度行驶,计划经过$\frac{2}{5}$小时后休息10分钟,然后以每小时50千米的速度行驶到终点。

求小明旅行一段的总时间。

2. 甲,乙两个工程队共同进行一项工程,甲队完成全工程的$\frac{2}{5}$,乙队完成剩下的部分。

如果两队同时施工,还需6天可以完成全工程;如果只由甲队自行施工,需要10天完成全工程。

请问乙队自行施工需要多少天才能完成全工程?3. 甲、乙两人一起做一件工作,甲独立完成全工作需要8小时,乙独立完成全工作需要12小时。

他们两人合作完成全工作,需要多少小时?三、答案基础练习题答案:1.(1) $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}$(2) $\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{3}{10}$(4)$\frac{6}{13}\div\frac{2}{3}=\frac{6}{13}\times\frac{3}{2}=\frac{6}{13 }\times\frac{3}{2}=\frac{9}{13}$2.(1) 化简:$\frac{4x^2-2x}{2x} = \frac{2x(2x-1)}{2x}=2x-1$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}=\frac{5}{xy}-\frac{7}{xy}=\frac{5-7}{xy}=-\frac{2}{xy}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}=\frac{a\times b}{b\timesc}=\frac{a}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$ 通过分数的通分,两边同乘以$xy$得到等式$\frac{xy}{x}+\frac{xy}{y}=x+y$,化简得到$x+y=x+y$3.(1) $\frac{7}{10}x=\frac{35}{4}$,两边同乘以$\frac{10}{7}$得到等式$x=\frac{35}{4}\times\frac{10}{7}=\frac{25}{2}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$,先通分得到等式$\frac{10}{12}+\frac{3x}{12}=\frac{7}{8}$,化简得到$\frac{10+3x}{12}=\frac{7}{8}$,两边同乘以12得到$10+3x=12\times\frac{7}{8}$,解方程得到$x=\frac{63}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$,先通分得到等式$\frac{3(x-1)-2x}{x(x-1)}=\frac{5}{x(x-1)}$,化简得到$\frac{3x-3-2x}{x(x-1)}=\frac{5}{x(x-1)}$,整理得到$\frac{x-3}{x(x-1)}=\frac{5}{x(x-1)}$,可以得到方程$x-3=5$,解方程得到$x=8$。

初二分式练习题及答案

初二分式练习题及答案

初二分式练习题及答案初二分式练习题及答案初二是学生们学习生涯中的一个重要阶段,也是他们逐渐进入高中阶段的过渡期。

为了帮助初二学生提高数学能力,下面将提供一些分式练习题及答案。

练习题一:1. 计算:$\frac{2}{3} + \frac{3}{4}$。

2. 计算:$\frac{5}{6} - \frac{1}{3}$。

3. 计算:$\frac{2}{5} \times \frac{3}{4}$。

4. 计算:$\frac{7}{8} \div \frac{2}{3}$。

5. 计算:$\frac{2}{3} + \frac{4}{5} - \frac{1}{2}$。

答案一:1. $\frac{17}{12}$2. $\frac{1}{2}$3. $\frac{3}{10}$4. $\frac{21}{16}$5. $\frac{11}{30}$练习题二:1. 计算:$\frac{3}{5} + \frac{2}{7}$。

2. 计算:$\frac{1}{2} - \frac{1}{4}$。

3. 计算:$\frac{2}{3} \times \frac{3}{4}$。

4. 计算:$\frac{5}{6} \div \frac{2}{3}$。

5. 计算:$\frac{1}{2} + \frac{3}{4} - \frac{1}{3}$。

答案二:1. $\frac{29}{35}$2. $\frac{1}{4}$3. $\frac{1}{2}$4. $\frac{5}{4}$5. $\frac{7}{12}$练习题三:1. 计算:$\frac{4}{5} + \frac{3}{8}$。

2. 计算:$\frac{2}{3} - \frac{1}{6}$。

3. 计算:$\frac{1}{4} \times \frac{3}{5}$。

4. 计算:$\frac{5}{6} \div \frac{1}{2}$。

5. 计算:$\frac{2}{3} + \frac{1}{4} - \frac{1}{6}$。

(完整)初二数学分式习题(附答案).doc

(完整)初二数学分式习题(附答案).doc

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是()1x11 ( x 1) x 1A.xB.xxC.1 x2 x 1D.1 [ 1( x 1) 1] 1 10 xx322.如果分式 | x | 5 的值为 0,那么 x 的值是()x 25xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值()x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有()a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y 2 , m2n 2,m21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个 5.分式方程114的解是()3x3 x 2x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则 x 2xy y 2)2xy x 2的值为(A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为 0,则 k 的值为()3xx 3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为()x 24A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是()a b a ba b a bA.babB.b a ba a ab a ba b a bC.babD.bb aa a10.下列计算结果正确的是( )A. b g a1 B.ab (a 2 ab)12a 2 b 2 2abaa 2C.mn nD .( 3xy ) 29xyxy xx m5a5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= __________ .5y2.在比例式 9:5=4: 3x 中, x=_________________ .b 1 a 1 b 1 a1=_________________ .3.计算 :ga gabb2的值为正数. 4.当 x> __________ 时,分式1 11 3x=_______________ .5.计算 :x 11 x6.当分式x2 与分式 x23x2的值相等时, x 须满足 _______________ . x 1 x 2 1117.已知 x+ x =3 ,则 x 2+ x 2 = ________ .8.已知分式2x 1_时,分式没有意义; 当 x= _______ 时,分式的值为 0;当 x= -2 时,分式的值为 _______.x :当 x=29.当 a=____________ 时,关于 x 的方程2ax3 = 5的解是 x=1 .a x 410.一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是_____________ . 三、解答题 1.计算题 :a 242 a 2 4a 4 (1)a 22a 8 ( a4)ga 2;x 2 1x 23x 2 (2)g.2 4x 4x x12.化简求值.(1)( 1+1)÷( 1- 1 ),其中 x= - 1;x 1 x 1 2(2)2 1 x ( x 23 ) ,其中 x= 1. x 2 xx 2 23.解方程 :( 1)10 5 =2 ; ( 2) 23x 3 .2x 1 1 2xx 1 x 1 x 2 14.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗? ?请你写出具体的解题过程.5.对于试题: “先化简,再求值:x 3 1 ,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x1)=x - 3-( x+1) =2x - 2,③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.6.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )1x111) x 1A.xB. ( xxxC.1 x2 x 1 D.1 [ 1( x 1) 1] 1 10 xx3 22.如果分式 | x |5的值为 0,那么 x 的值是( B )x 2 5xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值( A )x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有(C )a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y2,m 2 n 2 ,m 21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个5.分式方程1 1x 2 4 的解是( B )3 x3x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则x 2xy y 2 的值为( B )2xy x 2A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为0,则 k 的值为( A )3xx3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为( D )x 2 4A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是(C )a b a ba b a bA.ba bB.b a ba a ab a ba b a bC.ba bD.bb aa a10.下列计算结果正确的是( B )A. b g a1 B.a b (a 2 ab)1 2a2 b 2 2abaa 2C.mn n D .(3xy) 2 9xy xy xx m5a 5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= - 5 .5y2.在比例式 9: 5=4 : 3x 中, x=20.273.b 1g ab 1 b 1g a 1 的值是 2( a b) .aa bab4.当 x>1 时,分式 12 的值为正数. 13 12 3x=.5.1 x 1 x 21 x6.当分式x2 与分式 x 23x2的值相等时, x 须满足 x ≠± 1 .x1x 217.已知 x+ 1 =3 ,则 x 2+1 = 7 .x x 28.已知分式 2 x1,当 x= 2 时,分式没有意义; 当 x=-1时,分式的值为 0;当 x=- 2 时,分式的值为3 .x 2249.当 a= - 17 时,关于 x 的方程2ax3 = 5的解是 x=1 .3a x 410.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行 mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是(a a)h . m n三、解答题1.计算题.a 2 4( a 2a 2 4a 4(1) 22a8 4)ga 2 ; a解: 原式a 2 4g 1 ( a 2) 21.ga 4( a 2)(a 4) a 24 a 2x 2 1x 2 3x 2(2)2(xg.4x 4 1)x 1 x解: 原式 ( x 1)(x 1)g 1 g (x 1)(x 2)x 1 .( x 2)2x 1 x 1x 22.化简求值.(1)( 1+1 )÷( 1- 1 1 ),其中 x=- 1;x 1 x2 解:原式 =x1 1 x 1 1 x g x 1 x .x 1 x 1x 1 x2 x 2当 x= -1时,原式 =1.25(2)x1 x ( x23 ) ,其中 x= 1.2 2 xx 2 2解:原式 =( x 1) ( x2)( x 2) 31 g x2 1 .( x 2)( x 1)x 2x 2 x 2 1x 2 1当 x=1时,原式 =4 .233.解方程.(1)10 5=2 ;2x 1 1 2x解: x= 7 .4(2)x 2 3x 3 .1 x 1x 2 1解:用( x+1)( x - 1)同时乘以方程的两边得,2( x+1)- 3( x - 1)=x+3 .解得 x=1.经检验, x=1 是增根. 所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗??请你写出具体的解题过程.解:原式 =(x 1)2g x1 = 1 .( x 1)(x 1) 2( x 1) 2由于化简后的代数中不含字母x ,故不论 x 取任何值,所求的代数式的值始终不变.所以当 x=3, 5- 2 2 ,7+ 3 时,代数式的值都是1 .x 3 125.对于试题: “先化简,再求值:,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x 1)=x - 3-( x+1) =2x - 2, ③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.解:正确的应是:x 3 1x 3 x 1 2x 2 1 1 x=( x 1)(x 1)x 1( x 1)(x 1)当 x=2 时,原式 =2 .36.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?7 解:设他第一次在购物中心买了x 盒,则他在一分利超市买了x 盒.512.5 14由题意得:=0.5x7 x5解得x=5.经检验, x=5 是原方程的根.答:他第一次在购物中心买了5 盒饼干.初中数学分式方程同步练习题一、选择题(每小题 3 分,共 30 分) 1.下列式子是分式的是()x2xxyA .B .C .D .22x2.下列各式计算正确的是()A . a a 1B .bb2C .nna, a 0D .nn a bb 1aabmmamm a3.下列各分式中,最简分式是()3 x ym 2n 2C .a 2b 2D .x 2 y 2 A .B .a 2b ab 22xy y 27 x ym nx 2 m 2 3m )4.化简m 2 的结果是(9m B. mm D.mA.m 3C.33 mm 3m5.若把分式 xy中的 x 和 y 都扩大 2 倍,那么分式的值()xyA .扩大 2 倍B .不变C .缩小 2倍D .缩小 4 倍6.若分式方程1 3 a x有增根,则 a 的值是()x 2 axA . 1B . 0C .— 1D .— 2ab ca b7.已知2 34,则 c的值是( )475A .5B.4C.1D. 48.一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?设江水的流速为x 千米 /时,则可列方程()100 60100 60A .30 xB .x 30x 30x 30 100 60100 60C .30 xD .x3030 xx 309.某学校学生进行急行军训练,预计行60 千米的路程在下午 5 时到达,后来由于把速度加快20% ,结果于下午 4 时到达,求原计划行军的速度。

初二数学分式试题及答案

初二数学分式试题及答案

初二数学分式试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母不能为0的是()。

A. \frac{1}{x-1}B. \frac{1}{x+1}C. \frac{1}{x}D.\frac{1}{x^2+1}答案:D2. 计算 \frac{1}{x-1} + \frac{1}{x+1} 的结果是()。

A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D. \frac{2x}{x^2+1}答案:C3. 如果 \frac{a}{b} = \frac{c}{d},那么 ad = ()。

A. bcB. bdC. acD. cd答案:A4. 下列分式中,最简分式是()。

A. \frac{2x}{3x}B. \frac{x^2-1}{x-1}C. \frac{x^2+2x+1}{x+1}D. \frac{x^2-4}{x+2}答案:D5. 计算 \frac{1}{x-2} - \frac{1}{x+2} 的结果是()。

A. \frac{x+2}{x^2-4}B. \frac{x-2}{x^2-4}C. \frac{-4}{x^2-4}D. \frac{4}{x^2-4}答案:C6. 如果 \frac{a}{b} = \frac{c}{d} = \frac{e}{f},那么\frac{a+c}{b+d} = ()。

A. \frac{e}{f}B. \frac{e+f}{f+d}C. \frac{e+f}{f+b}D.\frac{a+c}{b+d}答案:A7. 下列分式中,可以约分的是()。

A. \frac{2x^2}{4x}B. \frac{3x^2-3}{3x-3}C. \frac{x^2-4}{x+2}D. \frac{x^2+2x+1}{x+1}答案:B8. 计算 \frac{1}{x-1} \cdot \frac{1}{x+1} 的结果是()。

(完整版)初二分式练习题及答案

(完整版)初二分式练习题及答案

分式练习题1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+(4)x y x y x xy x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。

(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。

(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。

(4)已知0132=+-a a ,求142+a a 的值。

4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求cb b a -+-11的值。

5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。

8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒 按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售 价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本, 并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批 发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按 定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两 次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若 赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。

八年级(下)16章分式检测试卷二-初中二年级数学试题练习、期中期末试卷-初中数学试卷

八年级(下)16章分式检测试卷二-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载新人教版八年级(下)16章分式检测试卷二班级姓名成绩_________一、选择题(每题3分,共24分)1.计算的结果是()A. B.C.D.2.下列算式结果是-3的是()A. B. C.D.3.如果x=300,则的值为()A.0B.C.A.4.下列算式中,你认为正确的是(B)A. B.C.D.5.,则的值为()A.1B.-1C.0D.36.如果x>y>0,那么的值是()A. 0B. 正数C. 负数D. 不能确定7.如果为整数,那么使分式的值为整数的的值有()A. 2个B. 3个C. 4个D. 5个8.已知,其中A、B为常数,则4A-B的值为()A.7B. 9C. 13D. 5二、填空题(每题3分,共18分)9.计算:-=;10.用科学记数法表示:-0.=;11.如果,那么_____________;12.若有增根,则增根为___________,=_________ ;13.已知:x-y=3 x y,则=___________;14.若,则=.三、解答题()15.计算16.计算17.解方程18.计算19.已知(a+)(-1)÷,其中a=99,求原式的值.20.学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?21.已知为整数,则关于的方程的解为整数,求的所有可能值。

22.有一道题“先化简,再求值:,其中.”邓梅彬做题时把“”错抄成了“”,但他的计算结果也是正确的,请你解释这是怎么回事?23. 已知两个分式:A=,B=,其中x≠±2 .下面有三个结论:①A=B;②A、B互为倒数;③A、B互为相反数.请问哪个正确?为什么?24.已知a、b 为实数,且a b=1,设M=,N=,比较M、N的大小关。

初二数学整式的分式练习题

初二数学整式的分式练习题分式是数学中常见的一种表示形式,也是初中数学的重点内容之一。

理解和掌握整式的分式运算对于学生来说是至关重要的。

本文将为大家提供一些初二数学整式的分式练习题,帮助大家巩固和提升在这个领域的知识。

题一:计算下列分式的值:1. $\frac{2x}{3}$,当$x=4$时;2. $\frac{y}{x+1}$,当$x=3$,$y=5$时;3. $\frac{(a-b)^2}{a^2-b^2}$,当$a=2$,$b=1$时;4. $\frac{(x+1)(x-1)}{(2x-1)(x+1)}$,当$x=-2$时;5. $\frac{2x+3}{4x-1}$,当$x=\frac{1}{2}$时;解答:1. 当$x=4$时,$\frac{2x}{3}=\frac{2\times 4}{3}=\frac{8}{3}$;2. 当$x=3$,$y=5$时,$\frac{y}{x+1}=\frac{5}{3+1}=\frac{5}{4}$;3. 当$a=2$,$b=1$时,$\frac{(a-b)^2}{a^2-b^2}=\frac{(2-1)^2}{2^2-1^2}=\frac{1}{3}$;4. 当$x=-2$时,$\frac{(x+1)(x-1)}{(2x-1)(x+1)}=\frac{(-2+1)(-2-1)}{(2\times(-2)-1)(-2+1)}=\frac{1}{5}$;5. 当$x=\frac{1}{2}$时,$\frac{2x+3}{4x-1}=\frac{2\times\frac{1}{2}+3}{4\times \frac{1}{2}-1}=\frac{4}{3}$。

题二:化简下列分式:1. $\frac{5x+10}{15}$;2. $\frac{(x+y)^2-(x^2+y^2)}{x-y}$;3. $\frac{2ab+4b^2}{b(a+b)^2}$;4. $\frac{x^2-4}{x-2}$;5. $\frac{6a^2-12a+6}{3a-6}$;解答:1.$\frac{5x+10}{15}=\frac{5(x+2)}{15}=\frac{5}{3}(x+2)$;2.$\frac{(x+y)^2-(x^2+y^2)}{x-y}=\frac{x^2+2xy+y^2-x^2-y^2}{x-y}=\frac{2xy}{x-y}$;3.$\frac{2ab+4b^2}{b(a+b)^2}=\frac{2b(a+b)}{b(a+b)^2}=\frac{2}{(a+b )}$;4.$\frac{x^2-4}{x-2}=\frac{(x+2)(x-2)}{x-2}=x+2$;5.$\frac{6a^2-12a+6}{3a-6}=\frac{6(a^2-2a+1)}{3(a-2)}=\frac{2(a-1)^2}{a-2}$。

分式与相似图形检测-初中二年级数学试题练习、期中期末试卷-初中数学试卷

分式与相似图形检测-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载石泉中学八年级数学第二次学科检测卷(B卷)(满分120分)班级_______学号_______姓名______一、选择题(每题3分,共9分)8、要使与的值相等,则x的值是()A、x=1B、x=C、x=D、x=29、一个钢筋三角架三长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种10.若关于x的方程有增根,则a的值为()(A)a=13(B)a=-11(C)a=9(D)a=3二、填空题(每题3分,共9分)18、自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷井”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷井”的这个固定不变的数R=.19、如果我们定义f(x) = ,(例如:f(5)= = ),那么:f( )+f( )+…+f( )+f( )+ f(0) + f(1) + f(2)+… + f(2004) + f(2005) =20、某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物不再享受优惠)消费金额x的范围(元)200≤x<400400≤x<500500≤x<700…获得奖券的金额(元)3060100…根据上述促销方法,顾客在该商场购物可获得双重优惠,如果冯老师在该商场购标价450元的商品,他获得的优惠额为_________元.三、简答题(每题8分,共32分)25、已知,如图8,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图8中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.26、如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多大?27、甲、乙二人分别从相距36km的A、B两地同时相向而行,甲从A地出发至1km时,发现有物体遗忘在A地,便立即返回,取了物件又立即从A地向B地行进,这样甲、乙二人恰在A、B中点处相遇.又知甲比乙每小时多走0.5km,求甲乙两人的速度.28、如图,∥ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明∥ABD∥∥BCE.(2)∥AEF与∥ABE相似吗?说说你的理由.(3)BD2=AD·DF吗?请说明理由.欢迎下载使用,分享让人快乐。

初二数学分式方程练习题及答案

初二数学分式方程练习题及答案题目:1. 解方程:$\frac{a}{b} + \frac{1}{b} = \frac{5}{2}$,其中$a$和$b$都是正整数。

2. 解方程:$\frac{2}{3x} - \frac{1}{x} = \frac{1}{2}$,其中$x$为非零实数。

3. 解方程:$\frac{5}{2(a-1)} - \frac{1}{3(a-1)} = \frac{4}{5}$,其中$a \neq 1$。

4. 寻找方程$\frac{2}{x} - \frac{1}{y} = \frac{1}{z}$的整数解,其中$x, y, z$为正整数。

答案:1. 首先,将两个分数的分母取公倍数$b$,得到$\frac{a}{b} +\frac{1}{b} = \frac{5}{2}$。

合并分数后得到$\frac{a+1}{b} =\frac{5}{2}$。

为了消去分母,我们可以采用交叉相乘的方法,即$2(a+1) = 5b$。

将等式化简后得到$2a + 2 = 5b$。

根据题意$a$和$b$都是正整数,因此我们可以尝试不同的正整数值来求解。

通过试算,我们发现当$a=4$,$b=3$时等式成立。

所以$a=4$,$b=3$是该方程的一个解。

2. 将方程$\frac{2}{3x} - \frac{1}{x} = \frac{1}{2}$的分母取公倍数$6x$,得到$\frac{4}{6x} - \frac{3}{6x} = \frac{3x}{6x} - \frac{6}{6x}$。

合并分数后得到$\frac{4-3}{6x} = \frac{3x-6}{6x}$。

再次化简得到$\frac{1}{6x} = \frac{3x-6}{6x}$。

此时可以将等式两边乘以$6x$消去分母,得到$1 = 3x-6$。

继续将等式化简得到$3x = 7$,解得$x =\frac{7}{3}$。

所以$x = \frac{7}{3}$是该方程的唯一解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式全章练习题-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试
卷-试卷下载
16.2.1分式的加减
3.在括号内填入适当的代数式:
(1)(2)
4.,的最简公分母是___________,通分的结果为_______________________.
题型1:同分母分式的加减运算
5.(基本技能题)计算:+=________.
6.(基本技能题)计算:- =________.
题型2:异分母分式的加减运算
7.(技能题)计算:+=________.
8.(易错题)计算:++.
9.(技能题)计算:+=________.
基础能力题
10.化简++等于()
A.
B.
C.
D.
11.计算+-得()
A.-
B.
C.-2D.2
12.计算a-b+得()
A.
B.a+b C.
D.a-b
13.若=+,则m=________.
14.当分式--的值等于零时,则x=_________.
15.如果a>b>0,则-的值的符号是__________.
16.已知a+b=3,ab=1,则+的值等于________.
拓展创新题
17.(易错题)计算:-.
18.(易错题)计算:-x-1.
19.(学科综合题)先化简,再求值:-+,其中a=.
20.(数学与生活)已知A、B两地相距s千米,王刚从A地往B地需要m小时, 赵军从B 地往A地,需要n小时,他们同时出发相向而行,需要几时相遇?
21.(开放题)已知两个分式:A=,B=+,其中x≠±2,下面有三个结论:①A=B;②A·B=0;
③A+B=0.请问哪个正确?为什么?
答案
1.分母,同分母,,分母不变,分子相同;
分母,同分母,,同分母分式相加减,分母不变,分子相加减
2.分母,异分母,,通分化为同分母分数相加;
异分母,,先通分化为同分母分式,再相加减
3.(1)4axy(2)x+y
4.(m+2)(m-2);,
5.16.7.8.09.
10.C11.D12.C13.x214.15.正号16.7 17.18.19.
20.(小时)
21.③正确.理由:因为B=-==-.
欢迎下载使用,分享让人快乐。

相关文档
最新文档