奥数题 (1)

合集下载

精选八年级奥数题合集(一)

精选八年级奥数题合集(一)

精选八年级奥数题合集(一)
1、小峰沿公交车的路线从终点站往起点站走,他出发时恰好有一辆公交车到达终点,在路上,他又遇到了14辆迎面开来的公交车,并于1小时18分后到达起点站,这时候恰好又有一辆公交车从起点开出。

已知起点站与终点站相距6000米,公交车的速度为500米/分钟,且每两辆车之间的发车间隔是一定的。

求这个发车间隔是几分钟?
2、小张、小王和小李同时从湖边同一地点出发,绕湖行走。

小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向而行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。

那么,绕湖一周的行程是多少千米?
3、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。

开始后1小时,甲与乙在高山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。

那么甲回到出发点共用多少小时?
4、甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车。

小张和小王分别骑车从甲、乙两地出发,相向而行。

每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车。

已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?
5、甲、乙两车分别从东、西两站同时相对开出。

第一次相遇时,甲车行了80千米,两车继续以原来速度前进,各车到站后立即返回,第二次相遇地点在第一次相遇地点东侧40千米处。

东、西两站相距多少千米?。

小学二年级奥数题及答案5篇

小学二年级奥数题及答案5篇

小学二年级奥数题及答案5篇1.小学二年级奥数题及答案1.妹妹今年6岁, 哥哥今年11岁, 当哥哥16岁时, 妹妹几岁?2.小明从学校步行到少年宫要25分钟, 如果每人的步行速度相同, 那么小明、小丽、小刚、小红4个人一起从学校步行到少年宫, 需要多少分钟?3.19名战士要过一条河, 只有一条小船, 船上每次只能坐4名战士, 至少要渡几次, 才能使全体战士过河?4.晚上停电, 小文在家点了8支蜡烛, 先被风吹灭了1支蜡烛, 后来又被风吹灭了2支。

最后还剩多少支蜡烛?5、有16个小朋友在操场上玩捉迷藏游戏, 已经捉住了9人, 藏着的还有几人?参考答案:1.16-11+6=11(岁)2、4个人一起到从学校步行到少年宫所用的时间等于小明1个人从学校步行到少年宫所用的时间, 需要25分钟。

3.19-4=15(名)4-1=3(名)15÷3=5(次)5+1=6(次)4.1+2=3(支)5.16-9-1=6(人)2.小学二年级奥数题及答案第一题: 灯亮问题傍晚, 小明开灯做作业, 本来拉一次开关, 灯就亮了。

但是他连拉了七次开关, 灯都没亮, 后来, 才知道停电。

你知道来电时, 灯亮的还是不亮的?第二题: 绳子一根绳子长6米, 对折以后再对折, 每折长几米?第三题: 摸球口袋里有红球、黄球、和白球若干个, 冬冬闭着眼睛每次从袋中摸一个球。

现在, 他至少要摸几次, 才能保证能摸出两个颜色相同的球?答案:第一题答案:解: 7÷2=3 (1)答: 灯亮。

第二题答案:解:2×2=4, 6÷4=1.5(米)答: 每折1.5米第三题答案:解: 3+1=4(次)答: 他至少要摸4次。

3.小学二年级奥数题及答案1.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米, 第二小组每小时行3.5千米。

两组同时出发1小时后, 第一小组停下来参观一个果园, 用了1小时,再去追第二小组。

六年级奥数试题及答案[1]

六年级奥数试题及答案[1]

1.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.2.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.3.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.4.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?5.一个长方体的体积为2009立方厘米,如果长、宽、高均为整数厘米,求几种长方体满足条件?6.2009的平方的约数有多少个?(看清楚是2009的”平方”的约数有多少个。

)7.某人从甲地到乙地,计划8点出发9点到达,在距中点2000米的地方修车10分钟,又提速1/4前进最后提前两分钟到达终点。

求原速度?8.有一项工程,按原计划甲、乙合作120天可以完工,后因特殊原因,甲队的工效提高20%,乙队的工效则下降了20%,因此比计划多用5天完成。

求甲队单独完成全部工程要用多少天?问题补充:是按原工效完成全部工程哦~!9.营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?10.有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?11.有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?12.用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?13.一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?14.运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?15.甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?16.某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.(16)把各数因数分解.33=11×3;51=17×3;65=13×5;77=11×7;85=17×5;91=13×7,所以33×85×91=77×51×65故差为91+85+33-77-65-51=16.2.(9块)45%3.27角6分不妨设甲家用电x度,乙家用电y度,因为96既不是20的倍数,也不是9的倍数.所以必然甲家用电大于24度,乙家小于24度.即x>24≥y.由条件得.24×9+20(x-24)=9y+96,20x-9y=360,由9y=20x-360,20|9y,又(9,20)=1,所以|20y.当0≤y≤24时,y=20或0.而y=0即x=18<24,矛盾,故y=20,x=27.甲应交24×9+20×(27-24)=276(分)=27.6(角).4.(1344)设洗衣机x元,则每月应得报酬为:5.2009=1×7×7×41长宽高可以是:2009,1,1;1,7,287;1,41,49;7,7,416.20092有6个不同的约数:1、7、41、49、287、20097.解:设原速度为x千米/时,则甲乙两地相距x千米(60-2)/60=29/30(小时),10/60=1/6(小时)(1)在中点前2000米的地方修车则(0.5x-2)/x+1/6+(0.5x+2)/(1.25x)=29/30解得x=4(2)在中点后2000米的地方修车则(0.5x+2)/x+1/6+(0.5x-2)/(1.25x)=29/30解得x=-4不符题意,舍去答:原速度为4千米/时8.甲+乙=1/1204甲+4乙=1/30(1)1.2甲+0.8乙=1/125 6甲+4乙=1/25(2)(2)-(1)得:1.营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?2.有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?3.有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?4.用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?5.一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?6.运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?7.甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?8.某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。

五年级奥数题50题- 答案1

五年级奥数题50题- 答案1

五年级奥数题50题-答案1.2. 小高下午在家看电视剧,开始的时间是4点钟,这集结束的时候仍然是4点多,且分针和时针所夹的角度与这集开始时的相同,请问:这集电视剧播了多少分?解:480/11. 析:30*4=120,120*2/(6-0.5)=240/5.5=480/11(分)3.已知数列:11,12,22,12,13,23,33,23,13,14,24,34,44,34,24,14,…,则求:数列中第150项是多少?数列中前300项的和是多少?4、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米5、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7,那么4小时就是行全程的4/7,所以乙行一周用的时间=4/(4/7)=7小时6、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7 甲3小时行75×3=225千米,距离=(225 15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇,(225-15)/(1-3/7)=210/(4/7)=367.5千米7、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?解:二车的速度和=600/6=100千米/小时客车的速度=100/(1 2/3)=100×3/5=60千米/小时,货车速度=100-60=40千米/小时8.一项工作,甲5小时先完成4分之1,乙6小时又完成剩下任务的一半,最后余下的工作有甲乙合作,还需要多长时间能完成?解:甲的工作效率=(1/4)/5=1/20 乙完成(1-1/4)×1/2=3/8乙的工作效率=(3/8)/6=1/16甲乙的工作效率和=1/20 1/16=9/80 此时还有1-1/4-3/8=3/8没有完成还需要(3/8)/(9/80)=10/3小时9、工程队30天完成一项工程,先由18人做,12天完成了工程的3/1,如果按时完成还要增加多少人?解:每个人的工作效率=(1/3)/(12×18)=1/648 按时完成,还需要做30-12=18天,按时完成需要的人员(1-1/3)/(1/648×18)=24人需要增加24-18=6人10、甲、乙两人生产一批零件,甲、乙工作效率的比是2:1,两人共同生产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?解:将乙的工作效率看作单位1 那么甲的工作效率为2 乙2天完成1×2=2 乙一共生产1×(3+2)=5 甲一共生产2×3=6,所以乙的工作效率=14/(6-5)=14个/天,甲的工作效率=14×2=28个/天,一共有零件28×3+14×5=154个。

1--6年级小学奥数题附答案

1--6年级小学奥数题附答案

1--6年级小学奥数题附答案1. 题目:小明有5个苹果,小华给了小明3个苹果,请问小明现在有多少个苹果?答案:小明现在有5 + 3 = 8个苹果。

2. 题目:小猫钓鱼,第一天钓了4条,第二天钓了5条,第三天钓了6条,请问小猫三天一共钓了多少条鱼?答案:小猫三天一共钓了4 + 5 + 6 = 15条鱼。

二年级:1. 题目:小兔子有10个胡萝卜,每天吃掉2个,5天后小兔子还剩几个胡萝卜?答案:小兔子5天后还剩10 - 2 × 5 = 0个胡萝卜。

2. 题目:一个长方形的长是6厘米,宽是4厘米,请问这个长方形的面积是多少平方厘米?答案:长方形的面积是 6 × 4 = 24平方厘米。

三年级:1. 题目:小猴子摘了18个桃子,第一天吃了一半,第二天又吃了一半,还剩几个桃子?答案:小猴子还剩18 ÷ 2 ÷ 2 = 4个桃子。

2. 题目:一个正方形的边长是8厘米,请问这个正方形的周长是多少厘米?答案:正方形的周长是8 × 4 = 32厘米。

四年级:1. 题目:一个长方形的周长是24厘米,长是8厘米,请问这个长方形的宽是多少厘米?答案:长方形的宽是(24 - 8 × 2)÷ 2 = 4厘米。

2. 题目:小华和小明比赛跳远,小华跳了5次,平均每次跳3米,小明跳了6次,平均每次跳2.5米,请问谁跳得更远?答案:小华跳得更远,总距离是5 × 3 = 15米,小明总距离是6 × 2.5 = 15米,但小华平均每次跳得更远。

五年级:1. 题目:一个梯形的上底是6厘米,下底是10厘米,高是5厘米,请问这个梯形的面积是多少平方厘米?答案:梯形的面积是(6 + 10)× 5 ÷ 2 =40平方厘米。

2. 题目:小王和小李比赛跑步,小王的速度是每分钟80米,小李的速度是每分钟100米,他们同时出发,请问多少分钟后小李比小王多跑200米?答案:设x分钟后小李比小王多跑200米,则100x - 80x = 200,解得x = 10分钟。

五年级奥数题及答案5篇

五年级奥数题及答案5篇

五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。

顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。

而甲行走45分钟,乙行走45分钟也能走完一圈。

所以甲行走25分钟的路程相当于乙行走45分钟的路程。

甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。

即乙走一圈的时间是126分钟。

2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。

提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

四年级数学奥数测试题及答案一(1)

四年级数学奥数测试题及答案一(1)一、拓展提优试题1.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…4.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.5.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.6.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.7.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?9.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.10.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.11.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.12.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.13.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.14.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?15.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.16.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..17.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.18.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.19.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.20.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.21.如果今天是星期五,那么从今天算起,57天后的第一天是星期.22.是三位数,若a是奇数,且是3的倍数,则最小是.23.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.24.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.25.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.26.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.27.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.28.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.29.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.30.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.31.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.32.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.33.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S的正方形有个.34.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.35.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.36.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.37.在□中填上适当的数,使竖式成立.38.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.39.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.40.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.【参考答案】一、拓展提优试题1.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.4.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.5.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.6.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).7.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.8.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.9.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.10.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.11.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.12.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.13.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.14.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.15.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.16.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.17.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.18.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.19.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.20.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.21.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.22.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.23.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.24.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.25.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.26.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.27.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.28.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.29.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.30.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.31.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.32.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.33.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.34.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.35.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.36.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.37.解:根据题干分析可得:38.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.39.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.40.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.。

小学三年级奥数题(1)

1、路灯队第一天比第二天多运进电线杆120根,第一天运进的根数是第二天运进根数的3倍,两天各运进电线杆多少根?2、早仓所存大米是乙仓的3倍,从甲仓运走8500千克,从乙仓运走500千克,两仓所剩的大米千克数相等。

问各仓原存大米多少千克?3、"有两桶重量相等的油,甲桶取出12千克,乙桶加入14千克,这时乙桶油的重量是甲桶油重量的3倍。

两桶油原来各有多少千克?4、"两电线,长的一根24米,短的一根为18米,两根部剪去同样长的一段后,长的一根的长度是短的一根长度的4倍,问剪短后长的那根电线还有多少米?15、昨天是9日,今天是星期三,29日是星期几?5、小红16号下午买回来一盆花。

她从晚上7点开始第1次浇花,然后每隔12小时浇一次。

小红第8次浇花是在几号几点?7、小华每分拍球25次,小英每分比小华少拍5次。

照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?8、刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。

剩下的书每次搬20本,还要几次才能搬完?9、同学们到车站义务劳动,3个同学擦12块玻璃。

“照这样计算,9个同学可以擦多少块玻璃?210、"两个车间装配电视机。

第一车间每天装配35台,第二车间每天装配37台。

照这样计算,这两个车间15天一共可以装配电视机多少台?11、"把7本相同的书摞起来,高42毫米。

如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)12、"纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?13、"一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?314、"聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?15、"一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?16、"12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?17、"一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?18、"蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?419、"在花圃的周围方式菊花,每隔1米放1盆花。

六年级奥数题(一)

一、分数的巧算(一) 年级 班 姓名 得分一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+3121131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算:⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151. 12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211. 13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++. 14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.———————————————答 案—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=.3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…,直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=. 5. 1615. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=. 6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=. 10. 14465. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=.11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-=91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.一、分数的巧算(二) 年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数) 13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++. 14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205. 原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=. 10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a222222=⎪⎭ ⎝-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=. 14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++=⎪⎭ ⎝+⋅⋅⋅++⨯=1999100110002 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.二、估计与估算(一)年级 班 姓名 得分 一、填空题1.有若干个小朋友,他们的年龄各不相同.将他们的年龄分别填入下式的□中,都能使不等式成立.这些小朋友最多有 个. 215<43.2.010000000009999999999100099910099109+⋅⋅⋅⋅⋅⋅+++的整数部分是 .3.10971939719297199719⨯+⋅⋅⋅+⨯+⨯+=A ,与A 最接近的整数是 .4.有24个偶数的平均数,如果保留一位小数的得数是15.9,那么保留两位小数的得数是 .5.1995003这个数,最多可以拆成 个不同的自然数相加的和.6.有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数.那么第19个数的整数部分是 .7.有一长3米的线段,第一次把这条线段三等分后去掉中间一部分,第二次再把剩下的两线段中的每一段都三等分后都去掉中间一部分,第三次再把剩下的所有线段的每一段都三等分后都去掉中间一部分.继续这一过程,这样至少连续 次后,才使剩下的所有线段的长度的和小于0.4米.8.已知199711982119811198011+⋅⋅⋅+++=S ,那么S 的整数部分是 .9.1009987654321⨯⋅⋅⋅⨯⨯⨯⨯与101相比较,较大的哪个数是 .10.某工厂有三个车间,共有75人报名参加冬季长跑,其中第一车间人数最多,第三车间人数最少.如果第一车间报名人数是第三车间报名人数的212倍,那么第二车间报名人数是第三车间报名人数的 倍.二、解答题11.已知1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=a ,问a 的整数部分是 .12.四个连续自然数的倒数之和等于2019,求这四个自然数的两两乘积之和.13.用四舍五入的方法计算三个分数的和,得近似值为35.1875≈++cb a ,试求c b a ,,的值.(c b a ,,是三个自然数)14.国际象棋比赛的奖金总数为10000元,发给前五名.每一名的奖金都不一样,名次在前的钱数要比名次在后的钱数多.每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、第三名两人之和,第二名的钱数是第四、第五名两人之和,那么第三名最多能得多少元?———————————————答 案——————————————————————1. 3.依题意,得320326=<□<10,所以□=7,8,9.2. 9.原式>9999=+⋅⋅⋅++, 原式<10,所以原式的和的整数部分是9.3. 11.()97751010219719=+⋅⋅⋅++⨯=A ,因此与A 最接近的整数是11.4. 15.92设这24个偶数之和为S .由S >15.85×24=380.4和S <15.95×24=382.8,以及S 是偶数,推知S =382,所求数为92.1524382≈÷.5. 1997.若要拆成的不同自然数尽量多,应当从最小的自然数1开始,则2)1(321+=+⋅⋅⋅+++n n n ≤1995003. 所以 )1(+n n ≤3990006当1997=n 时,正好有)1(+n n ≤3990006, 所以最多可以拆成1997个不同自然数的和.6. 91.根据题设条件,这列数依次是105,85,95,90,92.5, 91.25, 91.875, …, 显然,从第六项起后面每个数的整数部分都是91,所以,第19个数的整数部分是91.7. 5.这一过程每进行一次,剩下所有线段的和等于上次剩下的322716323232323=⨯⨯⨯⨯>0.4, 813232323232323=⨯⨯⨯⨯⨯<0.4, 所以至少进行5次.8. 110.分母>11011819801=⨯,分母<11111819981=⨯, 所以110<S <111,即S 的整数部分等于110.9. 101.证9998765432,10099654321⨯⋅⋅⋅⨯⨯⨯=⋅⋅⋅⨯⨯⨯=B A , 则2101100110099999854433221⎪⎭⎫ ⎝⎛==⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯B A .因为A 的前49项的对应项都小于B , A 的最后一项10099<1, 所以A <B , 再由B A ⨯=⎪⎭⎫⎝⎛2101>A ×A , 推知, 101>A .10. 761或1631.设第二和第三车间报名人数分别为a 和b ,则第一车间b b 25212=⨯,依题意,得 b a b a b 272575+=++=因为b ≤a ≤b 25,所以b 29≤b a 27+≤6b ,即b 29≤75≤6b ,所以2112≤b ≤3216,又b 为偶数,所以b =14或16.(1) 当b =14时, a =26, 761=b a ;(2) 当b =16时, a =19, 1631=b a .11. 1006915661265111512111⨯⎪⎭⎫⎝⎛⨯+⋅⋅⋅+⨯+⨯+⋅⋅⋅+++=a691566126511100151001210011100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯+=6915661265113115341235111100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯++=最后一个分数小于1,所以a 的整数部分是101.12. 设这四个连续自然数分别为a ,a +1,a +2, a +3,则 20193121111=++++++a a a a ,所以 31211112019++++++=a a a a <a a a a a 41111=+++, a <1944. 易知a =1,2,4均不合题意,故a =3,这四个自然数为3,4,5,6,其两两乘积之和为:119656454635343=⨯+⨯+⨯+⨯+⨯+⨯.13. 依题意,得 1.345≤875cb a ++<1.355,所以 376.6≤56a +40b +35c <379.4又a ,b ,c 为自然数,因此, 56a +40b +35c =377 ① 或56a +40b +35c =378 ② 或56a +40b +35c =379 ③考虑不定方程①,由奇偶分析,知c 为奇数,所以40b +35c 的个位为5, 因此56a 的个位为2,a 的个位为2或7.又a <5643656379=,故a =2, 因此8b +7c =53,易知b =4, c =3.同法可知不定方程②无解,方程③的解为a =4, b =3, c =1.14. 设第i 名的奖金为100ai 元(i =1,2,3,4,5).依题意,得 1000010010010010010054321=++++a a a a a , 且542321,a a a a a a +=+=,整理 1002332=+a a ① 所以 3223100a a +=<222523a a a =+,故2a >20, 由①易知2a 必为偶数,所以2a ≥22.故 ()23310021a a -=≤()1722310021=⨯-. 即第三名最多能得1700元.二、估计与估算(二)年级 班 姓名 得分 一、填空题1. 将六个分数215,94,12011,451,83,358分成三组,使每组的两个分数的和相等,那么与451分在同一组的那个分数是 .2. 数151311197535232129171551719212321357911131÷的十分位到十万分位的数字为 .3. 满足下式的n 最小等于 . )1(1431321211+⨯+⋅⋅⋅+⨯+⨯+⨯n n >19981949.4. 已知1101011102103101102100101+⋅⋅⋅+++=A ,则A 的整数部分是 .5. 小明计算17个自然数的平均数所得的近似值是31.3,老师指出小明少取了一位有效数字,则老师要求的平均数应该是 .6.有三十个数:,302964.1,,30364.1,30264.1,30164.1,64.1+⋅⋅⋅+++如果取每个数的整数部分,并将这些整数相加,那么其和是 .7.将奇数1,3,5,7,…,由小到大按第n 组有2n -1个奇数进行分组 (1), (3,5,7), (9,11,13,15,17), … 第一组 第二组 第三组 那么1999位于第 组的第 个数.8. 22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是 .9. 数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是 .10. 有甲、乙、丙、丁四个同学去林中采蘑菇.平均每人采得的蘑菇的个数的整数部分是一个十位数为3的两位数.又知甲采的数量是乙的54,乙采的数量是丙的23倍.丁比甲多采3个蘑菇.那么,丁采蘑菇 个. 二、解答题11.两个连续自然数的平方之和等于365,又有三个连续自然数的平方之和也等于365.试找出这两个连续自然数和那三个连续自然数.12.如图所示,方格表包括A 行B 列(横向为行,纵向为列),其中依次填写了自然数1至B A ⨯ ,现知20在第3行,41在第5行,103在最后一行,试求A 和B .13.求分数1611514131211++⋅⋅⋅++++=A 的整数部分.14.甲、乙、丙三个班向希望工程捐赠图书.已知甲班1人捐6册,有2人各捐7册,其余人各捐11册;乙班有1人捐6册,3人各捐8册,其余人各捐10册;丙班有2人各捐4册,6人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数都在400册与550册之间.问:每班各有多少人?———————————————答 案——————————————————————1.94. 注意到451是六个分数中的最小数,因此与451在同一组的分数,必须是这六个分数中的最大数(否则,六个数不能分成三组,每组的两个分数的和相等),因此所求数为94.2. 2,5,9,5,3.设题中所述式子为B A ÷,由于题中所涉及的数太大,不太可能通过直接计算来确定前五位数(否则计算量太大),下面利用估值方法来求:因为2.05313,3.05214>÷>÷<÷<÷B A B A , 所以此数的第一位数字为2.又因为259.052331357,2597.05238.135>÷>÷<÷<÷B A B A , 所以此数的第一、二、三位数字为2,5,9. 又因为,25954.0523212135792<÷<÷B A25953.0523********1>÷>÷B A , 所以此五位数字是2,5,9,5,3.3. 40.原式左端等于111+-n ,可得不等式199********>+-n ,所以19984911<+n , 解得493839>n ,故n 最小等于40.4. 67.⎪⎭⎫ ⎝⎛+⋅⋅⋅+++++⋅⋅⋅+++=11010102101011010010)11321(A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++=1101010210101101001066所以 1016711100106611110106667=⨯+<<⨯+=A 因此, A 的整数部分为67.5. 31.29.设17个自然数的和为S ,由3.3117≈S ,得31.25≤35.3117<S. 所以531.25≤S <532.95,又S 为整数,所以S =532,则29.311753217≈=S6. 49.关键是判断从哪个数开始整数部分是2,因为2-1.64=0.36,我们就知⋅⋅⋅==33.0301031, 故先看3011,3011=⋅⋅⋅66.036.0>,这说明“分界点”是301164.1+,所以前11个数整数部分是1,后19个数整数部分为2,其和为4921911=⨯+.7. 32, 39.第n 组的最后一个奇数为自然数中的第2)12(531n n =-+⋅⋅⋅+++个奇数, 即122-n .设1999位于第n 组,则19991)1(22<--n ≤122-n . 由 223222047199919211312⨯=<<=-⨯1-知n=32. 所以1999在第32组第39312119992=-+个数.8. 29.当两个数的和不变时,两数越接近(即差越小)它们的积越大. 所以24.101.823.102.822.103.8⨯<⨯<⨯,从而30325.18324.101.822.103.823.102.824.101.8=⨯⨯<⨯⨯<⨯+⨯+⨯.52.2969.38)22.123.124.1(822.103.823.102.824.101.8=⨯=++⨯>⨯+⨯+⨯,所以22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是29.9. 0.01注意到35327322=>=,所以6992332132,2132>>,所以01.01001961321322132561010=>=⨯=⨯> 又443818025=<=⨯,所以25132,51328844<<.所以02.0501212513225132221010==⨯<⨯<. 故数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是0.01.10. 39.设丙采蘑菇数为x 个,则乙采x 23个,甲采x x 562354=⋅个,丁采⎪⎭⎫⎝⎛+356x 个,四人合采蘑菇数为:310493565623+=++++x x x x x . 依题意,得:30≤⎪⎭⎫⎝⎛+3104941x <40解得 4910117494323⨯=≤492324910157=⨯<x又x 1049必须为整数, x 为10的倍数,因此只能x =30, 从而丁采39356=+x (个).11. 用估值法,先求两个连续自然数,因为5.1822365=÷,所以在两个连续自然数中,一个的平方小于182.5,另一个的平方大于182.5.由132=169,142=196得到,这两个连续自然数是13和14.类似地,3365÷32121=,最接近32121的自然数的平方是112=121,所以这三个连续自然数应是10,11,12.经验证,符合题意.12. 依题意,得2B <20≤3B ,4B <41≤5B ,所以326≤B <10,518≤B <4110,故518≤B <10,因此, B =9.由103在最后一行,得9(A -1)<103≤9A ,所以, 9411≤A <9412,故A =12.13.⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=16111110191817151416131211A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++=16111110191817151412又因为14148171514181421=⨯<+++<⨯= 181816111110191161821=⨯<+⋅⋅⋅+++<⨯= 所以 4112212123=++<<++=A故A 的整数部分是3.14.由题目条件,甲班捐书最多,丙班最小,甲班比丙班多捐28+101=129(册). 因为丙班捐书不少于400册,所以甲班捐书在529~550册之间.甲班人数不少于11349311)776529(=+÷---(人),不多于11251311)776550(=+÷---(人),即甲班人数是50人或51人.如果甲班有50人,则甲班共捐书6+7+7+11×(50-3)=537(册),推知乙班捐书537-28=509(册),乙班有10951410)386509(=+÷⨯--(人),人数是分数,不合题意.所以甲班有51人,甲班共捐书548)351(11776=-⨯+++(册),推知乙班捐有53÷+⨯--(人),-(=548104)38628丙班有49⨯÷+-⨯-(人).-(=548)697212948三、定义新运算(一) 年级 班 姓名 得分一、填空题1.规定a ☉b =ab b a -,则2☉(5☉3)之值为 .2.规定“※”为一种运算,对任意两数a ,b ,有a ※b 32b a +=,若6※x 322=,则x =.3.设a ,b ,c ,d 是自然数,定义bc ad d c b a +>=<,,,.则<><><<,3,2,1,4,4,3,2,13, 4, 1, 2>>=<>1,4,3,2, .4.[A ]表示自然数A 的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算:]7[])22[]18([÷+= .5.规定新运算※:a ※b=3a -2b .若x ※(4※1)=7,则x= .6.两个整数a 和b ,a 除以b 的余数记为a ☆b .例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9) ☆4= .7.对于数a ,b ,c ,d 规定d c ab d c b a +->=<2,,,.如果7,5,3,1>=<x , 那么x = .8.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5= .9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]= .10.假设式子b a a ⨯#表示经过计算后,a 的值变为原来a 与b 的值的积,而式子b a b -#表示经过计算后,b 的值为原来a 与b 的值的差.设开始时a =2,b =2,依次进行计算b a a ⨯#,b a b -#,b a a ⨯#,b a b -#,则计算结束时,a 与b 的和是 .二、解答题11.设a ,b ,c ,d 是自然数,对每两个数组(a ,b ),(c ,d ),我们定义运算※如下: (a ,b )※(c ,d )= (a+c ,b +d );又定义运算△如下: (a ,b )△(c ,d )= (ac+bd ,ad+bc ).试计算((1,2) ※(3,6))△((5,4)※(1,3)).12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼).13.22264⨯⨯=222⨯⨯⨯表示成()664=f ;33333243⨯⨯⨯⨯=表示成()5243=g .试求下列的值:(1)()=128f ; (2))()16(g f =; (3)6)27()(=+g f ;(4)如果x , y 分别表示若干个2的数的乘积,试证明:)()()(y f x f y x f +=⋅.14.两个不等的自然数a 和b ,较大的数除以较小的数,余数记为a ☉b ,比如5☉2=1,7☉25=4,6☉8=2.(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x =2,而x 小于20,求x ;(3)已知(19☉x )☉19=5,而x 小于50,求x .———————————————答 案—————————————————————— 1. 120411. 5☉3=15165335=-,2☉(5☉3)=2☉12041112016121516151621516==-=.2. 8.依题意,6※326x x +=,因此322326=+x ,所以x=8.3. 280.;1421343,2,1,4;1032414,3,2,1=⨯+⨯>=<=⨯+⨯>=<.1443121,4,3,2;1014232,1,4,3=⨯+⨯>=<=⨯+⨯>=< 原式2801014141014,10,14,10=⨯+⨯>==<.4. 5.因为23218⨯=有6)12()11(=+⨯+个约数,所以[18]=6,同样可知[22]=4,[7]=2.原式52)46(=÷+=.5. 9.因为4※1=101243=⨯-⨯,所以x ※(4※1)= x ※10=3x -20.故3x -20=7,解得x =9.6. 0.89226+⨯=,26☆9=8,又428⨯=,故(26☆9)☆4=8☆4=0.7. 6.因为x x x +=+-⨯⨯>=<15312,5,3,1,所以71=+x ,故6=x .8. 86415.7※5=7+77+777+7777+77777=86415.9. 25.原式=[3△5]×[5☉7]=5×5=25.10. 14.第1次计算后,422=⨯=a ;第2次计算后,224=-=b ;第3次计算后,824=⨯=a ;第4次计算后,628=-=b .此时1468=+=+b a .11. (1,2)※(3,6)=(1+3,2+6)=(4,8),(5,4)※(1,3)=(5+1,4+3)=(6,7). 原式=(4,8)△(6,7)=(4×6+8×7,4×7+8×6)=(80,76).12. 原式=羊△羊☆羊△狼=羊☆羊△狼=羊△狼=狼.13. (1)()72)128(7==f f ;(2)()())81(342)16(44g g f f ====;(3)因为()())8(233636)27(633f f g g ===-=-=-,所以6)27()8(=+g f ; (4)令,2,2n m y x ==则n y f m x f ==)(,)(.()())()(222)(y f x f n m f f y x f n m n m +=+==⋅=⋅+.14. (1)1991☉2000=9;由5☉19=4,得(5☉19)☉19=4☉19=3;由19☉5=4,得(19☉5)☉5=4☉5=1.(2)我们不知道11和x 哪个大(注意,x ≠11),即哪个作除数,哪个作被除数,这样就要分两种情况讨论.1) x <11,这时x 除11余2, x 整除11-2=9.又x ≥3(因为x 应大于余数2),所以x =3或9.2) x >11,这时11除x 余2,这说明x 是11的倍数加2,但x <20,所以x =11+2=13.因此(2)的解为x =3,9,13.(3)这个方程比(2)又要复杂一些,但我们可以用同样的方法来解.用y 表示19☉x ,不管19作除数还是被除数,19☉x 都比19小,所以y 应小于19.方程y ☉19=5,说明y 除19余5,所以y 整除19-5=14,由于y ≥6,所以y =7,14.当y =7时,分两种情况解19☉x =7.1)x <19,此时x 除19余7,x 整除19-7=12.由于x ≥8,所以x =12.2) x >19,此时19除x 余7, x 是19的倍数加7,由于x <50,所以x =19+7=26或7219+⨯=x =45.当y =14时,分两种情况解19☉x =14.1) x <19,这时x 除19余14, x 整除19-14=5,但x 大于14,这是不可能的.2)x >19,此时19除x 余14,这就表明x 是19的倍数加14,因为x <50,所以x =19+14=33.总之,方程(19☉x )☉19=5有四个解,x =12,26,33,45.三、定义新运算(二) 年级 班 姓名 得分一、填空题1.规定:a ※b =(b+a )×b ,那么(2※3)※5= .2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= .3.定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .4.已知a ,b 是任意有理数,我们规定: a ⊕b = a +b -1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 .5.x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x = .7.如果1※4=1234,2※3=234,7※2=78,那么4※5= .8.我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∙∙25.210623799343.03323625.026176.0 .9.规定一种新运算“※”: a ※b =)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x = .10.对于任意有理数x , y ,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※○ △ △ ○3=4,x ※m=x (m ≠0),则m 的数值是 .二、解答题11.设a ,b 为自然数,定义a △b ab b a -+=22.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).12.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a -b ,如果a <b ,则定义a ※b= b - a .(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a ;②(a ※b )※c= a ※(b ※c ).13.设a ,b 是两个非零的数,定义a ※b ab b a +=. (1)计算(2※3)※4与2※(3※4).(2)如果已知a 是一个自然数,且a ※3=2,试求出a 的值.14.定义运算“⊙”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的差记为a ⊙b . 比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c 整除a 和b ,则c 也整除a ⊙b ;如果c 整除a 和a ⊙b ,则c 也整除b ;(3)已知6⊙x =27,求x 的值.———————————————答 案——————————————————————1. 100.因为2※3=(3+2)×3=15,所以(2※3)※5=15※5=(5+15)×5=100.2. 8.依题意,得305)2(=⨯-a ,解得8=a .3. 42.18△12=(18,12)+[18,12]=6+36=42.4. 98.原式]1313[4)]253()186[(4⊕⊗=-⨯⊕-+⊗=982254254]11313[4=-⨯=⊗=-+⊗=5. 11.<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以原式=<<19>+<93>>=<8+24>=<32>=11.6. 6.x ⊙5-5⊙x=(3 x -2×5)-(3×5-2 x )=5 x -25,由5 x -25=5,解得x=6.7. 45678.8. 21. 因为∙6.0○322617=○322617=,0.625△853323=△853323=, ∙3.0△319934=△319934=,106237○10623725.2=○4949=, 所以,原式2149318532=++=.9. 2.令x ※3=y ,则y ※4=421200,又4212002726252413532244⨯⨯⨯=⨯⨯⨯=,所以y=24,即x ※3=24.又24=432323⨯⨯=⨯,故x =2.10. 4.由题设的等式x ※y=cxy by ax -+及x ※m=x (m ≠0),得000=⋅⋅-+⋅m c bm a ,所以bm=0,又m ≠0,故b=0.因此x ※y=ax -cxy.由1※2=3,2※3=4,得⎩⎨⎧=-=-46232c a c a 解得a =5,c =1. 所以x ※y =5x -xy ,令x =1,y=m 得5-m=1,故m =4.11. (1)原式()()62585834342222=⨯-++⨯-+=;(2)原式()323222⨯-+=△4=7△4=37474722=⨯-+;(3)原式()525222⨯-+=△()19434322=⨯-+△132831319131922=⨯-+=.12. (1)原式=(4-3)※9=1※9=9-1=8;(2)因为表示a ※b 表示较大数与较小数的差,显然a ※b= b ※a 成立,即这个运算满是交换律,但一般来说并不满足结合律,例如:(3※4)※9=8,而3※(4※9)=3※(9-4)=3※5=5-3=2.13. (1)按照定义有2※36132332=+=,3※412253443=+=. 于是(2※3)※4613=※4=3127451324241361344613=+=+. 2※(3※4)=2※60012012425252421225122521225=+=+=. (2)由已知得233=+aa ① 若a ≥6,则3a ≥2,从而233>+aa 与①矛盾.因此a ≤5,对a =1,2,3,4,5这5个可能的值,一一代入①式中检查知,只有a =3符合要求.14. (1)为求12⊙21,先求出12与21的最小公倍数和最大公约数分别为84,3,因此12⊙21=84-3=81,同样道理5⊙15=15-5=10.(2)如果c 整除a 和b ,那么c 是a 和b 的公约数,则c 整除a ,b 的最大公约数,显然c 也整除a ,b 最小公倍数,所以c 整除最小公倍数与最大公约的差,即c 整除a ⊙b .如果c 整除a 和a ⊙b ,由c 整除a 推知c 整除a ,b 的最小公倍数,再由c 整除a ⊙b 推知, c 整除a ,b 的最大公约数,而这个最大公约数整除b ,所以 c 整除b .(3)由于运算“⊙”没有直接的表达式,解这个方程有一些困难,我们设法逐步缩小探索范围.因为6与x 的最小公倍数不小于27+1=28,不大于27+6=33,而28到33之间,只有30是6的倍数,可见6和x 的最小公倍数是30,因此它们的最大公约数是30-27=3.由“两个数的最小公倍数与最大公约数的积=这两个数的积”,得到x ⨯=⨯6330.所以15=x .四、工程问题(1)年级 班 姓名 得分 一、填空题1.一项工程,甲、乙两队合作20天完成,乙丙两队合作60天完成,丙丁两队合作30完成,甲丁合作 天完成?2.甲乙两队合作一项工程,计划在24天内完成.如果甲队做6天,乙队做4天,只能做完全工程的20%,两队单独做完全工程各需要 天.3.一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.4.某市举办菊展,新建一个喷水池.单开甲管1小时可将喷水池注满,单开乙管40分钟可将水注满,两管同时齐开5210分钟后,共注水314吨.喷水池能装水吨.5.一项工作,两个师傅和三个徒弟合作需922天完成,如果三个师傅2个徒弟合作需要712天完成,如果一名师傅单独做需 天完成.6.加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有 个.7.一项建筑工程,由甲建筑队单独承建要一年半,乙建筑队单独承建要一年零三个月,现在两队合作半年,剩下的由乙队继续完成还要 个月.(假设每月实际工作天数一样)8.甲、乙、丙三人合修一围墙.甲、乙合修6天修好围墙的31,乙、丙合修2天修好余下的41,剩下的三人又合修了5天才完成.共得工资180元,按各人所完成的工作量的多少来合理分配,每人应得 元.9.原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土 方.10.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时,需要5小时才能注满水池,当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开 个进水管.二、解答题11.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙每天的工作效率相当于甲、乙二人每天工作效率之和的51;如果三人合抄只需8天就完成了,那么乙一人单独抄需多少天才能完成?12.一项工程,甲独做需10天,乙独做需15天,如果两人合作,甲的工作效率就要降低,只能完成原来的54,乙只能完成原来的109,现在要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?13.一空水池有甲、乙两根进水管和一根排水管.单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需6分钟流尽.某次池中没有水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管,又过了同样长的时间,水池的1/4注了水.如果继续注满水池,前后一共要花多少时间?14.有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管,进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几根出水管?———————————————答 案——————————————————————1. 156********1=⎪⎭⎫ ⎝⎛-+÷(天).2. 乙的工作效率为()()40116244%201=-÷⨯-, 甲的工作效率为601401241=-. 故甲做60天完成,乙做40天完成.3. 1030124162411=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛⨯-(天).4. 104016015210314=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛÷(吨)5. 一个师傅与一个徒弟工作效率之和为:()60112371219221=+÷⎪⎪⎪⎪⎭⎫⎝⎛+, 故师傅的工作效率是101601127121=⨯-,即一名师傅单独做10天完成.6. 16841311413124=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛-÷(个).7. 415161511811=÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-(月).8. 甲分得的钱为:()3356241311541311311180=+⨯⎭⎬⎫⎩⎨⎧÷⨯⎪⎭⎫ ⎝⎛--÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛---⨯(元);丙分得的钱为:()5652631541311311180=+⨯⎭⎬⎫⎩⎨⎧÷-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛---⨯(元);乙分得的钱为:180-33-56=91(元).9. 36)624(=÷-(方).10. 进水管一小时进水量为:()()[]15124541521=-÷⨯-⨯÷; 排水管一小时排水量为:1515120151=÷⎪⎭⎫⎝⎛-⨯.故只开一进水管、一排水管池中无水,多开进水管数为5.71521=÷,取整为8 个,至少要打开9个进水管.11. 24281511811=⎥⎦⎤⎢⎣⎡÷-⎪⎭⎫ ⎝⎛+÷÷(天).12. 设两人要合作x 天,依题意得:()15078101=+-x x ,故x =5(天).13. 设注满池中41的水需x 分钟,故有23,412615126151==⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛-x x x .继续注满池中水的43411=-需要251015143=⎪⎭⎫ ⎝⎛+÷(分), 共需时间42523=+(分).14. 将每根进水管每小时的进水量看作单位1,则每根出水管每小时的排水量为2)36()3865(=-÷⨯-⨯,而池中原有水量为186265=⨯-⨯,从而要想在4.5小时内把池中水抽干,需要打开65.4182=÷+(根)出水管.四、工程问题(2)年级 班 姓名 得分一、填空题1.一项工作,甲乙两队合作9天完成,乙丙两队合作12天完成,甲丙两队合作需18天完成,现在三队合作需 天完成.2.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需要做 天.3.甲、乙两队合作20天可以完成一项工程.如果两队合作8天后,乙队再独做4天,还剩这项工程的158没有完成.甲、乙两队工作效率之比为: .4.一份稿件,甲单独打字需6小时完成,乙单独打字需10小时完成.现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时,那么甲打字用了 小时.5.有批机器零件,甲单独制作需要218天,比乙单独制作多用了21天,两人合作4天后,剩下210个零件由甲单独去做,自始至终甲共制作了 零件.6.一个水池子,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能注满(这时乙管关闭).那么乙管单独灌满水池需要 小时.7.一个水池,地下水从四壁渗入,每小时渗入该水池的水量是固定的.当这个水池水满时,打开A 管,8小时可将水池排空;打开B 管,10小时可将水池排空;打开C 管,12小时可将水池排空.如果打开A 、B 两管,4小时可将水池排空,那么打开B 、C 两管,将水池排空需要 小时.8.一件工作,如果单独做,甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成.现在,甲乙二人合做2天后,剩下的继续由乙单独做,刚好在规定的日期内完成.若甲乙二人合做,完成这件工作需要 天.9.有一水池,装有甲、乙两个注水管,下面装有丙管放水.池空时,单开甲管5分钟可注满;单开乙管10分钟可注满.水池装满水后,单开丙管15分钟可将水放完.如果在池空时,将甲、乙、丙三管齐开,2分钟后关闭乙管,还要 分钟可以注满水池.10.放满一个水池的水,如果同时开放①、②、③号阀门,7.5小时可以完成;如果同时开放①、③、⑤号阀门,5小时可以完成;如果同时开放①③④号阀门,6小时可以完成;如果同时开放②④⑤号阀门,4小时可以完成.问同时开放这五个阀门, 小时可以放满这个水池.二、解答题11.师徒三人合作承包一项工程,4天能够全部完成.已知师傅单独做所需天数与两个徒弟合作所需天数相等;而师傅与乙徒弟合作所需天数的2倍与甲徒弟单独做完所需的天数相等.那么甲徒弟单独做,完成这项工程需要多少天?乙徒弟单独做,完成这项工程需要多少天?12.甲、乙、丙三人从三月一日开始合作一项工程,甲每天的工作量是乙每天工作量的3倍,乙每天的工作量是丙每天工作量的2倍.三人合作5天完成全工程的31后,甲休3天,乙休2天,丙没有休息,问这项工程是在几月几日完成的?13.一个蓄水池装了一根进水管和三根放水速度一样的出水管.单开一根进水管20分钟可注满空池.单开一根出水管,45分钟可以放完满池水.现有32池的水,如果四管齐开,多少分钟后池水还剩52?14.蓄水池有甲、丙两条进水管,和乙丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有61池水.如果按甲、乙、丙、丁、甲、乙……的顺序,轮流各开一小时,多少时间后水开始溢出水池?———————————————答 案——————————————————————1. 82181121911=⎥⎦⎤⎢⎣⎡÷⎪⎭⎫ ⎝⎛++÷(天).2. 甲乙合做28天,完成任务的1274828=÷, 故甲的工作效率为()84128631271=-÷⎪⎭⎫ ⎝⎛-,乙的工作效率为1121841481=-, 于是乙还需做56112184421=÷⎪⎭⎫ ⎝⎛-(天).3. 乙的工作效率为601482011581=÷⎪⎭⎫⎝⎛⨯--,甲的工作效率为301601201=-, 甲乙工作效率之比为1:2601:301=.4. 5.41016171011=⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛⨯-(小时).5. 35702102184421218121811210=+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-+-÷(个).6. 20)46(5141211=⎭⎬⎫⎩⎨⎧-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯-÷(小时).7. B 管每小时排水量为81421=÷(池)水. 每小时渗水量为4011011081=÷⎪⎭⎫⎝⎛-⨯(池).C 管每小时排水量为1201312124011=÷⎪⎭⎫⎝⎛⨯+(池).从而B 、C 两管排一池水,需8.440112013811=⎪⎭⎫ ⎝⎛-+÷(小时).8. 甲与乙工作效率之比为3:2,甲独做要101235=⎪⎭⎫⎝⎛-÷(天),乙独做需10+5=15(天),甲乙合做要61511011=⎪⎭⎫⎝⎛+÷(天).9. 4151512151101511=⎪⎭⎫⎝⎛-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+-(分钟).10. 434134161515.711=⎥⎦⎤⎢⎣⎡+÷⎪⎭⎫ ⎝⎛-++÷(小时).11. 243412411=⎪⎭⎫⎝⎛÷-÷÷(天).12. 甲的工作效率为4522616151=++⨯,乙的工作效率为13522612151=++⨯, 丙的工作效率为13512611151=++⨯.乙丙三天干了151313511352=⨯⎪⎭⎫ ⎝⎛+,甲丙二天干了1351421351452=⨯⎪⎭⎫ ⎝⎛+. 整个工作剩下13567135********=---.由甲乙丙合干还要9471351135245213567=⎪⎭⎫ ⎝⎛++÷(天), 完成此项工作共需9417947235=+++(天),即3月18日完成.13. 1620134515232=⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-(分).14. 按甲、乙、丙、丁顺序各开一小时水池中进水60761514131=-+-.这样5个周期(即20小时)后,池中有水43560761=⨯+,再开甲管注满水池需时4331431=÷⎪⎭⎫ ⎝⎛-(小时),故一共要43204320=+(小时)开始溢出.五、分数应用题(1)年级 班 姓名 得分 一、填空题1.有一个分数,它的分母比分子多4.如果把分子、分母都加上9,得到的分数约分后是97,这个分数是 .2.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 .3.商店的书包降价41后,又提价51,最后的价格是8元1角一个,那么最初是元钱一个.4.小萍今年的年龄是妈妈的31,二年前母子年龄相差24岁,四年后小萍的年龄是 .5.甲、乙、丙三人共同加工一批零件.甲比乙多加工零件20个,丙加工零件是乙加工零件的54,甲加工零件是乙丙两人加工零件总数的65.甲、乙、丙各加工零件 个.6.六一班男生的一半和女生的41共16人,女生的一半和男生的41共14人,这个班男、女生各 人.7.在4点多钟时,时钟的时针和分针在一直线上且方向相反,这时是4点 分.8.甲、乙两人各有钱若干元,已知甲的钱数是乙的4倍,当甲花去31后,又花去余下的31,如果这时甲给乙7元钱,甲、乙两人的钱数正好相等.甲原来有_____元钱.9.A 、B 、C 三根木棒插在水池中,(如图)三根捧长度和是360厘米,A 棒有43露出水面外,B 棒有4露出水面外.C 棒有2露出水面外.水池有 厘米深.。

小学四年级奥数题及答案[1]

小学四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。

共需要1+10=11分钟。

【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。

为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。

两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

四年级奥数题:统筹规划问题(二)2010-03-25 15:42:36 来源:奥数网整理网友评论1条【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长麓补习初一奥数班测试题 (时间:100分钟,满分140分) 一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-33 2. “a的2倍与b的一半之和的平方,减去a、b两数平方和的4倍”用代数式表示应为( ) (A)2a+(21b2)-4(a+b)2 (B)(2a+21b)2-a+4b2 (c)(2a+21b)2-4(a2+b2) (D)(2a+21b)2-4(a2+b2)2 3.若a是负数,则a+|-a|( ), (A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l 5.已知数轴上的三点A、B、C分别表示有理数a、1、-l,那么|a+1|表示( ). (A)A、B两点的距离 (B)A、C两点的距离 (C)A、B两点到原点的距离之和 (D)A、C两点到原点的距离之和 6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是( ). (A)A点 (B)B点 (C)C点 (D)D点 7.已知a+b=0,a≠b,则化简ab(a+1)+ba (b+1)得( ).

(A)2a (B)2b (C)+2 (D)-2 8.已知m<0,-l是 ( ). (A)m,mn,mn2 (B)mn,mn2,m (C)mn2,mn,m (D)m,mn2,mn 二、填空题(每小题?分,共84分) 9.计算:31a-(21a-4b-6c)+3(-2c+2b)=

10.分解因式= ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是

梨 梨 苹果 苹果 30 梨 型 梨 梨 28 荔枝 香蕉 苹果 梨 20

香蕉 香蕉 荔枝 苹果 ? 19 20 25 30 14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 . 15.在数轴上,点A、B分别表示-31和51,则线段AB的中点

所表示的数是 . 16.已知2axbn-1与-3a2b2m(m是正整数)是同类项,那么(2m-n)x= 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月. 18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元. 19.有一列数a1,a2,a3,a4,…,an,其中 a1=6×2+l;a2=6×3+2;a3=6×4+3;a4=6×5+4; 则第n个数an= ;当an=2001时,n= . 20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是 第十五届江苏省初中数学竞赛参考答案初一年级第一试 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06. 10.一43.6.

11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1. 18.1022.5;101 8. 1 9.7n+6;2 8 5. 2 O.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).

第十五届江苏省初中数学竞赛试卷初一年级 第二试 一、选择题 1.已知x=2是关于x的方程3x-2m=4的根,则m的值是( ) (A)5 (B)-5 (C)1 (D)-1 2.已知a+2=b-2=2c=2001,且a+b+c=2001k,那么k的值为

( )。 (A)41 (B)4 (C)41 (D)-4

3.某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长( )。 (A)2% (B)8% (C)40.5% (D)62% 4.已知0(A)2xxx1 (B)xxx12 (C)xx1x2 (D)xx1x2 5.已知a0,下面给出4个结论: (1);01a2 (2)1-a;02 (3)1+;1a12 (4)1-.1a12 其中,一定正确的有( )。 (A)1个 (B)2个 (C)3个 (D)4个 6.能整除任意三个连续整数之和的最大整数是( )。 (A)1 (B)2 (C)3 (D)6 7.a、b是有理数,如果,baba那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中( )。 (A)只有(1)正确 (B)只有(2)正确 (C)(1),(2)都正确 (D)(1),(2)都不正确 8.在甲组图形的四个图中,每个图是由四种图形A,B,C,D(不同的线段或圆)中的某两个图形组成的,例如由A,B组成的图形记为A*B,在乙组图形的(a),(b),(c),(d)四个图形中,表示“A*D”和“A*C”的是( )。

(A)(a),(b) (B)(b),(c) (C)(c),(d) (D)(b),(d) 二、填空题 9.若(m+n)人完成一项工程需要m天,则n个人完成这项工程需要_______天。(假定每个人的工作效率相同) 10.如果代数式ax5+bx3+cx-5当x=-2时的值是7,那么当x=2时该式的值是_________. 11.如果把分数79的分子,分母分别加上正整数a,b,结果等于,

13

9

那么a+b的最小值是_____. 12.已知数轴上表示负有理数m的点是点M,那么在数轴上与点M相距m个单位的点中,与原点距离较远的点所对应的数是___________. 13.a,b,c分别是一个三位数的百位、十位和个位数字,并且a,cb则accbba可能取得的最大值是_______. 14.三个不同的质数a,b,c满足abbc+a=2000,则a+b+c=_________. 15.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员揿一声喇叭,4秒后听到回声,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是_____米 16.今天是星期日,从今天算起第4434421L 120001111天是星期________.

三、解答题 17.依法纳税是每个公民的义务,中华人民共和国个人所得税法规定,有收入的公民依照下表中规定的税率交纳个人所得税: 级别 全月应纳税所得额 税率(%) 1 不超过500元部分 5 2 超过500元到2000元部分 10 3 超过2000元到5000元部分 15 … … … 1999年规定,上表中“全月应纳税所的额”是从收入中减除800元后的余额,例如某人月收入1020元,减除800元,应纳税所的额是220元,应交个人所得税是11元,张老师每月收入是相同的,且1999年第四季交纳个人所得税99元,问张老师每月收入是多少?

18.如图,在六边形的顶点处分别标上数1,2,3,4,5,6,能否使任意三个相邻顶点处的三个数之和 (1)大于9? (2)小于10?如能,请在图中标出来;若不能,请说明理由

19.如图,正方形ABCD中,E,F分别是BC,CD边上的点,AE,DE,BF,AF把正方形分成8小块,各小块的面积分别为试比较与的大小,并说明理由。 20.(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2),(3),(4)(5)的木块。

我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)中木块的顶点数,棱数,面数填入下表: 图 顶点数 棱数 面数 (1) 8 12 6 (2) (3) (4) (5) (2)观察上表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:_______________. (3)图(6)是用虚线画出的正方体木块,请你想象一种与图(2)~(5)不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为_____,棱数为____,面数为_______。 这与你(2)题中所归纳的关系是否相符?

第十五届江苏省初中数学竞赛参考答案初一年级第二试 一、1.C. 2.B 3.B. 4.c. 5.c. 6.C. 7.A. 8.D. 二、9. 1 O.-1 7. 1 1.28. 1 2.2m. 1 3.1 6. a≤b≤c,∴|a-b|+|b-c|+|c-a|=2c-2a.要使2c-2a取得最大值,就应使c尽可能大且a尽可能小. a是三位数的百位数字,故a是1~9中的整数,又a≤c,故个位数字c最大可取9,a最小可取1·此时2c一2a得到最大值l 6. 1 4.4 2.a(bbc+1)=24×5 3.(1)当a=5时,此时b、c无解.(2)当a=2时,b=3,c=37.故a+b+c=2+3+37=4 2. 1 5.640.设鸣笛时汽车离山谷x米,听到回响时汽车又开8 0(米).此间声音共行(2x一8 O)米,于是有2z一80=34O×4,解得x=72O,7 2 O-8 O=6 4 O. 1 6.三. 11 1 ll=1 5 8 7 3×7,2000=333×6+2, 11 1…1被7除的余数与1 1被7除的余数相同. 11=7×1+4 从今天算起的第11 1…1天是星期三. 三、1 7.如果某人月收入不超过1 3 00元,那么每月交纳个人所得税不超过2 5元;如果月收入超过1 3 oo元但不超过

相关文档
最新文档