氨基酸发酵生产工艺学

合集下载

氨基酸发酵生产工艺学n2ppt课件

氨基酸发酵生产工艺学n2ppt课件
(2)浓度过大:促进菌体生长,谷氨酸产量低。因为: a.乙醛酸循环活跃,-酮戊二酸生成量减少。 b.转氨酶活力增强,谷氨酸转变成其它氨基酸。
(二)pH的影响及其控制
作用机理:主要影响酶的活性和菌的代谢。 在氮源供应充分和微酸性条件下,谷氨酸发 酵转向谷氨酰胺发酵。 pH控制在中性或微碱性。 方法:流加尿素和氨水。
我国味精技术进展情况
制糖工艺进展:酸法水解→酶酸法水解→双酶法水解。 发酵工艺进展:亚适量生物素水平(产酸4~6g/dl)
→高生物素水平(产酸12~15g/dl)。 提取工艺进展:等电点法(少数锌盐法)→等电离交法
→低温连续等电点法(少数厂家采用)。 精制工艺进展:全粉炭脱色、硫化碱除铁→颗粒炭脱
+ 4
生物 谷氨酸 (限量) 乳酸或琥珀酸(充足) 素
pH (酸性)N-乙酰-谷氨酰胺 谷氨酸(中性或微碱性)
磷酸 (适量)谷氨酸 盐
缬氨酸
➢ 菌种扩大培养
1、斜面培养:主要产生菌是棒状杆菌属、 短杆菌属、小杆菌属、节杆菌属。
我国各工厂目前使用的菌株主要是钝齿 棒杆菌和北京棒杆菌及各种诱变株。
生长特点:适用于糖质原料,需氧, 以生物素为生长因子。
2. 不溶性盐ห้องสมุดไป่ตู้淀法
(1)锌盐法
谷氨酸+锌离子 pH6谷.3 氨酸锌沉淀 pH2.谷4 氨酸结晶
溶加液酸
(2)盐酸盐法: Glu在浓盐酸中生成并析出谷氨酸盐酸盐。
这是用盐酸水解面筋生产谷氨酸的原理。 (3)钙盐法:
高温谷氨酸钙溶解度大,与菌体等不溶性杂质 分开,降温,析出谷氨酸钙沉淀,加NaHCO3 直接得 到味精。
3、菌体生长停滞期:谷氨酸合成。
措施:提供必须的氨及pH维持在7.2-7.4。 大量通气,控制温度34-37 ℃。

发酵法工艺生产小品种氨基酸技术实施方案(一)

发酵法工艺生产小品种氨基酸技术实施方案(一)

发酵法工艺生产小品种氨基酸技术实施方案一、实施背景随着生物技术的不断发展,利用微生物发酵法生产小品种氨基酸已成为当前及未来氨基酸产业的重要趋势。

小品种氨基酸具有特殊的生物活性及高附加值,其市场需求不断增长。

然而,传统的合成法生产小品种氨基酸存在流程长、产率低、成本高等问题,无法满足市场日益增长的需求。

因此,开发利用微生物发酵法生产小品种氨基酸的技术具有重要意义。

二、工作原理发酵法工艺生产小品种氨基酸主要依赖于特定的微生物菌种,通过控制发酵条件,如温度、pH、溶氧量等,实现微生物的高效代谢,进而产生目标氨基酸。

其主要工作原理如下:1.菌种筛选与优化:选择具有高生产能力及耐受性的微生物菌种,并通过遗传工程手段进行改造,提高其生产效率及抗逆性。

2.培养基优化:设计并优化适合微生物生长及代谢的培养基,提高目标氨基酸的产量。

3.发酵过程控制:通过实时监控发酵过程,调整发酵条件,保证微生物的高效代谢及目标氨基酸的产生。

4.分离纯化:利用物理、化学及色谱等方法,将目标氨基酸从发酵液中分离出来,得到高纯度的产品。

三、实施计划步骤1.菌种筛选与优化:挑选具有高生产能力的微生物菌种,通过遗传工程手段进行改造,提高其生产效率及抗逆性。

2.培养基优化:设计并优化适合微生物生长及代谢的培养基,提高目标氨基酸的产量。

3.发酵过程控制:通过实时监控发酵过程,调整发酵条件,保证微生物的高效代谢及目标氨基酸的产生。

4.分离纯化:利用物理、化学及色谱等方法,将目标氨基酸从发酵液中分离出来,得到高纯度的产品。

5.产品质量检测:对所得产品进行质量检测,确保其符合相关标准。

6.工业化放大:根据实验室结果,进行工业化放大研究,为后续的工业化生产提供技术支持。

四、适用范围此技术适用于生产各种小品种氨基酸,如L-脯氨酸、L-缬氨酸、L-异亮氨酸等。

不仅适用于实验室研究,也适用于工业化生产。

五、创新要点1.利用微生物发酵法生产小品种氨基酸,突破了传统合成法的限制,提高了生产效率及产率。

第4章氨基酸发酵生产工艺

第4章氨基酸发酵生产工艺

• ⑵酶法转化工艺
利用酶的离体专一性反应,催化底物生产有活性 的氨基酸。
D-氨基酸和DL-氨基酸的手性拆分 工艺简便、转化率高、副产物少、容易精制。 占总量的10%左右
• ⑶全化学合成生产工艺
不受氨基酸品种的限制,理论上可生产天然氨基 酸和非天然氨基酸。
产物是DL-型外消旋体,必须拆分才得单一对映 体。
• 组成蛋白质的氨基酸有20种,多数为L-型,也是 人体能吸收利用的活性形式
• 初级代谢产物 • 根据R基团的化学结构不同,分为:15种脂肪族的, 2种芳香族的,2种杂环的,以及1种亚基氨基酸。 • 根据R基团的极性,分为:12种极性与8种非极性 • 根据酸碱性,分为:2种酸性的,3种碱性的,以及 15种中性氨基酸。 • 根据人体生理生化过程能否合成,分为:(8+2)种必 需和10种非必需氨基酸 • 应用:药品、食品、饲料、化工等
4.1.2 氨基酸的理化性质
• 无色晶体,熔点200~300℃,一般溶于水、稀酸 稀碱,不溶于乙醚、氯仿等有机溶剂,常用乙醇 沉淀氨基酸。 • 除甘氨酸外,有旋光性,测定比旋度可鉴定氨基 酸的纯度。 • 芳香族氨基酸在紫外有吸收峰,可用于鉴别、合 成、定性和定量分析中。
• 氨基酸是弱的两性电解质,在酸性环境,带正电荷; 碱性环境,带负电荷;净电荷为0时的pH值为等电 点pI。由于静电作用,等电点时,溶解度最小,容 易沉定,可用于氨基酸的制备。
氨基酸
分子量
甘氨酸
75.07
丙氨酸
89.10
缬氨酸
117.15
亮氨酸
131.18
异亮氨酸
131.18
丝氨酸
105.09
苏氨酸
119.12
半胱氨酸

氨基酸发酵工艺学

氨基酸发酵工艺学

氨基酸发酵工艺学氨基酸发酵工艺学是研究氨基酸生产过程中的发酵过程和工艺参数的科学。

氨基酸是生命体中重要的有机物质,广泛应用于医药、化工、食品等领域。

通过发酵工艺学的研究,可以优化氨基酸的生产工艺,提高产量和质量,降低生产成本。

氨基酸发酵工艺学主要包括微生物的选育与改良、发酵介质的配方和优化、发酵条件的控制等环节。

首先,通过选择适合生产目标氨基酸的微生物种类进行培养,并通过基因改造等手段提高其产酸能力和抗生素产量。

其次,合理配方发酵介质,提供微生物生长和代谢所需的营养物质,如碳源、氮源、无机盐等,并优化营养物质浓度和比例,以提高产酸效率。

同时,还需要注意控制介质的pH值、温度和氧气供应等因素,以最大程度地促进微生物生长和酸产量。

此外,还需要加入抗泡剂、抗生素等辅助物质,防止发酵过程中的杂菌污染。

在发酵过程中,通过监测微生物生长曲线、消耗和产酸速率等指标来了解反应的进程和微生物代谢状态。

根据这些数据,可以调整前述的工艺参数,如发酵温度、密度、通气量、搅拌速度等,以提高产酸效率和酸产量。

在工艺的最后阶段,通过优化酸的提取、纯化和结晶工艺,以获得高纯度的氨基酸产品。

随着生物技术的发展,氨基酸发酵工艺学还涉及到基因工程、酶工程等新技术的应用。

通过选择、改造和优化微生物的代谢途径和酶系统,可以进一步提高氨基酸的产酸效率和产量,同时降低废水和废料的排放。

总之,氨基酸发酵工艺学是一门综合知识学科,涉及到微生物学、生化学、工程学等多个领域的知识。

通过深入研究和应用,可以不断改进氨基酸生产工艺,满足市场需求,推动氨基酸产业的发展。

氨基酸发酵工艺学是一门涉及微生物学、生化学、生物工程学等多学科的综合学科,旨在通过研究发酵过程和优化工艺参数,提高氨基酸的产量和质量,降低生产成本,促进氨基酸产业的发展。

在氨基酸发酵工艺学中,微生物的选育与改良是一个重要的环节。

微生物是氨基酸发酵的生产工具,不同的微生物对于氨基酸的产量和产物特性有着不同的影响。

氨基酸工艺学

氨基酸工艺学

氨基酸工艺学一、名词解释氨基酸工艺学:是一门新型发酵的技术科学,以探讨氨基酸发酵工厂的生产技术为主要目的。

氨基酸:生命有机体的重要组成部分,是生命机体营养、生存和发展极为重要的物质,在生命体内物质代谢调节调控、信息传递方面扮演重要的角色。

全价氨基酸:动物性蛋白质中各种必须氨基酸之间的比值与人体构成蛋白质需要的比值基本一致,可以全被人体吸收。

限制氨基酸:各类植物蛋白质中的各种氨基酸比值不很适宜,缺少的氨基酸。

淀粉:白色无定型结晶粉末,存在于各种植物组织中,淀粉颗粒具有一定的形态和层次分明的构造,在显微镜下观察淀粉颗粒是透明的,不同淀粉具有不同的形状和大小。

直链淀粉:由不分支的葡萄糖链构成,葡萄糖分子间以α-1,4糖苷键聚合成,呈链状结构,分子比较小,聚合度在100~6000之间。

(遇碘呈蓝色)支链淀粉:由多个较短的α-1,4糖苷键直链结合而成,聚合度为1000~3000000之间。

一种膨胀性物质,置于水中加热时成为胶黏的糊状物,而且只有在加热加压的条件下,才能溶解于水。

(呈紫红色)糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有黏性的淀粉糊,这个过程称为糊化。

酸解法:利用无机酸为催化剂,在高温高压下将淀粉水解转化为葡萄糖的方法。

酸酶法:先将淀粉用酸水解成糊精或低聚糖,然后再用糖化酶将其水解成葡萄糖的工艺。

酶酸法:将淀粉乳先用α-淀粉酶液化,过滤除去杂质后,然后用酸水解成葡萄糖的工艺双酶法:用专一性很强的淀粉酶和糖化酶为催化剂,将淀粉水解成为葡萄糖的工艺。

液化:利用液化酶使淀粉糊化,粘度降低,并水解到糊精和低聚糖的程度。

糖化:用糖化酶将液化产物进一步彻底水解成葡萄糖的过程。

老化:分子间氢键已断裂的糊化淀粉又重新排列成新氢键的过程,也就是一个复结晶的过程。

噬菌体:侵染细菌、放线菌等微生物并使其细胞破裂死亡的一类病毒。

噬菌体效价:每毫升试样中所含有具有侵染性的噬菌体的粒子数 细胞经济性:微生物活细胞是个远离平衡状态的开放体系,从微生物细胞对能量和化学物质的内外交换、增收节支、调节的规律的客观存在出发,可以把微生物细胞作为按特殊的经济规律运行的经济实体看待,并把这种特殊的经济规律运行的有利于生存竞争的新陈代谢特性称为细胞经济型细胞经济系数:生成细胞的质量与消耗基质的质量之比DE值:表示淀粉水解程度和糖化程度,也称葡萄糖值,糖化液中还原糖占干物质的百分比DX值:糖液中葡萄糖含量占干物质的百分率。

氨基酸生产工艺流程

氨基酸生产工艺流程

氨基酸生产工艺流程氨基酸是生物体内重要的有机物质,是蛋白质的构成单位,也是生物体内的重要代谢产物。

而氨基酸的生产工艺流程则是指在工业生产中,通过一系列的化学方法和生物工程技术,合成氨基酸的过程。

下面将介绍氨基酸生产的工艺流程。

首先,氨基酸生产的原料主要包括碳源、氮源和能源。

碳源可以是葡萄糖、玉米浆等含糖物质,氮源可以是氨水、硝酸钠等含氮物质,能源可以是石油、天然气等。

这些原料经过一系列的前处理,如脱盐、脱色、除杂质等,得到纯净的原料液。

其次,原料液经过发酵反应。

发酵是氨基酸生产的关键步骤,通过微生物菌种的作用,将原料液中的碳源和氮源转化为氨基酸。

在发酵过程中,需要控制好温度、pH值、氧气供应等参数,以保证发酵反应的顺利进行。

发酵反应通常持续数天至数周不等,待反应结束后,得到含有氨基酸的发酵液。

然后,对发酵液进行提取和精制。

发酵液中除了目标产物氨基酸外,还会有其他杂质和微生物残余物。

因此需要对发酵液进行提取和精制,将氨基酸从发酵液中分离出来,并去除杂质和微生物残余物。

提取和精制的方法有很多种,如溶剂萃取、结晶、膜分离等,选择合适的方法可以得到高纯度的氨基酸。

最后,对精制后的氨基酸进行干燥和包装。

精制后的氨基酸通常是液体或浓缩液体,需要经过干燥处理,将其制成粉状或颗粒状固体产品。

然后再进行包装,以确保产品的质量和保存期限。

总的来说,氨基酸生产工艺流程包括原料处理、发酵、提取精制和干燥包装等步骤。

每个步骤都需要严格控制各项参数,以确保产物的质量和产量。

同时,随着科学技术的不断进步,氨基酸生产工艺也在不断优化和改进,以提高生产效率和降低生产成本。

希望通过不断的研究和实践,能够进一步完善氨基酸生产工艺,为人类健康和生活质量的提升做出更大的贡献。

第十章 氨基酸发酵生产工艺学

第十章 氨基酸发酵生产工艺学

2.饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3.医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代 谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气 对骨髓肿瘤治疗有效,且副作用低. 4.化学工业:谷氨基钠作洗涤剂,丙氨酸制造丙 氨酸纤维.
氨基酸的生产方法
发酵法: 直接发酵法:野生菌株发酵,营养 缺陷型突变发酵,抗氨基酸结构类似物 突变株发酵,抗氨基酸结构类似物突变 株的营养缺陷型菌株发酵和营养缺陷型 回复突变株发酵. 添加前体法
酶法:利用微生物细胞或微生物产生的酶来制 造氨基酸. 提取法:蛋白质水解,从水解液中提取.胱氨 酸,半胱氨酸和酪氨酸 合成法:DL-蛋氨酸,丙氨酸,甘氨酸,苯丙 氨酸. 传统的提取法,酶法和化学合成法由于前体物 的成本高,工艺复杂,难以达到工业化生产的目 的.
生产氨基酸的大国为日本和德国. 日本的味之素,协和发酵及德国的德固 沙是世界氨基酸生产的三巨头.它们能 生产高品质的氨基酸,可直接用于输液制 , 剂的生产. 日本在美国,法国等建立了合资的氨基 酸生产厂家,生产氨基酸和天冬甜精等衍 生物.
3.1.2 载体的构建
有效的载体需要有在受体菌中可启动的 复制起始位点,这可从棒状杆菌家族内 源小质粒中获得; 载体所需的筛选标记及外源基因插入的 多克隆位点,可从常用的克隆载体中获 得.
3.1.3 基因转移手段
由于棒状杆菌是革兰氏阳性菌,CaCl2转化法对它 不适用. 通常采用的方法有:原生质体转化,转导,电转化, 接合转移. 原生质体转化的方法是较早采用的方法,由于受 到原生质体再生条件的局限,效率不高; 电转化方法由于高效,快速被广泛使用,目前它 的转化效率可达到原生质体转化法的100~1000倍. 接合转移可用于基因在亲缘关系远的物种之间的 转移,并且可将外源基因整合于染色体上,易于 稳定遗传.

氨基酸生产工艺流程

氨基酸生产工艺流程

氨基酸生产工艺流程
氨基酸是一类具有广泛应用价值的生物活性物质,广泛应用于医药、农业和食品工业等领域。

现在我们来介绍一下氨基酸生产的一般工艺流程。

首先,氨基酸的生产通常使用微生物发酵的方法。

首先选择一种合适的微生物菌株,常用的有酵母菌、大肠杆菌等。

然后将菌株培养在合适的培养基中,培养基的选择对于微生物的生长和氨基酸的产量非常重要。

当微生物培养到一定程度后,可以开始进行发酵。

发酵过程中需要控制好温度、pH值、氧气供应等参数,以保证微生物能够正常生长和产生氨基酸。

在发酵完成后,接下来就是分离和纯化氨基酸。

首先通过离心或过滤等方式将微生物分离出来,获得发酵液。

然后根据氨基酸的性质,选择合适的分离和纯化方法,如离子交换层析、凝胶过滤、逆流色谱等,将氨基酸从发酵液中提取出来。

提取出的氨基酸通常含有其他杂质,需要进行进一步的纯化。

常用的纯化方法包括溶剂析、结晶、蒸馏等。

这些方法可以去除残余的杂质,使氨基酸的纯度达到要求。

最后,对纯化后的氨基酸进行干燥和粉碎处理,得到最终的氨基酸产品。

通常氨基酸的颗粒大小和形状对于不同的应用有不同的要求,可以根据需要进行调整。

总的来说,氨基酸生产的工艺流程包括微生物发酵、发酵液分离和纯化、氨基酸提取和纯化、干燥和粉碎等步骤。

每个步骤都需要仔细控制条件,并且根据氨基酸的特性选择合适的分离和纯化方法,以保证产品的质量和纯度。

同时,随着科学技术的进步,氨基酸的生产工艺也在不断创新和改进,以提高产量和降低成本,满足市场的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、调浆:干淀粉用水调成淀粉乳,加盐酸0.5-0.8%至 pH1.5。 2、糖化:蒸汽加热,加压糖化25min。冷却至80℃下中 和。 3、中和:烧碱中和,至pH4.0-5.0 4、脱色:活性炭脱色和脱色树脂。活性炭用量为0.6-0.8 %,在70℃及酸性条件下搅拌后过滤。
整理课件
22
酶法糖化:以大米或碎米为原料时采用
整理课件
3
3、合适C/N
氮源用于调整pH。 合成菌体。 生成氨基酸,因此比一般微生物发酵 的C/N低。
整理课件
4
4、磷酸盐:对发酵有显著影响。不足时糖 代谢受抑制。
5、镁:是已糖磷酸化酶、柠檬酸脱氢酶和 羧化酶的激活剂,并促进葡萄糖-6-磷酸 脱氢酶活力。
6、钾:促进糖代谢。谷氨酸产酸期钾多利 于产酸,钾少利于菌体生长。
(1)有苹果酸酶和丙酮酸羧化酶。 (2)-酮戊二酸脱氢酶活性弱,异柠檬酸脱氢
酶活性强,异柠檬酸裂解酶活性弱。 (3)谷氨酸脱氢酶活性高,经呼吸链氧化
NADPH2 的能力弱。
(4)菌体本身利用谷氨酸的能力低。
整理课件
18
4.谷氨酸产生菌(全是细菌)
棒杆菌属 北京棒杆菌 C. pekinense Corynebacterium 钝齿棒杆菌 C. crenatum
我国现有50余家生产,年产量达160万吨万吨,居世界
首位。
整理课件
12
二、谷氨酸的生物合成机理
1. 谷氨酸 (-氨基戊二酸)
O C-OH H2N- C- H H-C-H
第一代鲜味剂 L-谷氨酸单钠盐——味精
H-C-H
H-C O
OH L-型
整理课件
13
2.谷氨酸的生物合成
葡萄糖
中间产物
a-酮戊二酸
整理课件
5
7、钠:调节渗透压作用,一般在调节pH值时 加入。
8、锰:是许多酶的激活剂。 9、铁:是细胞色素、细胞色素氧化酶和过氧化
氢酶的活性基的组成分,可促进谷氨酸产生 菌的生长。 10、铜离子:对氨基酸发酵有明显毒害作用。
整理课件
6
11 生长因子:生物素 作用:影响细胞膜透性和代谢途径。 浓度:过多促进菌体生长,氨基酸产量低。过
菌体生长温度过高,则菌体易衰老,pH高, 糖耗慢,周期长,酸产量低。
采取措施:少量多次流加尿素,维持最适 生长温度,减少风量等,促进菌体生长。
整理课件
10
氧对氨基酸发酵的影响及其控制
要求供氧充足的谷氨酸族氨基酸发酵:生 物合成与TCA循环有关。
适宜在缺氧条件下进行的亮氨酸、苯丙氨 酸和缬氨酸发酵:度 氧
整理课件
1
培养基
1、碳源:淀粉水解糖、糖蜜、醋酸、乙醇、 烷烃
碳源浓度过高时,对菌体生长不利,氨基 酸的转化率降低。
菌种性质、生产氨基酸种类和所采用的发 酵操作决定碳源种类
整理课件
2
2、氮源:铵盐、尿素、氨水 同时调整pH值。 营养缺陷型添加适量氨基酸主要以添加有机 氮源水解液。 需生物素和氨基酸,以玉米浆作氮源。 尿素灭菌时形成磷酸铵镁盐,须单独灭菌。 可分批流加。 氨水用pH自动控制连续流加
少菌体生长缓慢,发酵周期长。 与其它培养条件的关系:氧供给不足,生物素
过量时,转化俄为乳酸发酵。 种类:玉米浆、麸皮水解液、甘蔗糖蜜和甜菜
糖蜜为来源。
整理课件
7
pH对氨基酸发酵的影响及其控制
作用机理:主要影响酶的活性和菌的代谢。 控制pH方法:流加尿素和氨水 流加方式:根据菌体生长、pH变化、糖 耗情况和发酵阶段等因素决定。
供氧不足时产酸受轻微影响的天冬氨酸族 氨基酸发酵
整理课件
11
发酵工艺实例介绍 谷氨酸
一、概述
工业化生产开始于由水解小麦面筋或大豆蛋白质而制
取。
1957年,日本率先采用微生物发酵法生产,并投入大
规模工业化生产,这是被誉为现代发酵工业的重大创
举,使发酵工业进入调节代谢的调控阶段。
目前世界产谷氨酸钠210吨/年,占氨基酸总量的2/3。
NH4+
谷氨酸
谷氨酸 脱氢酶
抑制
整理课件
14
整理课件
15
(1)EMP:丙酮酸,ATP,NADH2
(2)HMP:6-磷酸果糖 3-磷酸甘油醛
丙酮酸
NADPH2:-酮戊二酸还原氨基化必需的供氢体。 (3)TCA循环:生成谷氨酸前体物质-酮戊二酸。
(4)CO2固定反应:补充草酰乙酸。 (5)乙醛酸循环:使琥铂酸、延胡索酸和苹果酸的量得
整理课件
19
共同点:
1)革兰氏阳性。 2)不形成芽孢。 3)没有鞭毛,不能运动。 4)需要生物素作为生长因子。 5)在通气条件下产谷氨酸(需氧微生物)。
整理课件
20
三、谷氨酸发酵的工艺控制
➢ 培养基 1. 碳源:淀粉水解糖、糖蜜、乙醇、烷烃 (1)淀粉水解糖的制备 (2)糖蜜原料
整理课件
21
(1)淀粉水解糖的制备:酸水解
整理课件
8
控制:
(1)菌体生长或耗糖慢时,少量多次流加尿素, 避免pH过高
(2)菌体生长或耗糖过快时,流加尿素可多些, 以抑制菌体生长。
(3)发酵后期,残糖少,接近放罐时,少加或不 加尿素,以免造成氨基酸提取困难。
(4)氨水对pH影响大,应采取连续流加。
整理课件
9
温度对氨基酸发酵的影响及其控制
菌体生长达一定程度后再开始产生氨基酸, 因此菌体生长最适温度和氨基酸合成的最 适温度是不同的。
谷氨酸棒杆菌 C. glutamicum
短杆菌属 黄色短杆菌 B. flvum Brevibacterium 产氨短杆菌 B. ammoniagenes
小杆菌属 嗜氨小杆菌 M. ammoniaphilum Microbacterium
节杆菌属 球形节杆菌 A. globiformis Arthrobacter
工艺流程: 大米→清洗 →浸泡→粉碎→调浆→液化→ 添酶→压滤→(调浆)滤液加酸调pH 1.8→糖化→中和→脱色→压滤→糖液
整理课件
23
(2)糖蜜原料:不宜直接用来作为谷氨酸发酵 的碳源,因含丰富的生物素。
预处理方法:活性碳或树脂吸附法和亚硝酸 法吸附或破坏生物素。也可以在发酵液中加 入表面活性剂吐温60或添加青霉素。
到补充,维持TCA循环的正常运转。
谷氨酸脱氢酶
(6)还原氨基化反应:-酮戊二酸 谷氨酸
整理课件
16
回补反应
COOH
COOH
COOH
苹 果 酸 酶 CHOH 苹 果 酸 脱C氢O 酶
CO
CH3
NADPH CO2
NADP+ CH2 NAD+ COOH
NADHCH2 COOH
整理课件
17
3.谷氨酸生产菌的生化特征
相关文档
最新文档