高考第17课曲线的切线
第17课时:抛物线与几何图形(3)

第17课时:抛物线与几何图形(3)班级_________ 姓名__________学号学习目标:经历探索抛物线与圆有关问题的过程,体会知识之间的相互联系,综合运用所学的知识,提高分析和解决问题的能力,感受数形结合等思想方法. 探索活动: 问题一.抛物线y =41x 2+mx +n 经过点(0,23)与(4,23). (1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1,圆心P 在抛物线上运动的动圆,当⊙P 与坐标轴相切时,求圆心P 的坐标.问题二.如图,在直角坐标系中,⊙A 的半径为4,A 的坐标为(2,0),⊙A 与x 轴交于E 、F 两点,与y 轴交于C 、D 两点,过点C 作⊙A 的切线BC 交x 轴于B .(1)求直线BC 的解析式;(2)若抛物线y =ax 2+bx +c 的顶点在直线BC 上,与x 轴的交点恰为⊙A 与x 轴的交点,求抛物线的解析式; (3)试判断点C 是否在抛物线上,并说明理由.问题三.已知:抛物线y =ax 2+bx +c 经过原点(0,0)和A (1,-3),B (-1,5)两点. (1)求抛物线的解析式;(2)设抛物线与x 轴的另一个交点为C ,以OC 为直径作⊙M ,如果过抛物线上一点P 作⊙M 的切线PD ,切点为D ,且与y 轴的正半轴交点为E ,连结MD ,已知点E 的坐标为(0,m ),求四边形EOMD 的面积(用含m 的代数式表示);(3)延长DM 交⊙M 于点N ,连结ON ,OD ,当点P 在(2)的条件下运动到什么位置时,能使得S 四边形PCMD =S △DON ,请求出此时点P 的坐标.问题四.如图,已知直线y =x +6交x 、y 轴于A 、C 两点,经过A 、O 两点的抛物线 y =ax 2+bx (a <0)的顶点B 在直线AC 上. (1)求A 、C 两点的坐标;(2)求出抛物线的函数关系式;(3)以B 点为圆心,以AB 为半径作⊙B ,将⊙B 沿x 轴翻折得到⊙D ,试判断直线AC 与⊙D 的位置关系,并求出BD 的长;(4)若E 为⊙B 优弧ACO 上一动点,连结AE 、OE ,问在抛物线上是否存在一点M ,使 ∠MOA ︰∠AEO =2︰3,若存在,试求出点M第六章 二次函数B P ED M C O Axy课后作业:1、如图,P 是射线y =53x (x >0)上的一动点,以P 为圆心的圆与y 轴相切于C 点,与x 轴的正半轴交于A 、B 两点.(1)若⊙P 的半径为5,则P 点坐标是( , );A 点坐标是( , );以P 为顶点,且经过A 点的抛物线的解析式是 ;(2)在(1)的条件下,上述抛物线是否经过点C 关于原点的对称点D ,请说明理由;(3)试问:是否存在这样的直线l ,当P 在运动过程中,经过A 、B 、C 三点的抛物线的顶点都在直线l 上?若存在,请求出直线l 的解析式;若不存在,请说明理由.2、如图,直角坐标系中,O 为坐标原点,A 点坐标为(-3,0),B 点坐标为(12,0),以AB 的中点P 为圆心,AB 为直径作OP 与y 轴的负半轴交于点C ,抛物线2y ax bx c =++经过A 、B 、C 三点,其顶点为M 点. (1)求此抛物线的解析式;(2)设点D 是抛物线与⊙P 的第四个交点(除A 、B 、C 三点外),求直线MD 的解析式; (3)判定(2)中的直线MD 是⊙P 的位置关系,并说明理由.3、如图,在平面直角坐标系中,已知点(B -,(0)A m,(0)m <,以AB 为边在x 轴下方作正方形ABCD ,点E 是线段OD 与正方形ABCD 的外接圆除点D 以外的另一个交点,连结BE 与AD 相交于点F . (1)求证:BF =DO ;(2)设直线l 是BDO △的边BO 的垂直平分线,且与BE 相交于点G .若G 是BDO △的外心,试求经过B F O ,,三点的抛物线的解析表达式;(3)在(2)的条件下,在抛物线上是否存在点P ,使该点关于直线BE 的对称点在x 轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.例3、如图,在平面直角坐标系中,O 为坐标原点,A 点坐标为(-8,0),B 点坐标为(2,0)以AB 的中点P 为圆心,AB 为直径作⊙P 与y 轴的负半轴交于点C .① 求图象经过A ,B ,C 三点的抛物线的解析式; ② 设M 点为①中抛物线的顶点,求出顶点M 的坐标和直线MC 的解析式; ③ 判定②中的直线MC 和⊙P 的位置关系,并说明理由;④ 过坐标原点O 作直线BC 的平行线OG ,与②中的直线MC 相交于点G ,连结AG ,求出点G 的坐标,并证明AG ⊥MC .三、学生练习1、如图,抛物线y =x 2+bx +c 与x 轴相交于A 、B 两点,与y 轴交于点C ,D 是抛物线上一点,其坐标为⎪⎭⎫ ⎝⎛-47,21,B 点坐标为(1,0).① 求抛物线的解析式;② 经过A 、B 、D 三点的圆交AC 于点F ,交直线y =x +3于点E .试判断△BEF 的形状,并加以证明.2、已知:半径为1的⊙O 1与X 轴交于A 、B 两点,圆心O 1的坐标为(2, 0),二次函数y =-x 2+bx +c 的图象经过A 、B 两点,其顶点为F . (1)求 b 、c 的值及二次函数顶点F 的坐标;(2)写出将二次函数y =-x 2+bx +c 的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;(3)经过原点O 的直线l 与⊙O 相切,求直线l 的函数表达式.3、已知一个二次函数的图象经过A (4,-3),B (2,1)和C (-1,-8)三点. ① 求这个二次函数的解析式以及它的图象与x 轴的交点M ,N (M 在N 的左边)的坐标; ② 若以线段MN 为直径作⊙G ,过坐标原点O 作⊙G 的切线OD ,切点为D ,求OD 的长;③ 在直线OD 上是否存在点P ,使得△MNP 是直角三角形?如果存在,求出点P 的坐标,若不存在,请说明理由.问题三.如图,等边△ABC的边长为BC 边所在直线为x 轴,BC 的边上的高线AO所在直线为y 轴,建立平面直角坐标系. (1)求过A 、B 、C 三点的抛物线的解析式;(2)设⊙P 是△ABC 的内切圆,点D 为y 轴上一动点,以D 点为圆心,3为半径的⊙D 与直线..AB 、AC 都相切时,试判断⊙O 与⊙P 的位置关系,并简要说明理由;(3)若(2)中⊙P 的大小不变,圆心P 沿y 轴运动,设P 点坐标为(0,a ),则⊙P 与直线AB 、AC 有几种位置关系?并写出相应位置关系时,a 的取值范围.图4、如图,在直角坐标系中,以点A 为圆心,以x 轴相交于点BC ,,与y 轴相交于点DE ,.(1)若抛物线213y x bx c =++经过C D ,两点,求抛物线的解析式,并判断点B 是否在该抛物线上.(2)在(1)中的抛物线的对称轴上求一点P ,使得PBD △ 的周长最小.(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上 是否存在这样的点M ,使得四边形BCQM 是平行四边形.若 存在,求出点M 的坐标;若不存在,说明理由.已知:如图,抛物线m x x y +-=332312与x 轴交于A 、B 两点,与y 轴交于C 点,∠ACB =90°,⑴求m 的值及抛物线顶点坐标;⑵过A 、B 、C 的三点的⊙M 交y 轴于另一点D ,连结DM 并延长交⊙M 于点E ,过E 点的⊙M 的切线分别交x 轴、y 轴于点F 、G ,求直线FG 的解析式;⑶在条件⑵下,设P 为 CBD上的动点(P 不与C 、D 重合),连结P A 交y 轴于点H ,问是否存在一个常数k ,始终满足AH ·AP =k ,如果存在,请写出求解过程;如果不存在,请说明理由.例1、如图,在平面直角坐标系中,以点M (0,1)为圆心,以2为半径作⊙M 交x 轴于A 、B 两点,交y 轴于C 、D 两点,连结AM 并延长交⊙M 于P 点,连结PC 交x 轴于E .(1)求出CP 所在直线的解析式; (2)连结AC ,求△ACP 的面积.(3)求出过A 、B 、C 三点的抛物线解析式(4)在过A 、C 、B 三点的抛物线上是否存在点Q ,使△ABQ 与△ABC 相似?(5)在过A 、C 、B 三点的抛物线上是否存在点Q ,使△ABQ 为等腰三角形?例3、如图,在平面直角坐标系xOy 中,半径为1的⊙O 分别交x 轴、y 轴于A 、B 、C 、D 四点,抛物线y =x 2+bx +c 经过点C 且与直线AC 只有一个公共点.(1)求直线AC 的解析式(2)求抛物线y =x 2+bx +c 的解析式(3)点P 为(2)中y 轴左边抛物线上的点,由点P 作x 轴的垂线,垂足为点Q ,问:此抛物线上是否存在这样的点P ,使△PQB ~ADB ?若存在,求出PD三、学生练习1、已知抛物线2y ax bx c =++,经过点A (0,5)和点B (3 ,2)① 求抛物线的解析式:② 现有一半径为1,圆心P 在抛物线上运动的动圆,问⊙P 在运动过程中,是否存在⊙P 与坐标轴相切的情况?若存在,请求出圆心P 的坐标:若不存在,请说明理由; ③ 若⊙ Q 的半径为r ,点Q 在抛物线上、⊙Q 与两坐轴都相切时求半径r 的值2、OABC 是一张放在平面直角坐标系中的矩形纸片,点O 为原点,点A 在x 轴上,点C 在y 轴上,OA =10,OC =6.(1)如图,在AB 上取一点M ,使得△CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,求B ′点的坐标;(2)求折痕CM 所在直线的解析式;(3)作B 'G //AB 交CM 于G ,若抛物线m x y +=261过点G ,求抛物线解析式,并判断以原点O 为圆心,OG 为半径的圆与抛物线除交点G 外,是否还有交点?若有,请直接写出交点坐标.3、已知抛物线21y ax bx =+-经过点A (-1,0)、B (m ,0)(m >0),且与y 轴交于点C . (1)求a 、b 的值(用含m 的式子表示);(2)如图所示,⊙M 过A 、B 、C 三点,求阴影部分扇形的面积S (用含m 的式子表示);(3)在x 轴上方,若抛物线上存在点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求m 值.。
题型17 导数的分类(解析版)

秒杀高考数学题型之导函数的分类【秒杀题型五】:导函数的分类。
『秒杀策略』:用导函数研究原函数,所以导函数的分类对于能否顺利解决导数压轴题至关重要。
【题型1】:导数为一次型:主要为)(x f e x或)(x f ex-()(x f 为一次函数)型。
①不含参。
『秒杀策略』:求导、整理、确定影响导函数符号的一次(因式)函数。
1.(高考题)函数xe x xf )3()(-=的单调递增区间是 ( )A.)2,(-∞B.(0,3)C.(1,4)D.),2(+∞【解析】:()2)('-=x e x f x,导函数的符号由一次函数2-=x y 确定,当()+∞∈,2x 时,)(x f 单调递增,选D 。
※讨论函数xe xf x =)(的单调性,几何意义,大致图象。
【解析】:⎪⎭⎫⎝⎛-=2'1)(x x e x f x,导数的符号由一次函数1-=x y 确定,注意存在断点0≠x ,当()+∞∈,1x 时,)(x f 单调递增,当()1,0∈x 、()0,∞-时,)(x f 单调递减。
几何意义:xe y =图象上的点()xe x ,与()00,连线的斜率。
②常数含参。
『秒杀策略』:求导、整理、确定影响导函数符号的一次(因式)函数,讨论参数(直线平行移动)。
1.(高考题)讨论函数()()xf x x k e =-的单调区间。
【解析】:()1)('+-=k x e x f x,导函数的符号由一次函数1+-=k x y 确定,当()+∞-∈,1k x 时,)(x f 单调递增,当()1,-∞-∈k x 时,)(x f 单调递减。
③一次项系数含参。
『秒杀策略』:求导、整理、确定影响导函数符号的一次(因式)函数,讨论参数,一般分一次项系数等于0、大于0、小于0三种情况讨论。
1.(高考题)讨论函数()(0)kx f x xe k =≠的单调区间。
【解析】:()1)('+=kx ex f kx,导函数的符号由一次函数1+=kx y 确定。
2020年全国统一高考数学试卷(文科)(新课标I)【含详答】

2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数f(x)=cos(ωx+π6)在[−π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4−a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共82.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.20.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ−16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│−2│x−1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}【答案】D【解析】【分析】本题主要考查集合的交集运算和解一元二次不等式,属于基础题.【解答】解:由不等式x2−3x−4<0,解得−1<x<4,所以A∩B={1,3},故选D.24.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 2【答案】C【解析】【分析】本题主要考查复数的运算,求复数的模,属于基础题.【解答】解:z=1+2i−i=1+i,则|z|=√12+12=√2,故选C.25.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+12【答案】C【解析】【分析】根据题意列出a,ℎ′,ℎ的关系式,化简即可得到答案.本题考查了立体几何中的比例关系,属于基础题.【解析】如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为ℎ′,则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a)2−2(ℎ′a)−1=0,解得ℎ′a =√5+14.故答案选C.26.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 45【答案】A【解析】【分析】本题主要考查概率的知识,属于基础题.【解答】解:如图,从5点中随机选取3个点,共有10种情况,其中三点共线的有两种情况:AOC和BOD,则p=210=15.故选A.27.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx 【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.故答案选D.28.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查圆的方程、直线方程以及求弦长,属于较易题.【解答】解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3−1)2+(0−2)2=√8弦长,故选B.29.设函数f(x)=cos(ωx+π6)在[−π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π2【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用f(−4π9)=0得到w =−3+9k 4(k ∈Z),由T <2π<2T ,可得,由w =−3+9k 4(k ∈Z)可得k 的值,w 的值可得,即可求解.【解析】 解:由图可知f(−4π9)=cos(−4π9w +π6)=0,所以−4π9w +π6=π2+kπ(k ∈Z),化简可得w =−3+9k 4(k ∈Z),又因为T <2π<2T ,即2π|w |<2π<4π|w |,所以,当且仅当k =−1时,所以w =32,最小正周期T =2π|w |=4π3.故答案选C .30. 设alog 34=2,则4−a =( )A. 116B. 19C. 18D. 16【答案】B【解析】【分析】本题主要考查指对数的运算,属于基础题. 【解答】解:由alog 34=log 34a =2,可得4a =32=9, ∴4−a =(4a )−1=9−1=19, 故选B .31. 执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】本题以程序框图为载体,考查了等差数列求和,属于中档题.【解答】解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.故选C.32.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 32【答案】D【解析】【分析】本题主要考查等比数列的通项公式,属基础题.根据a1+a2+a3=1,a2+a3+a4=2,结合等比数列的通项公式可求得等比数列的公比q,因为a6+a7+a8=q5(a1+a2+a3),从而得到答案.【解答】解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,故选D33.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 2【答案】B【解析】【分析】本题主要考查双曲线的定义、双曲线的简单几何性质、圆的性质,属一般题.根据双曲线的标准方程得到其焦点坐标,结合|OP|=2,可确定点P在以F1F2为直径的圆上,得到|PF1|2+|PF2|2=16,结合双曲线的定义可得|PF1|⋅|PF2|的值,从而得到答案.【解答】解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(−2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|−|PF2||=2a=2,所以||PF1|−|PF2||2=|PF1|2+|PF2|2−2|PF1|⋅|PF2|= 4,所以|PF1|⋅|PF2|=6,所以三角形PF1F2面积为3,故选B.34.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.二、填空题(本大题共4小题,共20.0分)35.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.36.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.【答案】5【解析】【分析】本题主要考查平面向量垂直的充要条件,平面向量数量积的坐标运算,属基础题.由a⃗⊥b⃗ 可得a⃗⋅b⃗ =0,再把两向量坐标代入运算可得答案.【解答】解:∵a⃗⊥b⃗ ,所以a⃗⋅b⃗ =0,因为a⃗=(1,−1),b⃗ =(m+1,2m−4),所以m+1−(2m−4)=0,故m=5.故答案为:537.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.【答案】2x−y=0【解析】【分析】本题主要考查导数的几何意义,属基础题.根据导数的几何意义确定切点坐标,再根据直线的点斜式得到切线方程.【解答】+1解:∵y=lnx+x+1,∴y′=1x+1=2,故x0=1,设切点坐标为(x0,y0),因为切线斜率为2,所以1x此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y−2=2(x−1)所以切线方程为2x−y=0.故答案为:2x−y=0.38.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题.对n取偶数,再结合条件可求得前16项中所有奇数项的和,对n取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n=3n−1,当n=2,6,10,14时,a2+a4=5,a6+a8= 17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540−(5+17+29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2−a n=3n−1,所以a3−a1=2,a5−a3=8,a7−a5=14⋯a n+2−a n=3n−1,累加得an+2−a1=2+8+14+⋯3n−1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13= 102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.故答案为7.三、解答题(本大题共7小题,共82.0分)39.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?【答案】解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90−25)+0.2×(50−25)+0.2×(20−25)+0.2×(−50−25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90−20)+0.17×(50−20)+0.34×(20−20)+0.21×(−50−20)=10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.【解析】本题主要考查频率的算法,平均数的概念及其意义,属基础题.(1)根据图表信息可得甲乙分厂的频数,从而得到答案.(2)根据图表信息可得甲乙分厂的四个等级的频率,再根据平均数的定义求得答案,比较两厂的平均数得到最终答案即可.40.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得b2=a2+c2−2accosB,即28=3c2+c2−2√3c2cos150∘,解得c=4,所以a=4√3,所以S△ABC=12acsinB=12×4√3×4×12=4√3.(2)因为A=180∘−B−C=30∘−C,所以sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(30∘+C)=√22,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.41.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.【答案】解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32−1=√22,所以三棱锥P−ABC的体积V=13SΔABC⋅PO=13×12×√3×√3×√32×√22=√68.【解析】【解析】本题考查线面位置关系的判定,圆锥的侧面积公式,棱锥的体积公式的应用,考查空间想象能力与运算能力,属于中档题.(1)由题意证得PB⊥PA,PB⊥PC,从而得到PB⊥平面PAC,根据面面垂直的判定定理即可证明;(2)由圆锥的性质可求得底面半径与母线长,从而可求得△ABC的边长,从而可求得三棱锥P−ABC的高,从而可求得体积.42.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【答案】解:(1)当a=1时,f(x)=e x−(x+2),则f′(x)=e x−1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(−∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x−a(x+2)=0,显然x≠−2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<−2或−2<x<−1时,g′(x)<0,g(x)单调递减;当x>−1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(−1)=1e,当x <−2时,g(x)<0,当x >−2时,g(x)>0, 所以当a >1e 时,y =a 与g(x)的图象有两个交点, 所以a 的取值范围为(1e ,+∞). 【解析】【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,有一定难度. (1)先求导,可直接得出函数的单调性;(2)先分离参数得a =e x x+2,再构造函数,利用导数研究函数的性质,即可得出a 的取值范围.43. 已知A ,B 分别为椭圆E:+=1(a >1)的左、右顶点,G 为E 的上顶点,=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D , (1)求E 的方程;(2)证明:直线CD 过定点. 【答案】解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ), 则直线PA 的方程为y =m 9(x +3),联立{y=m9(x+3)x29+y2=1⇒(9+m2)x2+6m2x+9m2−81=0,由韦达定理−3x C=9m2−819+m2⇒x C=−3m2+279+m2,代入直线PA的方程y=m9(x+3)得,y C=6m9+m2,即C(−3m2+279+m2,6m9+m2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m 1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.44.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ−16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.【答案】【答案】(1)当k =1时,曲线C 1的参数方程为{x =costy =sint ,化为直角坐标方程为x 2+y 2=1, 表示以原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4ty =sin 4t ,化为直角坐标方程为√x +√y =1,曲线C 2化为直角坐标方程为4x −16y +3=0,联立{√x +√y =14x −16y +3=0,解得{x =14y =14, 所以曲线C 1与曲线C 2的公共点的直角坐标为(14,14).【解析】本题考查简单曲线的参数方程、极坐标方程,参数方程、极坐标方程与直角坐标方程的互化等知识,考查运算求解能力,难度一般.45. [选修4—5:不等式选讲]已知函数f(x)=│3x +1│−2│x −1│.(1)画出y =f(x)的图像;(2)求不等式f(x)>f(x +1)的解集.【答案】(1)函数f(x)=|3x +1|−2|x −1|={x +3,x >15x −1,−13≤x ≤1−x −3,x <−13,图象如图所示:第21页,共21页(2)函数f(x +1)的图象即将函数f(x)的图象向左平移一个单位所得,如图,联立{y =−x −3y =5x +4可得交点横坐标为x =−76, 所以f(x)>f(x +1)的解集为{x|x <−76}.【解析】本题考查解绝对值不等式,考查了运算求解能力及数形结合的思想,难度一般.。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
2024年新课标Ⅰ卷数学卷带答案带解析

2024年新课标Ⅰ卷高考数学真题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
A.B.C.D.【答案】A【解析】【分值】52.A.B.C.D.【答案】C【解析】考察复数【分值】53.A.B.C.1D.2【答案】D【解析】考察向量【分值】54.A.B.C.D.【答案】A【解析】考察诱导公式及三角变换【分值】55.A.B.C.D.【答案】B【解析】考案圆柱圆锥面积体积计算由侧面积相等得:【分值】56.A.B.C.D.【答案】B【解析】考察函数单调性【分值】57.B.4C.6D.8【答案】C【解析】考察三角函数作出两者图象【分值】58.A.B.C.D.【答案】B【解析】【分值】5二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得09.A.B.C.D.【答案】BC【解析】考察正态分布D错,所以选BC【分值】610.A.B.C.D.【答案】AC 【解析】D.【分值】6 11.A.a=-2B.C.C在第一象限的点的纵坐标的最大值为1D.【答案】AB【解析】【分值】6三、填空题:本题共3小题,每小题5分,共15分。
【答案】【解析】考察双曲线的几何性质【分值】513.【答案】【解析】考察曲线切线的计算【分值】514.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_______【答案】【解析】共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为【分值】5四、解答题:本题共5小题,共77分。
2023年全国统一高考数学试卷(理科)(乙卷)(解析版)

2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17课曲线的切线【自主学习】第17课曲线的切线(本课时对应学生用书第页)自主学习回归教材1.(选修2-2P26习题5改编)曲线y=12x-cos x在x=π6处的切线方程为.【答案】x-y-π12-32=0【解析】设f(x)=12x-cos x,则f'π6⎛⎫⎪⎝⎭=12+sinπ6=1,故切线方程为y-π3122⎛⎫⎪⎪⎝⎭=x-π6,化简可得x-y-π12-32=0.2.(选修2-2P22例3改编)已知曲线f(x)=x sin x+1在点π1 2⎛⎫ ⎪⎝⎭,处的切线与直线ax-y+1=0互相垂直,那么实数a= .【答案】-1【解析】f'(x)=sin x+x cos x,当x=π2时,f'(x)=1,所以a=-1.3.(选修2-2P20练习7改编)若直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b= .【答案】ln2-1【解析】设切点为(x0,ln x0),则切线斜率k=01x=12,所以x=2.又因为切点(2,ln2)在切线y=12x+b上,所以b=ln2-1.4.(选修2-2P16习题3改编)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线斜率为.【答案】4【解析】因为曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,所以g'(1)=2.又f'(x)=g'(x)+2x,所以f'(1)=g'(1)+2=4,故切线的斜率为4.1.导数的几何意义导数f'(x 0)的几何意义就是曲线y=f (x )在点P (x 0,f (x 0))处的切线的斜率,即k=f'(x 0),相应地,切线方程为y-f (x 0)=f'(x 0)(x-x 0).2.解与曲线的切线有关的问题的一般步骤:第一步:设出切点坐标(x 0,y 0);第二步:计算切线的斜率为k=f'(x 0);第三步:写出切线方程y-y 0=f'(x 0)(x-x 0);第四步:将问题转化为函数与方程问题求解.【要点导学】要点导学 各个击破过曲线上点的切线方程例1 已知曲线S :y=-23x 3+x 2+4x 及点P (0,0),求过点P 的曲线S 的切线方程.【思维引导】本题考查导数的几何意义和导数的运算,这类题比较常见.本题要注意点与曲线的位置关系.【解答】设过点P 的切线与曲线S 切于点Q (x 0,y 0),则过点Q 的曲线S 的切线斜率为k=y'|x x =-220x +2x 0+4,又当x0≠0时,k PQ=y x,所以-22x+2x+4=yx. ①因为点Q在曲线S上,所以y0=-323x+2x+4x. ②将②代入①得-22x+2x+4=320002-43x x xx++,化简,得343x-2x=0,所以x=34.则k=358,过点P的切线方程为y=358x.当x0=0时,则k=4,过点P的切线方程为y=4x.所以过点P的曲线S的切线方程为y=4x或y=358x.【精要点评】曲线在某点处的切线斜率是该曲线对应的函数在该点处的导数值,这是导数的几何意义.在此题中,点P凑巧在曲线S上,求过点P的切线方程,却并非说切点就是点P.变式已知曲线f(x)=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程.【思维引导】曲线y=f(x)“过点P”与“在点P处”的切线是不相同的,在点P 处的切线是以P为切点;过点P的切线,点P不一定是切点,需要设出切点的坐标.【解答】(1)因为f'(x)=x2,所以在点P(2,4)处的切线的斜率k=f'(2)=4,所以曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线f(x)=13x3+43与过点P(2,4)的切线相切于点A3001433x x⎛⎫+⎪⎝⎭,,则切线的斜率k=f'(x0)=2x,所以切线方程为y-313x-43=2x(x-x0),即y=2xx-323x+43.因为点P(2,4)在切线上,所以4=22x-323x+43,即3x-32x+4=0,所以(x+1)(x-2)2=0,解得x0=2或-1,故所求的切线方程为4x-y-4=0或x-y+2=0.【精要点评】解决此类问题,一定要分清楚是“在某点”还是“过某点”处的切线.在某点处的切线比较好求,过某点处的切线,一般要设出切线坐标,然后通过解方程的方法解出该切点坐标,最后利用点斜式求出直线方程.过某点的曲线的切线方程例2已知函数f(x)=x ln x,过点A21-0e⎛⎫⎪⎝⎭,作函数y=f(x)图象的切线,则切线的方程为.【思维引导】点A不在曲线y=f(x)上,故先设切点,利用切线过点A,建立方程确定切点坐标,最后利用点斜式求出直线方程.【答案】x+y+21e =0【解析】设切点为T (x 0,y 0),则k AT =f'(x 0),所以0002ln?1e x x x +=ln x 0+1,即e 2x 0+ln x 0+1=0. 设h (x )=e 2x+ln x+1,则h'(x )=e 2+1x ,当x>0时,h'(x )>0,所以h (x )在(0,+∞)上是单调增函数,所以h (x )=0最多只有一个根.又h 21e ⎛⎫ ⎪⎝⎭=e 2×21e +ln 21e +1=0,所以x 0=21e .由f'(x 0)=-1得切线方程是x+y+21e =0.【精要点评】对于曲线的切线问题,一定要注意题目所给的条件;当已知切点位置时,可以直接求导数,然后将切点的横坐标代入,即可以得到切线的斜率;当已知切线经过某一个点时,应该设出切点,求解出切线方程,再利用切线经过切点求解.变式 已知曲线C :f (x )=x 3-ax+a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则实数a 的值为 .【答案】278【解析】设切点坐标为(t ,t 3-at+a ).由题意知,f'(x )=3x 2-a , 切线的斜率为k=y'|x=t =3t 2-a , ①所以切线方程为y-(t 3-at+a )=(3t 2-a )(x-t ), ② 将点(1,0)代入②式,得-(t 3-at+a )=(3t 2-a )(1-t ),解得t=0或t=32.分别将t=0和t=32代入①式,得k=-a和k=274-a,由题意得它们互为相反数,故a=27 8.导数几何意义的应用例3在抛物线f(x)=12x2上求一点P,使点P到直线x-y-1=0的距离最短,并求出这个最短距离.【思维引导】设P(x0,y0),利用数形结合知与直线x-y-1=0平行的抛物线的切线对应的切点即为所求.【解答】由题知当点P在与直线x-y-1=0平行的抛物线的切线上时,点P到直线的距离最短.因为f'(x)=x,设点P(x0,y0),则f'(x0)=x0=1,所以切点为112⎛⎫ ⎪⎝⎭,.因为切点离直线最短,所以最短距离11--12222=24.【精要点评】本题利用抛物线解题有两种方法,一是设与直线x-y-1=0平行且与抛物线相切的方程为x-y+m=0,将y=12x2与x-y+m=0联立方程组,且把方程组转化为关于x的一元二次方程,利用此方程中Δ=0求出m的值.二是设P(x0,y0),由点到直线的距离得002求解,但利用二次函数的性质求解较麻烦,所以利用导数求切点比较直观简单.【高频考点·题组强化】1.(2016·苏州期中)已知函数f (x )=ax+bx (a ,b ∈R ,b>0)的图象在点P (1,f (1))处的切线与直线x+2y-1=0垂直,且函数f (x )在区间12∞⎡⎫+⎪⎢⎣⎭,上单调递增,那么b 的最大值为 .【答案】23【解析】函数f (x )的定义域为{x|x ≠0},f'(x )=a-2bx ,由题意知f'(1)·1-2⎛⎫ ⎪⎝⎭=-1,所以a-b=2,所以a=b+2.又f'(x )=a-2b x ≥0在12∞⎡⎫+⎪⎢⎣⎭,上恒成立,所以a ≥2b x ≥4b ,所以b+2≥4b ,解得b ≤23,即b 的最大值为23.2.(2015·全国卷改编)已知函数f (x )=x 3+ax+14,问:当a 为何值时,x 轴为曲线y=f (x )的切线?【解答】设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,,解得x 0=12,a=-34.所以当a=-34时,x 轴为曲线y=f (x )的切线.3.(2015·汇龙中学)已知函数f (x )=2axx b +,且f (x )的图象在x=1处与直线y=2相切.(1)求函数f (x )的解析式;(2)若P (x 0,y 0)为函数f (x )图象上的任意一点,直线l 与f (x )的图象切于点P ,求直线l 的斜率k 的取值范围.【解答】(1)对函数f (x )求导,得f'(x )=222()-(2)()a x b ax x x b ++=222-()ab ax x b +. 因为f (x )的图象在x=1处与直线y=2相切,所以'(1)0(1)2f f =⎧⎨=⎩,,即-01021ab a b ab ⎧⎪=⎪+≠⎨⎪⎪=+⎩,,,所以a=4,b=1,所以f (x )=241xx +.(2)由(1)知f'(x )=2224-4(1)x x +,所以直线l 的斜率k=f'(x 0)=202204-4(1)x x +=42220021-(1)1x x ⎡⎤⎢⎥++⎣⎦,令t=2011x +,t ∈(0,1],则k=4(2t 2-t )=821-4t ⎛⎫ ⎪⎝⎭-12,所以k ∈1-42⎡⎤⎢⎥⎣⎦,.4.设函数f (x )=ax-bx ,曲线y=f (x )在点(2,f (2))处的切线方程为7x-4y-12=0.(1)求函数f (x )的解析式;(2)求证:曲线y=f (x )上任意一点处的切线与直线x=0和直线y=x 所围成的三角形的面积为定值,并求出此定值.【解答】(1)方程7x-4y-12=0可化为y=74x-3,当x=2时,y=12,又f'(x )=a+2bx ,于是12-22744b a b a ⎧=⎪⎪⎨⎪+=⎪⎩,,解得13a b =⎧⎨=⎩,,所以f (x )=x-3x .(2)设点P (x 0,y 0)为曲线上任意一点,由f'(x )=1+23x 知,曲线在点P (x 0,y 0)处的切线方程为y-y 0=2031x ⎛⎫+ ⎪⎝⎭·(x-x 0), 即y-003-x x ⎛⎫ ⎪⎝⎭=2031x ⎛⎫+ ⎪⎝⎭(x-x 0).令x=0,得y=-06x ,从而得切线与直线x=0的交点坐标为060-x ⎛⎫⎪⎝⎭,.令y=x ,得y=x=2x 0,从而得切线与直线y=x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x=0,y=x 所围成的三角形的面积S=12×06x⎛⎫- ⎪⎝⎭×|2x 0|=6.故曲线y=f (x )上任一点处的切线与直线x=0和直线y=x 所围成的三角形的面积为定值,此定值为6.5.设函数f (x )=ax+1x b +(a ,b ∈Z ),曲线y=f (x )在点(2,f (2))处的切线方程为y=3.(1)求函数f (x )的解析式;(2)求证:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;(3)求证:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围成的三角形的面积为定值,并求出此定值.【解答】(1)f'(x)=a-21()x b +,由题知212321-0(2)abab⎧+=⎪+⎪⎨⎪=+⎪⎩,,解得1-1ab=⎧⎨=⎩,或948-.3ab⎧=⎪⎪⎨⎪=⎪⎩,因为a,b∈Z,所以f(x)=x+1-1 x.(2)已知函数y1=x,y2=1x都是奇函数,所以函数g(x)=x+1x也是奇函数,其图象是以原点为对称中心的中心对称图形.而f(x)=x-1+1-1x+1,故函数f(x)的图象是以点(1,1)为对称中心的中心对称图形.(3)在曲线上任取一点001-1x xx⎛⎫+⎪⎝⎭,,由f'(x0)=1-21(-1)x知,过此点的切线方程为y-200-1-1x xx+=211-(-1)x⎡⎤⎢⎥⎣⎦(x-x).令x=1,得y=1 -1xx+,切线与直线x=1的交点为11-1xx⎛⎫+⎪⎝⎭,.令y=x,得y=2x0-1,切线与直线y=x的交点为(2x0-1,2x0-1);直线x=1与直线y=x的交点为(1,1),从而所围成的三角形的面积S=1211-1xx+-·|2x0-1-1|=12·02-1x·|2x-2|=2,所以所围成的三角形的面积为定值2.1.(2015·南通二调)在平面直角坐标系xOy中,若曲线y=ln x在x=e(e为自然对数的底数)处的切线与直线ax-y+3=0互相垂直,则实数a的值为.【答案】-e【解析】因为y=ln x,所以y'=1x,则曲线y=ln x在x=e(e为自然对数的底数)处的切线的斜率为y'|x=e=1e.又因为曲线y=ln x在x=e(e为自然对数的底数)处的切线与直线ax-y+3=0垂直,所以1e×a=-1,解得a=-e.2.(2014·江苏卷)在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值为.【答案】-3【解析】y'=2ax-2bx,由题意得-54274--42baba⎧=+⎪⎪⎨⎪=⎪⎩,,解得-1-2ab=⎧⎨=⎩,,故a+b=-3.3.若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是. 【答案】(-∞,0)【解析】f'(x)=3ax2+1x,因为存在垂直于y轴的切线,则f'(x)=0在(0,+∞)上有解,即3ax2+1x=0有正解,则3a=-31x.因为-31x<0,所以3a<0,即a<0时,方程有正解,所以实数a的取值范围是(-∞,0).4.已知两条曲线y=sin x,y=cos x,问:这两条曲线是否存在一个公共点,使得在这一点处,两条曲线的切线互相垂直?并说明理由.【解答】设两条曲线的一个公共点为P(x0,y0),则在点P处两条曲线的切线斜率分别为k1=cos x0,k2=-sin x0,要使两条切线互相垂直,即使cos x0·(-sin x0)=-1,得sin2x0=2,这与|sin x|≤1矛盾,故不可能.因此不存在这样的公共点,使得这一点处两条曲线的切线互相垂直.【融会贯通】融会贯通能力提升已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)若直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线方程.【思维引导】【规范解答】(1)由函数f(x)的解析式可知点(2,-6)在曲线y=f(x)上,所以f'(x)=(x3+x-16)'=3x2+1,所以在点(2,-6)处的切线的斜率为k=f'(2)=13,…………………………………………2分所以切线的方程为y-(-6)=13(x-2),即y=13x-32.…………………………………………5分(2)方法一:设切点为(x0,y0),则直线l的斜率为f'(x0)=32x+1,所以直线l的方程为y=(32x+1)(x-x)+3x+x-16.…………………………………………7分又因为直线l过点(0,0),所以0=(32x+1)(-x)+3x+x-16,整理得3x=-8,所以x=-2.所以y0=(-2)3+(-2)-16=-26,f'(-2)=3×(-2)2+1=13.所以直线l的方程为y=13x,切点坐标为(-2,-26).………………………………………10分方法二:设直线l的方程为y=kx,切点坐标为(x0,y0),则k=-0-0yx=300-16x xx.又因为k=f'(x 0)=320x +1,所以3000-16x x x +=320x +1,解得x 0=-2,……………………………………………………7分所以y 0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13.所以直线l 的方程为y=13x ,切点坐标为(-2,-26).………………………………………10分(3)因为曲线f (x )的某一切线与直线y=-4x+3垂直,所以该切线的斜率k=4. 设切点的坐标为(x 0,y 0),则f'(x 0)=320x +1=4,…………………………………………12分所以x 0=±1,所以001-14x y =⎧⎨=⎩,或00-1-18.x y =⎧⎨=⎩,故切线方程为y-(-14)=4(x-1)或y-(-18)=4(x+1),即y=4x-18或y=4x-14.………………16分【精要点评】利用导数研究曲线的切线问题,一定要熟练掌握以下条件: (1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上,切线还有可能和曲线有其他的公共点. (3)曲线y=f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别:曲线y=f (x )在点P (x 0,y 0)处的切线是指点P 为切点,若切线斜率存在时,切线斜率为k=f'(x 0),是唯一的一条切线;曲线y=f (x )过点P (x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第33~34页.【检测与评估】第17课曲线的切线一、填空题1.已知曲线f(x)=ax2+3x-2在点(2,f(2))处的切线的斜率为7,那么实数a的值为.2.(2014·广东卷)曲线y=-5e x+3在点(0,-2)处的切线方程为.3.(2015·南师附中调研)设曲线f(x)=2ax3-a在点(1,a)处的切线与直线2x-y+1=0平行,则实数a的值为.4.(2014·青岛一中)已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),若f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为.5.(2015·如东模拟)已知函数f(x)=f'(0)cos x+sin x,则函数f(x)在x0=π2处的切线方程为.6.若曲线y=1-2x在点1-2a a⎛⎫⎪⎝⎭,处的切线与两个坐标轴围成的三角形的面积为18,则实数a= .7.设P是函数yx+1)图象上异于原点的动点,且该图象在点P处的切线的倾斜角为θ,则θ的取值范围是.8.(2015·通州模拟)已知曲线C1:y=x2与C2:y=-(x-2)2,直线l与C1,C2都相切,则直线l的方程为.二、解答题9.对于函数f(x)=x3+ax2-9x-1,当曲线y=f(x)斜率最小的切线与直线12x+y=6平行时,求实数a的值.10.已知函数f(x)=x+tx(t>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).(1)求证:x1,x2为关于x的方程x2+2tx-t=0的两根;(2)设MN=g(t),求函数g(t)的表达式.11.已知曲线y=21xx+(x>0).(1)求曲线在x=2处的切线方程;(2)求曲线上的点到直线3x-4y-11=0的距离的最小值.三、选做题(不要求解题过程,直接给出最终结果)12.设曲线y=(ax-1)e x在点A(x0,y1)处的切线为l1,曲线y=(1-x)e-x在点B(x0,y2)处的切线为l2.若存在x0∈32⎡⎤⎢⎥⎣⎦,,使得l1⊥l2,求实数a的取值范围.【检测与评估答案】第17课曲线的切线1.1【解析】因为f'(x)=2ax+3,由题意知2a×2+3=7,解得a=1.2.5x+y+2=0【解析】因为y'=-5e x,所以所求切线的斜率k=-5e0=-5,所以切线方程是y-(-2)=-5(x-0),即5x+y+2=0.3.13【解析】由题意得f'(x)=6ax2,所以6ax2|x=1=2,所以a=13.4.y=-3x 【解析】因为f'(x)=3x2+2ax+(a-3),又f'(x)为偶函数,所以a=0,所以f(x)=x3-3x,f'(x)=3x2-3,所以f'(0)=-3,所以f(x)在原点处的切线方程为y=-3x.5.y=-x+1+π2 【解析】因为f'(x )=-f'(0)sin x+cos x ,则f'(0)=-f'(0)·sin0+cos0,所以f'(0)=1,所以f (x )=cos x+sin x ,所以f'π2⎛⎫ ⎪⎝⎭=-1,f π2⎛⎫ ⎪⎝⎭=1,所以切线方程为y=-x+1+π2.6.64 【解析】由题知x>0,y'=-3-212x ,所以k=-3-212a ,切线方程为y-1-2a =-3-212a (x-a ).令x=0,得y=1-232a ;令y=0,得x=3a.所以三角形的面积S=12·3a ·1-232a =1294a =18,解得a=64.7.ππ32⎡⎫⎪⎢⎣⎭, 【解析】由题意得tan θ=y'=12⎛ ⎝x=13时,取等号,所以θ∈ππ32⎡⎫⎪⎢⎣⎭,.8.y=0或y=4x-4 【解析】设两个切点的坐标依次为(x 1,21x ),(x 2,-(x 2-2)2),由题意得1222121122-24-[-(-2)]2-x x x x x x x =+⎧⎪⎨=⎪⎩,,解得1202x x =⎧⎨=⎩,或1220x x =⎧⎨=⎩,,从而可求直线方程为y=0或y=4x-4.9.由题意知f'(x )=3x 2+2ax-9=323a x ⎛⎫+ ⎪⎝⎭-9-23a , 即当x=-3a时,函数f'(x )取得最小值-9-23a .因为曲线y=f (x )斜率最小的切线与直线12x+y=6平行,所以-9-23a =-12,即a 2=9, 所以a=±3.10.(1)由题意可知y 1=x 1+1t x ,y 2=x 2+2tx .因为f'(x )=1-2t x ,所以切线PM 的方程为y-11t x x ⎛⎫+ ⎪⎝⎭=211-t x ⎛⎫ ⎪⎝⎭(x-x 1). 又切线PM 过点P (1,0),所以0-11t x x ⎛⎫+ ⎪⎝⎭=211-t x ⎛⎫⎪⎝⎭(1-x 1), 即21x +2tx 1-t=0. ①同理,由切线PN 也过点P (1,0),得22x +2tx 2-t=0. ②由①②可得x 1,x 2是关于x 的方程x 2+2tx-t=0的两根.(2)由(1)知1212-2-.x x t x x t +=⎧⎨=⎩,, 所以g (t )(t>0).-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达11.(1)设f (x )=21x x +,则f'(x )=1-21x ,所以k=f'(2)=1-212=34. 又因为f (2)=2212+=52,所以所求切线方程为y-52=34(x-2), 即3x-4y+4=0.(2)由题知曲线y=21x x +(x>0)与直线3x-4y-11=0不相交,所以设曲线在点(x 0,y 0)处的切线与直线3x-4y-11=0平行,因为y'=1-21x ,令1-201x =34,解得x 0=2,所以切点为522⎛⎫ ⎪⎝⎭,,所以距离的最小值为点522⎛⎫⎪⎝⎭,到直线3x-4y-11=0的距离,即为3.12.由y=(ax-1)e x ,得y'=a e x +(ax-1)e x =(ax+a-1)e x .由y=1-e x x,得y'=2-e -(1-)e (e )x x x x =-2e x x .由题意知(ax 0+a-1)0e x ·00-2e x x =-1,即(ax 0+a-1)(x 0-2)=-1在302⎡⎤⎢⎥⎣⎦,上有解.方程可化为ax 0+a-1=-01-2x ,设f (x 0)=ax 0+a-1,g (x 0)=-01-2x ,作图可知1≤a ≤32. 另法:方程可化为a=0200-3--2x x x .求函数t (x 0)=0200-3--2x x x 在x 0∈302⎡⎤⎢⎥⎣⎦,上的值域即可.。