搅拌摩擦焊

合集下载

搅拌摩擦焊镁铝异种材料研究现状

搅拌摩擦焊镁铝异种材料研究现状

随着现代制造技术的不断进步,材料焊接技术也在不断发展。

搅拌摩擦焊作为一种新型的焊接方法,因其低能耗、无污染、高效率等优点而备受关注。

在工业界和学术界,对搅拌摩擦焊技术的研究也越来越深入。

一、搅拌摩擦焊简介1. 搅拌摩擦焊的原理和特点搅拌摩擦焊是一种无熔金属的固态焊接方法,通过机械搅拌和摩擦加热的方式将材料焊接在一起。

与传统的熔化焊接方法相比,搅拌摩擦焊具有温度低、热影响区小、焊接变形小等优点。

2. 搅拌摩擦焊的应用领域搅拌摩擦焊技术已广泛应用于航空航天、汽车制造、铁路交通等领域,尤其在焊接铝合金、镁合金等轻金属材料方面具有独特优势。

二、搅拌摩擦焊镁铝异种材料研究现状1. 镁铝异种材料的特点镁铝异种材料因其密度低、强度高、耐腐蚀等特点,被广泛应用于航空航天、汽车制造等领域。

然而,由于镁铝材料的化学性质和熔点差异较大,传统的焊接方法往往难以实现良好的焊接效果。

2. 搅拌摩擦焊镁铝异种材料的研究现状为解决镁铝异种材料的焊接难题,学术界和工业界进行了大量的研究。

目前,搅拌摩擦焊镁铝异种材料的研究已取得了一定进展,但仍存在一些挑战。

3. 研究现状的主要问题(1)焊接接头的组织和性能不稳定,需要进一步优化工艺参数和焊接头形貌。

(2)搅拌摩擦焊镁铝材料的金属间化合物生成机理和影响因素尚不清楚,需要深入研究。

(3)焊接接头的力学性能、耐腐蚀性能等方面还需要进一步评估和提升。

三、未来研究方向1. 优化焊接工艺参数针对搅拌摩擦焊镁铝异种材料存在的问题,未来研究可以进一步优化焊接工艺参数,包括搅拌转速、下压力、焊接速度等,以获得更稳定的焊接接头组织和性能。

2. 深入研究金属间化合物形成机理金属间化合物的生成对搅拌摩擦焊接头的性能具有重要影响,未来的研究可以针对金属间化合物的形成机理和影响因素进行深入探讨,为优化焊接工艺提供理论依据。

3. 综合评价焊接接头性能未来的研究还可以从焊接接头的力学性能、耐腐蚀性能等方面进行综合评价,探索提升镁铝异种材料搅拌摩擦焊接头综合性能的途径。

搅拌摩擦焊工艺流程

搅拌摩擦焊工艺流程

搅拌摩擦焊工艺流程
《搅拌摩擦焊工艺流程》
搅拌摩擦焊是一种先进的固态焊接工艺,它通过在金属材料接触面上施加轴向力和旋转摩擦热量的方式来实现材料的固态连接。

这种工艺不需要填充材料,避免了传统的熔化焊接中出现的气孔和裂纹等缺陷,因此具有焊接接头强度高、焊接速度快、焊接质量稳定的优点。

搅拌摩擦焊的工艺流程一般包括以下几个步骤:
1. 准备工作:首先需要准备好待焊接的金属材料,确保表面清洁并且没有油污和氧化物。

同时还需要准备好搅拌摩擦焊设备,包括摩擦焊头和加工台等。

2. 对接材料:将待焊接的金属材料对接在一起,并设置合适的摩擦焊头位置和压力,以确保焊接接头的质量。

3. 开始摩擦热:启动设备,让摩擦焊头在两块金属材料的接触面上旋转摩擦,产生摩擦热。

同时施加轴向力,将两块金属材料紧密接触在一起。

4. 搅拌连接:在摩擦热的作用下,金属材料表面开始软化,搅拌摩擦焊头开始向两块材料之间折叠,将材料的粒子分布重新整合,实现固态连接。

5. 冷却固化:当搅拌连接完成后,停止摩擦热和轴向力,让焊
接接头自然冷却,使焊接接头固化并达到理想的焊接强度。

通过以上步骤,搅拌摩擦焊工艺可以实现金属材料的固态连接,无需添加额外材料,焊接接头的质量和性能更加稳定可靠。

在航空航天、汽车制造和核工业等领域,搅拌摩擦焊已经得到广泛应用,并展现出了巨大的潜力和市场价值。

搅拌摩擦加工(FSP)介绍

搅拌摩擦加工(FSP)介绍
图4 搅拌摩擦加工(FSP)与产品
1 搅拌摩擦加工(FSP)简介
Fig 5. Macrostructure of dissimilar joints: (a) 1000-40, (b) 1000120, (c) 1000-240 and the corresponding surfaces (d-f)
搅拌摩擦加工(FSP)是在搅拌摩擦焊 (FSW)的基础上发展而来的一种加工技术。
图4 航天特焊无倾角搅拌头
图3 搅拌摩擦加工(FSP) 主要工艺参数
1 搅拌摩擦加工(FSP)简介
Fห้องสมุดไป่ตู้P原理——利用搅拌头剧烈的搅拌作用,造成加工区材料发生剧烈塑性变形、混 合、破碎和热暴露,实现材料微观组织的细化、均匀化和致密化
2 搅拌摩擦加工(FSP)研究
2.1.2 细晶超塑性材料制备(Mishra等)
超塑性一般大于200% 480℃时,7075-T651铝合金
最大延伸率为1250%
图9 FSP加工后的7075-T651铝合金晶粒<3.8μm
2 搅拌摩擦加工(FSP)研究
2.1.2 细晶超塑性材料制备(张大童等)
搅拌摩擦加工
Friction Stir Processing
目录
Contents
搅拌摩擦加工(FSP)简介 搅拌摩擦加工(FSP)研究 搅拌摩擦加工(FSP)特点 搅拌摩擦加工(FSP)展望
1 搅拌摩擦加工(FSP)简介
1997年,搅拌摩擦 技术被日本公司广 泛的应用于铝合金 车体制造
2002年,搅拌摩擦 焊中心在中国成立, 并在中国大力推广
δ5 ↑ 151.4%
2.1 铸造金属微观组织细化(Yaobin Wang等) 晶粒细化、消除内部缺陷

搅拌摩擦焊介绍

搅拌摩擦焊介绍

LEE MAN (SCETC)
搅拌摩擦焊
16
焊接压力
焊接压力除了影响搅拌摩擦生热以外,还对搅拌后的塑性金属起到压紧作 用。试验表明,当焊接压力不足时,表面热塑性金属“上浮”,溢出焊缝 表面,焊缝内部由于缺少金属填充而形成孔洞。当焊接压力过大时,轴肩 与焊件表面摩擦力增大,摩擦热将使轴肩平台发生粘附现象,使焊缝两侧 出现飞边和毛刺,焊缝中心下凹量较大,不能形成良好的焊接接头,表面 成形较差。
• 它可以焊接所有牌号的铝合金以及用熔焊方法难以焊接的材料,并 突破了普通摩擦焊对轴类零件的限制,可进行板材的对接、搭接、角 接及全位置焊接。由于搅拌摩擦焊是固态焊接,所以没有熔化焊时的
气孔、裂纹及合金元素烧损等缺陷。搅拌摩擦焊的接头性能普遍 优于熔化焊的。
• 目前,搅拌摩擦焊技术已在飞机制造、机车车辆和船舶制造等领 域得到广泛的应用,主要用于铝及其合金、铜合金、镁合金、钛合金、 铅、锌等非铁金属材料的焊接,也可用于焊接钢铁金属。
LEE MAN (SCETC)
搅拌摩擦焊
14
(三)搅拌摩擦焊接参数的选择
搅拌摩擦焊接参数主要包括焊接速度(搅拌焊头沿焊缝方向的行进 速度)、搅拌焊头转速、焊接压力、搅拌焊头结构参数(倾角θ)、搅 拌焊头插入速度和保持时间等。
1.焊接速度 图4-24为焊接速度对铝锂合金搅拌摩擦焊 接头抗拉强度的影响。由图可见,接头强度 与焊接速度的关系并非简单的线性比例关系, 而是呈曲线变化。当焊接速度小于 160mm/min时,接头强度随焊接速度的提 高而增大。从焊接热输入计算公式可知,当 转速为定值,焊接速度较低时,搅拌焊头/ 焊件界面的整体摩擦热输入较高。如果焊接 速度过高,热输入不足,热塑性材料填充搅 拌针行走所形成的空腔的能力变弱,热塑 性材料填充空腔能力不足,则焊缝内易形成 疏松孔洞缺陷,严重时焊缝表面形成一条 狭长且平行于焊接方向的隧道沟,导致接头 强度大幅度降低。

一文读懂搅拌摩擦焊

一文读懂搅拌摩擦焊

1搅拌摩擦焊概览搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。

与传统熔化焊相比,FSW无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。

经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。

搅拌摩擦焊的原理如图1所示。

高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。

在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。

图1 搅拌摩擦焊接原理搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。

在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。

双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。

其焊接原理如图2所示。

上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。

图2 双轴肩搅拌摩擦焊接原理1.上轴肩2.前进侧3.熔合线4.后退侧5.工件6.搅拌针7.下轴肩静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。

搅拌摩擦焊原理及其产热特点

搅拌摩擦焊原理及其产热特点

搅拌摩擦焊原理及其产热特点搅拌摩擦焊,这可是个挺有趣的焊接技术呢。

咱们先得知道它是怎么一回事儿。

这就好比是在做面条的时候,有一根特制的擀面杖,在面团里不停地搅和。

搅拌摩擦焊呢,就是有个特殊的搅拌头,在两块要焊接的材料之间转动、摩擦。

这个搅拌头啊,就像是一个勤劳的小蜜蜂,在材料之间钻来钻去。

它一边旋转,一边沿着焊接的缝儿往前走。

这两块材料呢,就像两个小伙伴,本来是分开的,现在被这个小蜜蜂一样的搅拌头给弄在一起啦。

那搅拌摩擦焊的产热特点可就更有意思了。

你想啊,当这个搅拌头在材料里面转的时候,就像咱们冬天搓手取暖一样。

咱们的手相互摩擦就会发热,搅拌头和材料之间的摩擦也是这个道理。

只不过,这个热可不像咱们搓手那么简单。

它产生的热量是很集中的,就像聚光灯打在舞台上的一个小角落一样。

这种产热方式啊,和传统的焊接可不一样。

传统焊接有时候就像在野外生火,火到处乱窜,热量也散得到处都是。

搅拌摩擦焊的热就规规矩矩地在搅拌头和材料接触的地方产生。

这就好比是在一个小房间里开了个小暖炉,暖炉的热就集中在这个小房间里,不会到处乱跑。

再说说这个热量的大小吧。

它就像是厨师做菜的时候掌握火候一样。

搅拌摩擦焊产生的热量是刚刚好能让材料软下来,能够融合在一起。

不会像有些焊接方法,热太多了,把材料都烧坏了,就像烤焦的面包,黑乎乎的,没法吃了。

也不会像热不够的时候,材料就像两个不熟的朋友,只是表面碰了碰,里面还是各干各的,根本没融合好。

从这个产热的速度来看呢,搅拌摩擦焊就像是短跑运动员起跑一样,很快就能达到需要的热量。

这就保证了焊接的效率。

而且啊,这个热量在整个焊接过程中是比较稳定的。

不像有些焊接,一会儿热一会儿冷,就像那调皮的小孩,一会儿安静一会儿吵闹,这样焊接出来的东西质量肯定不好。

搅拌摩擦焊的这种产热特点,在实际应用中可太有用了。

比如说在汽车制造上,汽车的很多部件都需要焊接。

如果用传统焊接,可能就会有很多问题,像是焊接处不牢固啦,外观不好看啦。

搅拌摩擦焊

搅拌摩擦焊

搅拌摩擦焊(Friction Stir Welding,简称FSW)是英国焊接研究所(The Welding Institute)于1991年发明的专利焊接技术。

搅拌摩擦焊除了具有普通摩擦焊技术的优点外,还可以进行多种接头形式和不同焊接位置的连接。

挪威已建立了世界上第一个搅拌摩擦焊商业设备,可焊接厚3—15mm、尺寸6×16的Al船板;1998年美国波音公司的空间和防御实验室引进了搅拌摩擦焊技术,用于焊接某些火箭部件;麦道公司也把这种技术用于制造Delta运载火箭的推进剂贮箱。

下面主要介绍搅拌摩擦焊的方法、过程、特点以及搅拌摩擦焊在中国的发展现状。

2.搅拌摩擦焊的原理搅拌摩擦焊方法与常规摩擦焊一样.搅拌摩擦焊也是利用摩擦热作为焊接热源。

不同之处在于.搅拌摩擦焊焊接过程是由一个圆柱体形状的焊头(welding pin)伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化.同时对材料进行搅拌摩擦来完成焊接的。

焊接过程如图所示。

在焊接过程中工件要刚性固定在背垫上,焊头边高速旋转.边沿工件的接缝与工件相对移动。

焊头的突出段伸进材料内部进行摩擦和搅拌,焊头的肩部与工件表面摩擦生热,并用于防止塑性状态材料的溢出,同时可以起到清除表面氧化膜的作用。

在焊接过程中,焊头在旋转的同时伸入工件的接缝中,旋转焊头与工件之问的摩擦热,使焊头前面的材料发生强烈塑性变形,然后随着焊头的移动,高度塑性变形的材料流向焊头的背后,从而形成搅拌摩擦焊焊缝。

搅拌摩擦焊对设备的要求并不高,最基本的要求是焊头的旋转运动和工件的相对运动,即使一台铣床也可简单地达到小型平板对接焊的要求。

但焊接设备及夹具的刚性是极端重要的。

焊头一般采用工具钢制成,焊头的长度一般比要求焊接的深度稍短应该指出,搅拌摩擦焊缝结束时在终端留下个匙孔。

通常这个匙孔可以切除掉,也可以用其它焊接方法封焊住。

关于在搅拌摩擦过程中界面原子的运动现在仍处于研究阶段。

搅拌摩擦焊原理

搅拌摩擦焊原理

搅拌摩擦焊原理:搅拌摩擦焊是一种先进的固态连接技术,主要利用搅拌摩擦过程的热量和机械力来实现材料的连接。

该技术在铝、铜、钢等各类金属材料的连接中均有广泛应用。

以下是对搅拌摩擦焊原理的详细介绍。

一、搅拌摩擦焊的基本原理搅拌摩擦焊的核心原理在于利用一个特殊形状的搅拌头来刮擦待连接的材料表面。

搅拌头的形状通常为圆锥形或圆柱形,材料一般选用具有高强度和耐磨性的硬质合金。

在焊接过程中,搅拌头插入待连接的两块材料之间,通过旋转和向前推移的方式对材料表面进行刮擦。

搅拌摩擦焊过程中的热量主要来源于搅拌头的摩擦和塑性变形产生的热量。

当搅拌头向前推移时,刮擦产生的塑性变形会引发材料内部的热量。

这些热量不仅使材料表面软化,还产生大量的热塑性流体,这些流体在搅拌头的压力下填充了材料表面的微小缝隙,从而实现了材料的连接。

二、搅拌摩擦焊的工艺特点1.固态连接:搅拌摩擦焊是一种固态连接技术,焊接过程中没有熔融态材料的参与,因此具有无液相、无污染的优点。

2.温度适中:相较于传统的熔焊方法,搅拌摩擦焊的温度较低,可以有效降低材料的热损伤,适用于对温度敏感的材料。

3.适用范围广:搅拌摩擦焊可以适用于不同种类的金属材料,包括铝、铜、钢等,具有广泛的应用前景。

4.高效节能:由于搅拌摩擦焊没有熔融态材料的消耗,因此其能源消耗远低于传统熔焊方法。

5.操作简单:搅拌摩擦焊的焊接过程相对简单,操作方便,对操作人员的技术要求较低。

三、搅拌摩擦焊的应用由于其独特的优点,搅拌摩擦焊在许多领域都得到了广泛应用。

1.航空航天:在航空航天领域,许多结构组件需要高强度、高可靠性的连接。

搅拌摩擦焊能够满足这些严苛的要求,因此在飞机和火箭等结构中得到了广泛应用。

2.轨道交通:在轨道交通领域,为了保证车辆和轨道的安全性,需要对各种金属材料进行高质量的连接。

搅拌摩擦焊以其固态连接、高效节能等优点,在该领域得到了广泛应用。

3.电子封装:在电子封装领域,由于电子元件需要微型化和高度集成化,因此需要精确控制连接的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1绪论 (2)2搅拌头的设计 (4)2.1搅拌头材料的选择 (4)2.2搅拌头结构尺寸设计 (5)2.2.1轴肩 (5)2.2.1搅拌针 (6)3搅拌头的具体设计 (7)3.1搅拌头的材料选择 (7)3.2轴肩及搅拌针的具体设计尺寸 (7)3.3轴肩及搅拌针的几何形状设计 (8)3.3.1设计原理 (8)3.3.2形状设计 (9)参考文献 (10)1绪论搅拌摩擦焊( Friction Stir Welding,简称 FSW) 是由英国焊接研究所(The Welding Institute,简称 TWI)于1991年研究发明的一种先进的固相连接技术,被认为是自激光焊接问世以来最引人注目和最具潜力的连接技术[1]。

其焊接工作原理如图1-1 所示,高速旋转的搅拌头扎入工件后沿焊接方向运动,在搅拌头与工件接触部位产生摩擦热,使其周围金属形成塑性软化层,软化金属在搅拌头的旋转作用下填充后方空腔并在轴肩与搅拌针的搅拌及挤压作用下实现材料连接。

图1.1 搅拌摩擦焊工作原理FSW与弧焊、激光焊、电子束焊、钎焊和扩散连接等传统焊接方法相比,FSW具有高效低耗、焊接温度低、接头残余应力小、焊接工件变形小、环境友好等特点,特别在大规格薄板焊接中是其他焊接方法远不可相比的。

经过20多年的发展,搅拌摩擦焊已经从技术研究迈向高层次的工程化和工业化应用阶段。

被焊材料也已从铝合金逐渐扩展到镁合金、铅合金、铜合金、钢、钛合金以及复合材料等。

目前,搅拌摩擦焊设备的制造和产品的加工在国内外已经成为一类高技术新兴产业。

搅拌摩擦焊不仅具备普通摩擦焊技术的优点,由于搅拌头的灵活性还可以适应不同接头形式和位置的焊接。

由于焊接过程中的热量仅仅能使被焊金属达到塑性状态,故焊接过程焊件的变形量小,焊接无需添料,焊接过程绿色环保、耗材少。

应用方面,因为搅拌摩擦焊焊接过程操作简便,焊接缺陷少接头性能好,自动化程度高且生产周期短,现已被广泛用于造船业、车辆制造、飞机制造、航天制造等工业领域。

搅拌头作为搅拌摩擦焊的“心脏”,其材料和结构设计是搅拌摩擦焊技术的核心,是搅拌摩擦焊工艺中最重要的技术之一,是决定搅拌摩擦焊技术能否扩大待焊材料的种类以及能否提高待焊材料板厚范围的关键。

2搅拌头的设计2.1搅拌头材料的选择由于搅拌摩擦焊接所需要的热源主要来源于搅拌头和工件材料的摩擦热,焊接过程搅拌头又需要承受高温、顶锻压力、摩擦扭矩、行进阻力等联合作用,所以搅拌头的材料应具备以下基本特征:热硬性、耐磨性、抗蠕变性、耐冲击性、易加工性、材料惰性、优良的摩擦效果等。

目前常用的搅拌头材料主要有三种:高温合金、热作模具钢及硬质合金。

高温合金(以 GH4169为例)虽然能在700摄氏度下保持较好的性能,但在400摄氏度以上的焊接工作温度下损耗严重;热作模具钢(以H13为例)工作温度一般在540摄氏度左右,在其工作范围内显然不适合进高熔点的金属及其合金的焊接;对于硬质合金,碳化钨(WC)占据着非常重要的位置,WC-Co系硬质合金在WC基硬质合金中又具有最高的抗弯强度、抗压强度、冲击韧性及弹性模量,在焊接低熔点材料时,WC-Co硬质合金搅拌头可以焊接很大长度的焊缝而几乎没有损耗,焊接高熔点材料时,其优良的耐磨性及高温性能又可以保证焊缝质量的稳定[2]。

除了以上三种常用材料之外,国内外用于搅拌头制作的材料还有聚晶立方氮化硼等,各材料的研究情况及优缺点对比如表2-1所示:表2-1国内外搅拌摩擦焊搅拌头材料研究情况及优缺点[2]搅拌头材料高温性能强度韧性耐磨性经济性工具钢良好一般较差较便宜镍基和钴基合金一般很好一般原材料较贵难熔金属及其合金良好高温下较好良好周期长,加工难,成本高聚晶立方氮化硼很好韧性较差很好材料制备条件苛刻,加工成本很高硬质合金很好较好很好传统加工方法周期长或加工成本高在焊接铝、镁、铅等低熔点材料时,搅拌头采用工具钢即可。

对于钢、铜、钛等高熔点材料来讲,焊接时最高温度在1 000 ℃以上,能满足使用要求的搅拌头材料往往是难熔金属合金或者结构陶瓷。

但在焊接铝基复合材料时,由于出现的高硬度的第二相颗粒会导致搅拌头较严重的磨损。

经过对各种材料包括特种钢材,硬质合金等的综合研究,在焊接铝基复合材料材料是选用GT35钢结硬质合金作为搅拌头的材料[2]。

2.2 搅拌头结构尺寸设计搅拌头材料确定的前提下,轴肩和搅拌针形状和尺寸对焊缝的质量有重要影响。

搅拌头的形状决定了焊缝金属塑性加热、热塑性材料的流动和锻造形式搅拌头的尺寸决定了焊缝尺寸和焊接速度。

2.2.1 轴肩轴肩在焊接过程中主要是与工件表面摩擦提供焊接热源以及封闭焊接环境,以阻止高塑性软化材料从轴肩溢出。

根据不同焊接需要,轴肩与搅拌针交界的工作面可加工为平面型,凹陷型和凸起型。

图2.1为几种常见的轴肩形貌,它们都是在搅拌针和轴肩交界处中间凹入的[3]。

研究指出,在焊接过程中,这种设计形式可保证轴肩端部下方的软化材料受到向内方向的力的作用,从而有利于将轴肩端部下方形成的软化材料收集到轴肩端面的中心以填充搅拌针后方形成的空腔,同时还可减少焊接过程中搅拌头内部的应力集中而保护搅拌头。

图2.1 不同几何形貌的轴肩对于特定的焊接材料,为了获得最佳的焊接效果,必须设计出与之相适应的特殊的几何形貌轴肩几何形貌。

由于轴肩在搅拌摩擦焊接过程中所起的作用比较单一,因而人们对轴肩形貌、几何尺寸及其对焊接过程中塑性流动和焊后接头质量影响方面的研究较少,而将大部分精力投入搅拌针形貌、几何尺寸设计方面的研究。

2.2.1搅拌针不同形式搅拌针决定被焊材料的流动以及成形机理,合理设计的搅拌针形状和尺寸是得到良好焊缝的关键。

大量试验总结说明的搅拌针长度应略小于焊件厚度,其与轴肩径之比约为1:3为好,与焊件厚度之比约为1:1时较好[1]。

目前搅拌针的种类主要有带螺纹以及不带螺纹的圆柱形、圆台形、偏心式、非对称式、外开式和可伸缩式等。

3搅拌头的具体设计此次设计的搅拌摩擦焊用搅拌摩擦头主要用于7mm厚的铝合金的焊接,主要用于对接接头。

3.1 搅拌头的材料选择铝合金材料由于质量轻、抗腐蚀、易成形等优点,受到众多工业制造领域的青睐,随着该材料性能的不断提高及新牌号的硬铝、超硬铝等材料的出现,在航空、航天、高速列车、高速舰船等工业领域得到了越来越广泛的应用。

但是,铝合金材料表面致密的氧化层以及弧焊过程中较大变形等又限制了这种材料的进一步推广应用。

搅拌头是搅拌摩擦焊设备的核心部件本文所用搅拌头是自主选材和设计的。

对于铝合金搅拌摩擦焊来说,焊缝区在焊接过程中的温度可达到400-480摄氏度,这就要求搅拌头要具有优异的高温性能,包括:热强性、抗蠕变性、在焊接温度下不发生组织变化即热稳定性、与被焊材料不发生化学反应即材料惰性;同时在搅拌摩擦焊的过程中搅拌头还要受到试件强烈的反作用力和于试件材料之间发生摩擦,因此必须具有好的耐磨性、耐冲击性能,并且要具有合适的摩擦效果和导热性能;从经济的角度考虑则希望搅拌头容易加工、材料容易得到,同时还要考虑价格因素。

综合考虑,本文选用高速工具钢来制作搅拌头,经过淬火和多次回火处理,性能可以较好的满足试验要求[4]。

经过初步的优化设计,对于薄板铝合金的搅拌摩擦焊,其搅拌头的材料选用工具钢即可满足焊接要求。

3.2轴肩及搅拌针的具体设计尺寸(1)搅拌针尺寸:搅拌摩擦焊的搅拌头,一般要求搅拌针的直径等于待焊材料的厚度,及搅拌针直径为7mm。

(2)轴肩尺寸:搅拌摩擦焊的搅拌头,一般要求其轴肩的直径为对应焊材板厚的3-5倍,及轴肩的设计尺寸为21mm(3)轴肩长度:轴肩的长度约为25mm(4)轴肩下压深度:焊接时轴肩下压深度约为0.5mm3.3轴肩及搅拌针的几何形状设计3.3.1设计原理搅拌摩擦焊时,搅拌头轴肩与工件表面以及搅拌针与母材产生的摩擦热是焊接热量的主要来源,在搅拌摩擦焊过程中,需考虑搅拌针与金属材料的摩擦热,并且这部分热量对搅拌摩擦焊接头材料塑性流动、接头性能起着关键的作用。

搅拌摩擦焊接头中横剖面中出现的隧道形缺陷或孔洞就是在搅拌针与其周围金属的摩擦热不够,材料的塑性流动不充分的情况下出现的。

通过实验测量了不同类型搅拌头条件下铝合金焊接试板特征点的温度曲线,分析了搅拌头轴肩尺寸和搅拌针形状对焊接试板温度场的影响。

结果表明,轴肩是搅拌摩擦焊接热输入的主要来源,搅拌头轴肩尺寸越大,产生的焊接热量越大,对应试板测温点的温度越高。

搅拌头针形对焊接初始阶段试板的温度有明显影响,稳定焊接阶段,试板温度与搅拌针的几何特征及其作用下焊缝金属的塑性流动有关。

采用圆台形搅拌针时焊接试板温度最高,采用圆柱形搅拌针时试板温度次之,采用螺纹形搅拌针时试板温度最低[4]。

且经大量研究表明,当采用圆柱探针和圆锥探针搅拌头进行焊接时,接头容易出现孔洞缺陷,孔洞一般位于接头中下部前进边一侧。

当采用圆锥带螺纹探针搅拌头进行焊接时,可以获得缺陷较少的焊缝。

由此可以看出,搅拌头形状对焊缝组织和焊接缺陷的形成具有重要影响。

当采用圆锥和圆柱探针搅拌头进行焊接时,在一定的焊接参数下,焊接过程热输入量不足,材料流动不够充分,导致孔洞缺陷的形成。

探针上加工螺旋线可以增大探针与塑性材料之间的摩擦,产生更多的热量,而且由于螺旋线可以产生一个向下的推力,使塑性材料流动更充分,搅拌更均匀,避免了孔洞缺陷的产生[5]。

3.3.2形状设计因此,在本文搅拌摩擦头的具体设计中,对于搅拌针的形状采用圆台形,且带螺纹,用以增大焊接过程中的热输入量且减少孔洞缺陷的出现。

因此,本文搅拌摩擦头的设计如图3.1所示:图3.1带螺纹圆台形搅拌头参考文献[1]龚凡、王滨生.《国内外搅拌摩擦焊用搅拌头的研究现状及发展趋势》材料开发与应用2013.6 第111~118页。

[2]张晨.《WC-Co 硬质合金搅拌摩擦焊搅拌头的研制》南昌航空大学硕士2014.06.09第1~3页。

[3]曹朝霞.《搅拌摩擦焊工艺研究》大连铁道学院硕士 2002.12.20 第5~8页。

[4]李敬勇、亢晓亮.《搅拌头几何特征对搅拌摩擦焊试板温度场的影响》航空材料学报2013.01 第59~60页。

[5] 赵衍华、林三宝.《2014铝合金搅拌摩擦焊接头缺陷分析》焊接 2005(7)第10~12页。

相关文档
最新文档