2006-2007《离散数学》期末试题A

合集下载

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案离散数学期末考试试题及答案离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。

下面是小编整理的离散数学期末考试试题及答案,欢迎阅读参考!一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的'关系。

[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,则AB( )。

[A] 3,8 [B]3 [C]8 [D]3,83、若X是Y的子集,则一定有( )。

[A]X不属于Y [B]X∈Y[C]X真包含于Y [D]X∩Y=X4、下列关系中是等价关系的是( )。

[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,下列表述中错误的是( )。

[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A到A的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是( )。

[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.则G的割(点)集是( )。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)离散数学考试试题(A卷及答案)⼀、(10分)判断下列公式的类型(永真式、永假式、可满⾜式)?1)((P→Q)∧Q)?((Q∨R)∧Q) 2)?((Q→P)∨?P)∧(P∨R)3)((?P∨Q)→R)→((P∧Q)∨R)解:1)永真式;2)永假式;3)可满⾜式。

⼆、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。

解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4))((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))(0∨0)∧(0∨1)1∧1?0三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的⼆元关系数是多少?A到B的函数数是多少?解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的⼆元关系有2mn个。

因为|BA|=|B||A|=mn,所以A到B的函数mn个。

四、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、(10分) 75个⼉童到公园游乐场,他们在那⾥可以骑旋转⽊马,坐滑⾏铁道,乘宇宙飞船,已知其中20⼈这三种东西都乘过,其中55⼈⾄少乘坐过其中的两种。

离散数学期末考试题答案

离散数学期末考试题答案

北京交通大学2007-2008学年第二学期《离散数学基础(信科专业)》期末考试卷(A)学院:____________ _专业:___________________ 班级____________姓名:学号:□选修□必修一、填空题(共10分,每空1分)1.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做(T规则)。

2.设A={a,{b}},则A的幂集是P (A)= {Φ, a,{b}, {a,{b}};3.设R 是集合A上的二元关系,如果关系R同时具有自反性、反对称性和传递性,则称R是A上的一个偏序关系。

4.既是满射,又是单射的映射称为1-1映射(双射)。

5.设S为非空有限集,代数系统<P(S),∪>的单位元和零元分别为S和φ。

6.具有n个顶点的无向完全图共有n(n-1)/2条边。

7.简单图是指无环、无重边的图。

8.k-正则图是指所有顶点的度数均为k的的图。

9.Hamilton通路是指通过图中所有顶点一次且仅一次的通路。

10.设G=(E,V)是图,如果G是连通的,则P(G)= 1 。

11.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项( A )A.P∧Q∧R;B.P∧Q∧⌝R;C .P ∧⌝Q ∧R ;D .P ∧⌝Q ∧⌝R12. 下列谓词公式中( A )不正确。

A .(∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; B .(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C .(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D .(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ;13. 设S = {2,a ,{3},4},R ={{a},3,4,1},指出下面的写法中正确的是( D )(A )R=S ; (B ){a,3}⊆S ; (C ){a}⊆R ;(D )φ⊆R ;14. 下列命题公式不是重言式的是 C 。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案 一、单项选择题(每题2分,共20分) 1. 集合{1,2,3}的子集个数是( )。 A. 4 B. 6 C. 7 D. 8

答案:D 2. 命题“若x>0,则x^2>0”的逆否命题是( )。 A. 若x^2≤0,则x≤0 B. 若x^2>0,则x>0 C. 若x≤0,则x^2≤0 D. 若x^2≤0,则x<0 答案:C 3. 函数f:N→N,满足f(x+y)=f(x)+f(y),则f(0)等于( )。 A. 0 B. 1 C. 2 D. 3

答案:A 4. 命题“若x>0,则x^2>0”的逆命题是( )。 A. 若x>0,则x^2>0 B. 若x^2>0,则x>0 C. 若x≤0,则x^2≤0 D. 若x^2≤0,则x≤0

答案:B 5. 集合{1,2,3}的真子集个数是( )。 A. 4 B. 6 C. 7 D. 8

答案:B 6. 命题“若x>0,则x^2>0”的否命题是( )。 A. 若x>0,则x^2>0 B. 若x^2>0,则x>0 C. 若x≤0,则x^2≤0 D. 若x^2≤0,则x≤0

答案:D 7. 函数f:N→N,满足f(x+y)=f(x)+f(y),则f(1)等于( )。 A. 0 B. 1 C. 2 D. 3

答案:B 8. 命题“若x>0,则x^2>0”的逆命题是( )。 A. 若x>0,则x^2>0 B. 若x^2>0,则x>0 C. 若x≤0,则x^2≤0 D. 若x^2≤0,则x≤0

答案:B 9. 集合{1,2,3}的非空子集个数是( )。 A. 4 B. 6 C. 7 D. 8 答案:C 10. 命题“若x>0,则x^2>0”的等价命题是( )。 A. 若x>0,则x^2>0 B. 若x^2>0,则x>0 C. 若x≤0,则x^2≤0 D. 若x^2≤0,则x≤0

答案:C 二、填空题(每题3分,共30分) 1. 集合{1,2,3}的幂集是{∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}},共有________个元素。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于()。

A. {1,2}B. {2,3}C. {3,4}D. {4,5}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤1,则x≤0B. 若x≤1,则x<0C. 若x≤0,则x≤1D. 若x<1,则x≤0答案:D3. 在图论中,一个连通图的最小生成树包含的边数是()。

A. n-1B. nC. n+1D. 2n答案:A4. 布尔代数中,A+0的结果是()。

A. 0B. AC. 1D. A+1答案:B5. 函数f: X→Y是双射的,当且仅当()。

A. f是单射且满射B. f是单射或满射C. f是单射且非满射D. f是非单射且满射答案:A二、填空题(每题3分,共15分)6. 若A={1,2,3},B={4,5,6},则A∪B的元素个数为 6 。

7. 命题“若x>0,则x>1”的逆命题是“若 x>1 ,则x>0”。

8. 在一个有n个顶点的完全图中,边的总数为 n(n-1)/2 。

9. 布尔代数中,A·1的结果是 A 。

10. 函数f: X→Y是单射的,当且仅当对于任意的x1, x2∈X,若f(x1)=f(x2),则 x1=x2 。

三、解答题(每题10分,共20分)11. 证明:若A和B是等价关系,则A∩B=A=B。

证明:由于A和B是等价关系,根据等价关系的性质,A和B都是自反的、对称的和传递的。

因此,A∩B也是自反的、对称的和传递的,所以A∩B是等价关系。

又因为A和B是等价关系,它们包含相同的元素,所以A∩B=A=B。

12. 给定一个有向图G,其中包含5个顶点和7条边,请构造一个包含所有顶点的最小路径覆盖。

解答:由于题目没有给出具体的图G,我们无法给出一个具体的最小路径覆盖。

但是,根据最小路径覆盖的定义,我们需要找到一组边,使得图中的每个顶点至少与这组边中的一条边相关联,且这组边的数量尽可能少。

(完整版)《离散数学》试题及答案解析,推荐文档

3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。

7. 一个连通图的生成树包含______条边。

8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。

9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。

10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。

三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。

()12. 一个连通图的所有顶点都连通。

()13. 在一个简单图中,每个顶点的度数都小于等于n-1。

()14. 每个图都有哈密顿路径。

()15. 一个图G的生成树是原图G的子图。

()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。

17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。

18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。

离散数学期末试卷

1 离散数学期末试卷 第一部分:选择题(每题2分,共20分) 1. 下列哪一个选项是真命题? A. 所有奇数都是质数 B. 所有质数都是奇数 C. 所有正整数都是偶数 D. 所有偶数都是正整数

2. 集合 {0, 1, 2} 的幂集大小为: A. 0 B. 3 C. 6 D. 7 3. 下列哪一个选项是可判定性问题? A. 是否存在一个2的幂等于10 B. 所有的完全图是否都有完美匹配 C. 给定一组加、减、乘、除的运算符,能否得到给定的数字 D. 一个图是否为二分图

4. 设 A = {1, 2, 3, 4}, B = {2, 4, 6},则 A ∪ B 的大小为: A. 2 B. 4 C. 5 D. 6

5. 给定为一个图 G = (V, E),其中 V = {1, 2, 3, 4},E = {(1,2), (2,3), (3,4)}。则 G 的度数序列为: A. 1, 2, 3, 4 B. 2, 2, 2, 2 C. 1, 3, 3, 1 D. 0, 1, 2, 3

6. 下列哪一个选项是错误的? A. 每个欧拉图的所有点的度数都是偶数 B. 每个哈密顿图的所有点的度数都是偶数 C. 每个二分图的最小割一定等于最大匹配 D. 简单路径是一条不经过相同节点的路径 2

7. 在集合 {1, 2, 3, …, 20} 中,所有能被 3 整除的元素所组成的集合的个数为: A. 6 B. 7 C. 8 D. 9

8. 下列哪一条不是双向路径? A. (1,2) B. (2,3) C. (3,4) D. (2,4)

9. 设 A = {a, b, c},B = {1, 2, 3},则 A × B 的大小为: A. 3 B. 6 C. 7 D. 9

10. 下列哪一个选项是错误的? A. 一个树有 n 个节点,则该树恰好有 n-1 条边 B. 一个图有 n 个节点,则该图至多有 n(n-1)/2 条边 C. 一个完全图有 n 个节点,则该完全图至多有 n(n-1)/2 条边 D. 一个无向图有 n 个节点,则该无向图至多有 n(n-1) 条边

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特别说明
此资料来自百度文库(http://wenku.baidu.com/)
您目前所看到的文档是使用的抱米花百度文库下载器所生成
此文档原地址来自

感谢您的支持
抱米花
http://blog.sina.com.cn/lotusbaob

http://wenku.baidu.com/view/b696e21c59eef8c75fbfb3f3.html

相关文档
最新文档