理论力学 课件

合集下载

理论力学课件 第一章力的投影,主矩主矢

理论力学课件  第一章力的投影,主矩主矢



v Fn
=
X niv

+ Yn
vj
+
v Znk
z
Fn O x
Fi
F1 y
F2
∑ X1 + X 2 +L+ X n = X
∑ Y1 + Y2 + L + Yn = Y
∑ Z1 + Z2 + L + Zn = Z
v FV
=
(∑
X
)iv
+ (∑Y )vj
+ (∑ Z )kv
1.1 力的投影、力系的主矢、汇交力系的合力
1.1 力的投影、力系的主矢、汇交力系的合力
合力解析表达式Fv形R式= (−153.6iv −170.5 vj )N
合力的大小和方向
∑ ∑ FR = ( X )2 + ( Y )2 = 229.5N
θ
=
arctan
∑Y ∑X
= 47.98°
y
θO x
FR
1.1 力的投影、力系的主矢、汇交力系的合力 2、汇交力系合成的几何法
例1-4:边长为a的正方体受到四个大小都等于F的力, 方向如图,求此力系的主矢。
z A
G
F4
O
F1
E x
B
F2
H
F3
C y
D
1.1 力的投影、力系的主矢、汇交力系的合力
z

A
B 四力的矢量解析表达式:
G
F2
H
v F1
=
F
⎜⎜⎝⎛
2
v i
+
2
2 2
v j

西南交通大学理论力学课件1.ppt

西南交通大学理论力学课件1.ppt
5. 约束物体的受力分析和受力图是研究物体平衡和运 动的前提。
为学好后续力学课程做好准备。
有助于培养正确的分析问题和解决问题的能力,为今 后解决生产实际问题、从事科学研究工作打下基础。
C vC ω
圈操
艺术体操运动员使圈高速转动,并在地面上 向前抛出,不久圆圈可自动返回到运动员跟前。 我们应该怎样来解释这种现象
五、基本要求
● 准确地理解基本概念; ● 熟悉基本定理与公式,并能在正确条件下灵活应用; ● 学会一些处理理论力学问题的基本方法。
刚体是抽象化的力学模型
理论力学研究的物体都是刚体 刚体力学
静力学——刚体静力学
2. 力的概念
力是物体间相互的机械作用,这种作用使物体的 机械运动状态发生变化。
作用方式: (1)直接接触作用; (2)间接作用,如磁场、电场、重力场等。
作用效应:
(1)使物体的运动状态发生改变——运动效应或外效 应,如位置、速度、加速度等(理力);
(2)使物体发生变形——变形效应或内效应(材力)
力的三要素及其表示:
力的作用线
F
(1)力的大小,
A
力的三要素: (2)力的方向,
(3)力的作用点。
F
F0
可用一矢量表示F F = F F0
(定位矢量或固定矢量)
力的单位
N(牛顿)、kN(千牛)
§1-2 静力学公理
公理1 力的平行四边形规则
★ 作用在物体上同一点的两个力,可以合成为一个合力。合 力的作用点也在该点,合力的大小和方向,由这两个力为边构 成的平行四边形的对角线确定。
6000N
3000N
3500N
4500N 假设人体重量为750N
绪论
一、理论力学的研究对象和内容

经典理论力学课件

经典理论力学课件

力系的简化/力系的简化的最简的结果
力系简化的几种结果
FO 0 MO 0
力系平衡
必要条件: 力系主矢为零矢量

M C M O r C O F O
MCMO0
与简化中心无关

F必O要条0件:M力O 系0主矢为力零系矢与量一个合?力偶M 等C效M O
• 力作用线的平移
– 力偶是自由矢量
• 力偶矩矢量在刚体上移动不改变对刚体的作用效果
– 力是滑移矢量
• 力矢量在刚体上沿作用线移动不改变对刚体的作用效果

力的作用线作平行移动,会改变它对刚体的作用效果


F
F
O
2019/11/7 理论力学CAI 静力学
O
P
P
3
力系的简化/空间一般力系的简化/力作用线平移
一般情况下不等
17
理论力学CAI 静力学
力系的简化/力系的简化的最简的结果
• 小结

FR
( F 1 ,F 2 , ,F n ) ( F O ,M O ) ( F C ,M C )
FO
MO
n
FC FO FR Fi
i1 M C M O r C O F O
(FO,MO)
FC
(FC,MC)
FO
MO
O MC
C
2019/11/7 15
理论力学CAI 静力学
力系的简化/力系的简化的最简的结果
力系简化的结果与简化中心的关系
• 同一个力系不同的简化中心
FR
简化中心O
(F 1,F 2, ,F n)简化中心C

理论力学经典课件-振动

理论力学经典课件-振动

2 n
x C1er1t C2er2t
本征值与运动微分方程旳通解旳形式与阻尼比有关。
3. 小阻尼情形
当 n< n 时,阻尼系数 c 2 mk ,这时阻尼较小,
称为小阻尼情形。其两个根为共轭复数,即:
r1 n i
2 n
n2
r2 n i
2 n
n2
其方程旳解为

x Aent sin(
2 n
F l 3 3EI
Fl 3 3EI
F ky yst
k
3EI l3
k-等效刚度
Wl 3 mgl 3 yst 3EI 3EI
k
3EI l3
my mg F
F ky yst
my ky 0 此即梁-物块旳运动微分方程
y Asin(nt )
串联弹簧与并联弹簧旳等效刚度
1. 串 联
meq-等效质量:使系统在广 义坐标方向产生单位加 速 度,需要在这一坐标方 向施加的力或力矩。
meq q keq q=0
q=C1cosnt C2cosnt
q
2 n
q=0
q=Asinnt

n
keq -系统的固有频率;A meq
q02
q0
n
2
振动的振幅;
arctan
n q0
q0
-振动的初位相; q0-初始广义坐标; q0-初始速度。
l
处于平衡,若k、m、a、l 等均
为已知。
ak
m
求:系统微振动旳固有频率
解:取静平衡位置为其坐标原点,
由动量矩定理,得
F
JO
d 2
dt 2
mgl cos
Fa cos

理论力学第十四章达朗贝尔原理(动静法)课件

理论力学第十四章达朗贝尔原理(动静法)课件

动静法的物理意义
物理背景
实际应用
达朗贝尔原理反映了牛顿第二定律在 静力学中的应用,通过引入惯性力, 将动力学因素考虑到平衡问题中。
在工程实际中,达朗贝尔原理广泛应 用于分析高速旋转的机械、振动系统 以及瞬态动力学问题。
意义阐述
通过动静法,我们可以分析在某一瞬 时,运动系统由于惯性作用而产生的 力,从而更准确地描述系统的平衡条 件。
03
在应用动静法时,要确 保惯性力与主动力相平 衡,避免出现误差。
04
在求解方程时,要注意 解的物理意义和实际情 况是否相符。
04
CATALOGUE
达朗贝尔原理的应用实例
简单实例解析
总结词
通过一个简单的实例,介绍达朗 贝尔原理的基本应用。
详细描述
以一个单摆为例,运用达朗贝尔 原理分析其运动状态,通过对比 理论计算和实验结果,验证达朗 贝尔原理的正确性。
具体推导过程
在受力分析的基础上,列出系统的平 衡方程。
解出未知数,得到系统的运动状态。
将动静法应用于平衡方程,将惯性力 与主动力相平衡。具体来说,就是在 平衡方程中加入惯性力项,使得该力 与主动力相平衡。
推导过程中的注意事项
01
确定研究对象和系统时 要明确,避免出现混淆 。
02
在建立平衡方程时,要 确保所有力的方向和大 小都正确。
理论力学第十四章 达朗贝尔原理(动静 法)课件
contents
目录
• 达朗贝尔原理概述 • 达朗贝尔原理的基本概念 • 达朗贝尔原理的推导过程 • 达朗贝尔原理的应用实例 • 达朗贝尔原理的扩展与深化
01
CATALOGUE
达朗贝尔原理概述
达朗贝尔原理的定义

《哈工大理论力学》课件

《哈工大理论力学》课件

总结词
动量守恒定律在物理学、工程学和天文 学等领域有着广泛的应用。
VS
详细描述
在碰撞、火箭推进、行星运动、相对论等 领域中,动量守恒定律都起着重要的作用 。通过应用动量守恒定律,可以预测系统 的运动状态和变化趋势,为实际应用提供 重要的理论支持。
04
角动量与角动量守恒定律
角动量的定义与计算
角动量的定义
体育竞技
在花样滑冰、冰球等体育项目 中,运动员通过改变身体姿态 来调整角动量,以完成各种高
难度动作。
05
万有引力定律
万有引力定律的表述
总结词
万有引力定律是描述两个质点之间由于它们 的质量而相互吸引的力的大小和方向的定律 。
详细描述
万有引力定律由艾萨克·牛顿提出,表述为 任意两个质点通过连心线方向上的力相互吸 引,该力的大小与它们质量的乘积成正比,
02
牛顿运动定律
牛顿运动定律的表述
第一定律(惯性定律)
除非受到外力作用,否则保持静止或匀速直线运动 的状态不变。
第二定律(动量定律)
物体的加速度与作用力成正比,与物体的质量成反 比。
第三定律(作用与反作用定律)
对于任何作用力,都存在一个大小相等、方向相反 的反作用力。
牛顿运动定律的应用
动力学问题
弹性力学的应用实例
总结词:实际应用
详细描述:弹性力学在工程领域有广 泛的应用,如桥梁、建筑、机械和航 空航天等。应用实例包括梁的弯曲、 柱的拉伸和压缩、壳体的变形等。
THANKS
感谢观看
提供理论基础和解决方案。
理论力学的发展历程
总结词
理论力学的发展经历了古典力学和相对论力学两个阶段,相对论力学对于高速运动和强引力场的研究具有重要意 义。

理论力学课件 第一章力的投影,主矩主矢

理论力学课件  第一章力的投影,主矩主矢

vj
+
v Fz k
1.1 力的投影、力系的主矢、汇交力系的合力 二、力系的主矢量
1、力系的主矢量定义
z F1
力系的各个力的矢量和。
Fn O
y
∑ v
FV
=
v F
=
v F1
+
v F2
+⋅⋅⋅+
v Fn
x
F2 Fi
力系的主矢是自由矢量(大小、方向)
1.1 力的投影、力系的主矢、汇交力系的合力
2、FvFv2力1 ==系XX的21iviv主++矢YY21的vvjj ++计ZZ算12kkvv
例1-4:边长为a的正方体受到四个大小都等于F的力, 方向如图,求此力系的主矢。
z A
G
F4
O
F1
E x
B
F2
H
F3
C y
D
1.1 力的投影、力系的主矢、汇交力系的合力
z

A
B 四力的矢量解析表达式:
G
F2
H
v F1
=
F
⎜⎜⎝⎛
2
v i
+
2
2 2
v j
⎟⎟⎠⎞
F4
O
F1
E x
F3
C
v F2
=
F ⎜⎜⎝⎛ −
z F1
Fn O
y
x
一个复杂的力系(任意F力2 系)两个特征量即主矢、主矩。
二.力系的简化
z
z
F1
Fn O
y=
MO O
FR y
x
x
F2
一个复杂的力系(任意力系)化简为力—力偶系统。

理论力学(哈尔滨工业大学)课件22.4 转动惯量的计算

理论力学(哈尔滨工业大学)课件22.4 转动惯量的计算
扭振法
落体观察法
刚体对轴的转动惯量 动量矩定理
组合法
已知:杆长为 l 质量为 m1 ,圆盘半径为 d ,质量为 m2 .
求:JO .
解: JO JO杆 JO盘
J O杆
1 ml2 3
J O盘
1 2
m2
(
d 2
)
2
m2 (l
d )2 2
m2
(
3 8
d
2
l2
ld)
JO
1 3
m1l
2
m2
(
3 8
d
2
l2
ld)
刚体对轴的转动惯量
动量矩定理
已知:m
,
R 1
,
R2。
解: J z J1 J 2
1 2
m1
R12

J

z.
1 2
m2
R22
其中 m1
π
R
2
1
l
m2
π R22l
Jz
1 2
π l(R14
R24 )
1 2
π l(R12
R22 )(R12
R22)

22
1
2
πl Jz
(
R1 2
R) m ( R12

m,
R22 )
刚体对轴的转动惯量 动量矩定理
实验法
摆振法 T 2 J mgl
刚体对轴的转动惯量4Βιβλιοθήκη 刚体对轴的转动惯量动量矩定理
刚体对轴的转动惯量
简单形状物体的转动惯量计算
均质细直杆对一端的转动惯量
n 2
z
J
i
1
i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档