初一数学数轴上动点问题解题技巧

合集下载

七年级数轴上的动点问题诀窍

七年级数轴上的动点问题诀窍

七年级数轴上的动点问题诀窍
七年级数轴上的动点问题是一个常见的数学问题,它涉及到数轴上点的运动和坐标的变化。

解决这类问题的诀窍在于掌握以下几点:
1.理解数轴的基本概念:数轴是一条直线,规定了正方向、原点、单位长度等基本要素。

在数轴上,每个点都有一个唯一的坐标,坐标的变化反映了点的运动。

2.掌握点的坐标变化规律:当点在数轴上沿正方向或负方向移动时,其坐标会相应地增加
或减少。

具体地,如果点向右移动,则坐标增加;如果点向左移动,则坐标减少。

3.运用数形结合的思想:将数轴上的动点问题与代数表达式相结合,通过代数方法解决几
何问题。

例如,设动点的坐标为变量,根据题意建立方程或不等式,通过解方程或不等式找到动点的坐标或运动规律。

4.掌握常见的动点问题类型和解题方法:七年级数轴上的动点问题常涉及相遇问题、追及
问题、距离最短问题等类型。

对于每种类型的问题,都有相应的解题方法和技巧。

例如,相遇问题可以通过建立方程求解,追及问题可以通过比较速度和时间求解,距离最短问题可以通过建立函数表达式求解。

初一数轴上的动点问题解题技巧

初一数轴上的动点问题解题技巧
3
三、用字母表示动点:数轴上的点向左移动用减法,移动几个单位长度就减去几 数轴上的点向右移动用加法,移动几个单位长度就加上几
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70 (3)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发, 以2个单位/秒的速度向左运动,
5
双动点问题
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.
(1)请写出与A,B两点距离相等的M点对应的数; (2)现在有一只电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好 从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是 多少吗? (3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出 发,以3个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距30个单位长度?
(3)如果A. B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方
AC.当点C运动到−6时,点A对应的数是多少?
8
4
单动点问题
如图,在数轴上点A表示的有理数为−4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在 数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动。设 运动时间为t(单位:秒).
(1)求A、B两点间的距离; (2)求AB的中点; (3)求点P是AB的中点时t的值; (4)求t=2时点P表示的有理数; (5)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示).

七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。

1. 用字母表示动点。

- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。

如果向左运动,距离为-vt;如果向右运动,距离为vt。

2. 表示两点间的距离。

- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。

3. 分析运动过程中的等量关系。

- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。

二、题目及解析。

1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。

- 求t秒后点P表示的数。

- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。

- 求t秒后点Q表示的数。

- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。

- 求t秒后PQ的距离。

- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。

2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。

点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。

- 求点C表示的数。

- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。

- 求t秒后点M表示的数。

- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。

数轴动点问题解题技巧

数轴动点问题解题技巧

数轴动点问题解题技巧数轴动点问题是初中数学中比较常见的一类问题,其解题过程需要运用数轴的基本概念和运用数学知识进行分析和推理。

本文将从以下几个方面介绍数轴动点问题的解题技巧。

一、数轴的基本概念数轴是一条直线,上面用数值表示,通常以0点为起点,向右为正方向,向左为负方向。

在解决数轴动点问题时,我们需要了解数轴上的几个重要概念:1. 点:数轴上的任意一个位置都可以称为一个点,通常用小写字母表示,如a、b、c等。

2. 线段:数轴上两个点之间的部分称为线段,通常用大写字母表示,如AB、CD等。

3. 方向:数轴上从左到右的方向称为正方向,从右到左的方向称为负方向。

4. 距离:数轴上两个点之间的距离就是它们在数轴上的距离。

例如,在数轴上A点和B点之间的距离就是AB线段的长度。

二、数轴动点问题的解题思路1. 确定起点和终点数轴动点问题通常是要求在数轴上从一个点到另一个点的距离,因此我们需要确定起点和终点。

确定起点和终点后,我们就可以通过计算它们之间的距离来解决问题。

2. 确定运动方向在确定起点和终点后,我们需要确定运动方向。

通常情况下,我们可以根据题目中的描述来确定运动方向。

如果题目中没有明确说明运动方向,我们可以根据题目中给出的数据进行分析,确定运动方向。

3. 分析运动路径在确定起点、终点和运动方向后,我们需要分析运动路径。

运动路径通常是沿着数轴上的线段进行的,因此我们需要确定数轴上的哪些点是运动路径上的点。

在分析运动路径时,我们需要考虑到运动中可能出现的转弯等情况。

4. 计算运动距离在确定起点、终点、运动方向和运动路径后,我们就可以计算运动距离了。

运动距离就是起点和终点之间的距离,可以通过计算它们之间的线段长度来得出。

三、数轴动点问题的解题技巧1. 画图解题在解决数轴动点问题时,我们可以通过画图的方式来进行分析和推理。

画图可以帮助我们更加直观地了解问题,确定起点、终点、运动方向和运动路径等。

画图时,我们可以使用纸笔或数轴工具等,以便更好地展示问题。

初一数学培优专题动点问题答题技巧与方法

初一数学培优专题动点问题答题技巧与方法

初⼀数学培优专题动点问题答题技巧与⽅法初⼀数学培优专题动点问题答题技巧与⽅法关键:化动为静,分类讨论。

抓住动点,化动为静,以不变应万变,寻找破题点(边长、动点速度、⾓度以及所给图形的能建⽴等量关系等等)建⽴所求的等量代数式,求出未知数等等。

动点问题定点化是主要思想。

⽐如以某个速度运动,设出时间后即可表⽰该点位置;再如函数动点,尽量设⼀个变量,y尽量⽤x来表⽰,可以把该点当成动点,来计算。

步骤:①画图形;②表线段;③列⽅程;④求正解。

①数轴上动点问题1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即⽤右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表⽰的数⼀左边点表⽰的数。

2.点在数轴上运动时,由于数轴向右的⽅向为正⽅向,因此向右运动的速度看作正速度,⽽向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即⼀个点表⽰的数为a,向左运动b个单位后表⽰的数为a—b;向右运动b 个单位后所表⽰的数为a+b。

3.分析数轴上点的运动要是数形结合进⾏分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

例题精讲:例1.已知数轴上有A、B、C三点,分别代表-24, -10,10,两只电⼦蚂蚁甲、⼄分别从A、C两点同时相向⽽⾏,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵⼄的速度为6个单位/秒,两只电⼦蚂蚁甲、⼄分别从A、C两点同时相向⽽⾏,问甲、⼄在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

问甲、⼄还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。

例2.如图,已知A、B分别为数轴上两点,A点对应的数为-20,B点对应的数为100。

⑴求AB中点M对应的数;⑵现有⼀只电⼦蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另⼀只电⼦蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电⼦蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电⼦蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另⼀只电⼦蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电⼦蚂蚁在数轴上的D点相遇,求D点对应的数。

初一数学培优专题动点问题答题技巧与方法

初一数学培优专题动点问题答题技巧与方法

初一数学培优专题动点问题答题技巧与方法关键:化动为静,分类讨论。

抓住动点,化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,求出未知数等等。

动点问题定点化是主要思想。

比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。

步骤:①画图形;②表线段;③列方程;④求正解。

①数轴上动点问题1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b 个单位后所表示的数为a+b。

3.分析数轴上点的运动要是数形结合进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

例题精讲:例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。

例2.如图,已知A、B分别为数轴上两点,A点对应的数为-20,B点对应的数为100。

⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。

七年级数学数轴上的动点问题解题技巧

七年级数学数轴上的动点问题解题技巧

七年级数学数轴上的动点问题解题技巧1. 引言在数学学习过程中,数轴上的动点问题是七年级学生经常遇到的难题之一。

动点问题需要灵活运用数轴的知识,并结合图形和逻辑推理进行解题。

本文将从数轴的基本概念开始,逐步深入,探讨七年级数学数轴上的动点问题解题技巧。

2. 数轴的基本概念我们需要了解数轴的基本概念。

数轴是用来表示实数的一条直线,通常以0为原点,向右为正方向,向左为负方向。

在数轴上,我们可以标记点,并用实数表示这些点的位置。

点A在数轴上的位置可以用实数a表示。

3. 动点问题的应用在数学问题中,动点通常表示一个在数轴上移动的点。

动点问题可以涉及到时间、速度、距离等概念,需要我们通过数轴上点的位置随时间的变化关系来解题。

举个例子,一个小车从数轴上的点A出发,以每小时30公里的速度向右行驶,另一个小车从数轴上的点B出发,以每小时20公里的速度向左行驶,问它们相遇在何处?4. 解题技巧在解决数轴上的动点问题时,我们可以运用一些技巧来简化问题,提高解题效率。

我们可以通过建立数轴模型来清晰地表示动点的位置关系。

我们可以通过绘制图形、列方程等方法来理清思路。

我们还可以尝试从哪些角度来审视问题,多角度思考有助于找到更合理的解题方法。

5. 举例说明接下来,我们将通过一个具体的例子来说明解题技巧。

假设动点A和动点B分别在数轴上以一定的速度向相反方向运动,我们需要求它们相遇的时间。

我们可以先建立数轴模型,标记动点A和动点B的初始位置和速度。

我们可以列出动点A和动点B的位置随时间的变化关系,从而得到它们相遇的时间。

6. 总结回顾通过本文的学习,我们对七年级数学数轴上的动点问题解题技巧有了更深入的了解。

在解题过程中,我们需要熟练掌握数轴的基本概念,并灵活运用解题技巧。

我们也要善于从多个角度思考问题,建立清晰的数轴模型,以便更快速、更准确地解决动点问题。

7. 个人观点在我看来,数轴上的动点问题不仅是数学知识的运用,更是逻辑思维能力和问题解决能力的体现。

初一数轴上的动点问题解题技巧

初一数轴上的动点问题解题技巧

初一数轴上的动点问题解题技巧
数轴上的动点问题是一种常见的数学问题,通常涉及到在数轴上找到两个点,它们的相对位置随时间变化。

这种问题在初中数学中很常见,下面介绍一些解题技巧。

1. 确定动点的位置和时间
要解决这个问题,我们需要知道动点的位置和时间。

通常情况下,我们会选择一个初始位置,然后随着时间的推移,选择一个更新的位置。

在时间轴上,我们可以使用箭头来表示动点的运动方向。

2. 确定动点的性质
在解决数轴上的动点问题时,我们需要考虑动点的性质。

例如,我们可以确定动点是否在数轴上移动,是否为零度或最大度数。

我们还可以确定动点是否以某种方式旋转或缩放。

3. 选择合适的方法
在解决数轴上的动点问题时,我们可以选择多种方法。

例如,我们可以使用代数方法,使用几何方法,或使用平均值方法。

我们需要根据问题的特点选择最合适的方法。

4. 特殊情况的处理
在解决数轴上的动点问题时,我们还需要考虑一些特殊情况。

例如,当动点为零时,我们可能需要特殊处理。

当动点在数轴上为最大或最小值时,我们也需要特殊处理。

5. 结论和拓展
综上所述,解决数轴上的动点问题需要确定动点的位置和时间,考虑动点的
性质,选择合适的方法,并考虑一些特殊情况。

通过这些方法,我们可以找到两个点之间的相对位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学数轴上动点问题解题技巧
数轴上的动点问题离不开数轴上两点之间的距离。

为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。

相关文档
最新文档