焊缝无损检测的常用方法及代号
超声波检测焊缝的几种常用方法

超声波检测焊缝的几种常用方法
超声波检测焊缝的几种常用方法有:
1. 传统超声波检测方法:使用单个超声波传感器沿着焊缝进行扫描。
根据超声波的传播和反射情况来判断焊缝的质量。
2. 相控阵超声波检测方法:通过一组多个超声波传感器,可以同时发送多个超声波束进行扫描。
利用相控阵扫描技术,可以实现对焊缝的全方位检测和成像。
3. 接触式超声波检测方法:将超声波传感器直接接触到焊缝表面,通过传输超声波进行检测。
这种方法通常用于对焊缝的表面缺陷进行检测。
4. 无损检测方法:利用超声波对焊缝进行无损检测。
通过测量超声波在焊缝中的传播速度、衰减和反射等特性来判断焊缝的质量。
5. 脉冲回波超声波检测方法:通过发送短脉冲超声波信号,测量回波信号的时间和幅值来判断焊缝的缺陷和界面情况。
这种方法适用于焊缝的测厚和界面检测。
钢结构焊缝检测常用方法的特点及适用范围

钢结构焊缝检测常用方法的特点及适用范围根据《钢结构工程施工质量验收规范》(gb50204-2001)及相关的检测规程,对一般常见钢结构焊缝采用的主要检测方法及适用范围作了介绍。
一、超声波探伤法1、仪器和探头无损检测仪是无损检测中不可缺少的设备,它直接影响着检测结果的准确性。
(1)仪器(2)探头应用中应注意以下几点①调节探头与工件的距离,使声波在焊缝中的传播能量能够集中于该处。
②使用高频时,当接触到较大的缺陷或焊缝外形复杂时,宜改用低频,以免声波绕射。
③当超声波遇到裂纹时,应改用连续波,否则会造成“假阳性”反映,即实际上没有缺陷存在。
④焊缝局部腐蚀严重,缺陷密集、尺寸大且无规则、易引起严重超声波反射的情况,都应避开高频超声检测,以利获得较准确的反射波。
⑤在某些场合,尤其是当缺陷和腐蚀较严重时,超声波衰减较快,应考虑加上波幅值,以防止由此而引起的误判。
目前,用于焊缝检测的超声波探头大致有两类:一类是接触式超声波探头,另一类是非接触式超声波探头。
(1)接触式探头的工作原理是,超声波在两种不同的金属之间进行传播时,有时遇到各种形状不规则的缺陷或孔洞,就会发生强烈的反射,这样就容易把反射信号当作有缺陷的回波。
当这种反射回波的幅度足够大时,检测人员就能够发现缺陷,从而获得焊缝内部质量的信息。
2、操作方法(1)探头选择(2)调整焦距(3)焊缝检测(包括横向焊缝和纵向焊缝) (4)记录图像(包括焊缝长度、弯曲度,焊缝表面气孔等缺陷,也可以显示焊缝外形的基本轮廓)(5)编制报告3、优点(1)操作简便(2)速度快(3)结果准确可靠(4)成本低4、缺点(1)当有焊缝气孔或未焊透存在时,易漏检(2)探头有热损耗,因此需要经常补偿(3)受焊接材料的限制,灵敏度较低二、射线探伤法1、仪器和探头射线探伤所用的仪器称为射线探伤机。
它是检测焊缝质量的重要工具。
射线探伤的主要设备是x射线机,由此产生的射线叫做x射线。
它是以电磁波的形式沿直线传播的,其波长范围在0。
焊接质量的检验方法有哪些检测各种焊缝的质量的

焊接质量的检验方法有哪些检测各种焊缝的质量的.范本 1 (正式风格):正文:一、焊接质量的检验方法概述焊接质量的检验方法是评估焊接工艺的有效手段,可以确保焊缝的质量符合标准要求。
下面是几种常用的焊接质量检验方法。
二、外观检验方法焊接的外观质量是评估焊缝质量的重要指标之一。
外观检验方法主要有以下几种:1. 目测检验:通过肉眼观察焊缝表面质量,如焊缝的形状、颜色等。
2. 放大镜检验:使用放大镜观察焊缝细节,如焊缝的裂纹、气孔等缺陷。
3. 比较标准检验:将焊缝与标准焊缝进行对比,判断其差异。
三、物理性能检验方法焊缝的物理性能是评估焊接质量的重要指标之一。
物理性能检验方法主要有以下几种:1. 强度测试:使用拉伸试验机测试焊缝的拉伸强度、屈服强度等。
2. 断裂韧性测试:使用冲击试验机测试焊缝的抗冲击能力。
3. 硬度测试:使用硬度计测试焊缝的硬度值,判断其强度。
四、成分分析方法焊缝的成分分析是评估焊接质量的重要手段之一。
成分分析方法主要有以下几种:1. 化学成分分析:使用化学分析仪器对焊缝材料的成分进行定量分析。
2. 元素分析:使用光谱仪等仪器对焊缝材料中的元素进行分析。
五、无损检测方法无损检测方法是评估焊接质量的非破坏性手段。
无损检测方法主要有以下几种:1. 超声波检测:使用超声波探测仪对焊缝进行缺陷检测。
2. 射线检测:使用射线设备对焊缝进行缺陷检测。
3. 磁粉检测:使用磁粉检测仪对焊缝进行表面缺陷检测。
附件:本文档涉及的附件包括相关测试报告、图表和数据表格。
法律名词及注释:1. 焊接质量检验方法:指对焊接质量进行评估的检验手段。
2. 焊缝表面质量:指焊缝表面的外观特征,如形状、颜色等。
3. 拉伸强度:指焊缝材料在拉伸条件下的最大承载能力。
4. 屈服强度:指焊缝材料在拉伸过程中开始发生塑性变形的能力。
5. 韧性:指焊缝材料抵抗断裂的能力。
6. 无损检测方法:指通过非破坏性手段对焊缝进行缺陷检测。
范本 2 (非正式风格):正文:一、焊接质量的检验方法概述哎呀呀,说起来各种检测焊缝质量的方法可真是多啊!下面给你盘点一下常用的几种吧!二、外观检验方法首先,最容易想到的当然是目测检验咯!别说,有时候肉眼观察焊缝表面的质量也是很准确的。
焊缝渗透检测方法

焊缝渗透检测方法焊缝渗透检测方法是在焊接工艺中常用的一种无损检测方法,用于评估焊缝的质量和缺陷情况。
本文将介绍几种常见的焊缝渗透检测方法及其原理和应用。
一、涂布法涂布法是一种简单且广泛应用的焊缝渗透检测方法。
其原理是将渗透剂涂布在焊缝表面,待渗透剂渗入焊缝缺陷后,再将表面余渗透剂清洗干净,然后在白底黑字的背景下观察渗透剂渗入的缺陷。
该方法适用于检测开放缺陷和表面裂纹等。
二、浸渍法浸渍法是一种将焊缝置于液体渗透剂中进行检测的方法。
其原理是通过浸渍剂的渗入来检测焊缝内部的缺陷。
首先将焊缝浸入渗透剂中,然后将焊缝取出并清洗干净,最后在背景下观察渗透剂渗入的缺陷。
该方法适用于检测较深的缺陷。
三、喷洒法喷洒法是一种将渗透剂喷洒在焊缝表面进行检测的方法。
其原理是通过喷洒剂的渗入来检测焊缝的表面缺陷。
首先将渗透剂喷洒在焊缝上,然后等待一定时间,再将表面的渗透剂清洗干净,最后在背景下观察渗透剂渗入的缺陷。
该方法适用于检测大面积焊缝的缺陷。
四、真空法真空法是一种利用真空力促使渗透剂渗入焊缝缺陷的方法。
其原理是在真空条件下,将焊缝浸入渗透剂中,利用真空泵的抽气作用,使渗透剂更好地渗透到焊缝缺陷中。
该方法适用于检测微小缺陷和密封性焊缝。
五、紫外线法紫外线法是一种利用紫外线照射来观察渗透剂在焊缝缺陷中的表现的方法。
其原理是在紫外线照射下,渗透剂会发出荧光,从而更容易观察到焊缝缺陷。
该方法适用于检测微小缺陷和复杂形状的焊缝。
六、磁粉法磁粉法是一种利用磁性粉末来检测焊缝缺陷的方法。
其原理是在焊缝表面涂布磁粉,然后通过外部磁场的作用,使磁粉在缺陷处形成磁轨,从而更容易观察到缺陷。
该方法适用于检测表面和近表面的裂纹。
总结:焊缝渗透检测方法是焊接工艺中常用的一种无损检测方法,通过将渗透剂渗入焊缝缺陷,再观察渗透剂的表现,可以评估焊缝质量和缺陷情况。
常见的焊缝渗透检测方法包括涂布法、浸渍法、喷洒法、真空法、紫外线法和磁粉法。
不同的方法适用于不同类型和大小的缺陷,工程师应根据具体情况选择合适的方法进行检测。
不锈钢管焊缝无损检测方法介绍

不锈钢管焊缝无损检测方法介绍作者:不锈钢管来源:未知日期:2010/10/4 13:27:50 人气:2 标签:不锈钢管不锈钢管焊缝无损检测导读:(1)渗透探伤(PT)采用带有荧光染料(荧光法)或红色染料(着色法)的渗透剂的渗透作用,来显示焊接接头表面微小缺陷的无损检验法。
检测时一要求被测表面平整光洁。
此方…(1)渗透探伤(PT)采用带有荧光染料(荧光法)或红色染料(着色法)的渗透剂的渗透作用,来显示焊接接头表面微小缺陷的无损检验法。
检测时一要求被测表面平整光洁。
此方法分为荧光探伤和着色探伤,其中荧光探伤的测量精度较高,可达10μm。
焊接构件表面检查常用着色法渗透探伤。
(2)磁粉探伤(MT)利用在强磁场中,铁磁材料表层缺陷产生的漏磁场吸附磁粉的现象而进行的无损检验方法。
在有缺陷处,由于漏磁的作用会集中吸附撒上的铁粉。
可根据吸附铁粉的形状、厚度和多少,来判断焊接缺陷的位置和大小。
该方法不适用无磁性的奥氏体型不锈钢。
(3)射线探伤(RT)采用X射线或γ射线照射焊接接头检查其内部缺陷的一种无损检验方法。
它能准确地显示出焊缝中焊接缺陷的种类、形状、尺寸、位置和分布情况。
评定标准按《钢熔化焊对接接头射线照相法和质量分级》(GB3329-87)进行。
该探伤方法长期操作,对操作者身体有一定的影响。
(4)超声波探伤(UT)借助于超声波探伤仪来检测焊缝内部缺陷的一种无损探伤方法。
此法适用于探伤厚板,可确定5mm以内缺陷。
探伤周期短、成木低、设备简单,对操作者身体无害,但不能准确判断缺陷的性质。
(5)涡流探伤(ET)涡流探伤是以电磁感应原理为基础,当钢管(指碳钢、合金钢和不锈钢)通过交流电的绕组时,钢管表面或近表面出现集肤效应,使其有缺陷部位的涡流发生变化,导致绕组的阻抗或感应电压产生变化,从而得到关于缺陷的信号。
从信号的幅值及相位等可以对缺陷进行判别,能有效地识别钢管内外表面的不连续性缺陷,如裂纹、未焊透、夹渣、气孔、点腐蚀等,对开放性线性缺陷最为敏感。
JBT6062--92焊缝渗透检验方法和缺陷迹痕的分级

JB/T 6062--92 焊缝渗透检验方法和缺陷迹痕的分级中华人民共和国机械行业标准JB/T6062--92焊缝渗透检验方法和缺陷迹痕的分级──────────────────────────────────1 主题内容与适用范围本标准规定了焊缝及其邻近母材表面开口缺陷的渗透检验方法(着色检验和荧光检验)和缺陷迹痕的分级。
本标准适用于下述金属焊缝的表面开口缺陷检验:(1) 用非磁性材料焊接的焊缝;(2) 磁性材料的角焊缝以及磁粉探伤有困难或者检验效果不好的焊缝,例如对接双面焊焊缝清根过程中的检验等。
2 引用标准GB/T 12604.3无损检测术语渗透检测ZBJ04 005 渗透探伤方法ZBJ04 003 控制渗透探伤材料质量的方法ZBH24 002 渗透探伤用A型灵敏度对比试块JB/T xxxx 渗透探伤用镀铬试块技术条件GB388 石油产品硫含量测定法ZBE30 002 石油产品中氯含量测定法(烧瓶燃烧法)3 检验人员3.1 焊缝渗透检验人员应按有关规程的规定经过严格培训和考核,并持有相应考核组织颂发的等级资格证书。
3.2 焊缝渗透检验人员的视力应每年检查一次,校正视力不得低于1.0,无色盲和色弱。
4 探伤液4.1 探伤液包括渗透剂、乳化剂、清洗剂和显像剂,应对被检焊缝及其母材无腐蚀作用。
4.2 当检验镍合金焊缝时,每种探伤液的硫含量均不应超过用GB388标准分析所得的残留物重量的1%;当检验奥氏体不锈钢或钛合金焊缝时,每种探伤液氯和氟含量之和不应超过用ZBE30002和附录A分析所得的残留物重量的1%。
4.3 应使用同一家生产的同一系列配套探伤液,不允许将不同种类的探伤液混合使用。
4.4 用着色法检验后的焊缝,如果需要进行荧光检验,则荧光检验必须在彻底清理之后才能进行。
4.5 为了控制渗透探伤液质量的需要,可根据ZBJ04003标准的规定,使用符合ZB H24 002或者JB/Txxxx要求的铝合金试块或镀铬试块。
焊接质量的五种检验方法

焊接质量的五种检验方法焊接质量是指焊接接头在满足特定要求下的物理性能和力学性能。
为确保焊接质量的合格,需要进行相应的检验。
本文将介绍五种常见的焊接质量检验方法,包括目视检验、尺寸检验、无损检测、力学性能检验和金相检验。
一、目视检验目视检验是最常用的一种检验方法,通过肉眼观察焊接接头的外观,判断其是否存在缺陷。
目视检验主要包括焊缝的形状、焊缝的几何尺寸、焊缝的表面质量以及焊接过程中是否存在飞溅、气孔等缺陷。
目视检验简单直观,但对于微小缺陷的检测有一定局限性。
二、尺寸检验尺寸检验是通过对焊接接头的尺寸进行测量,判断其是否符合设计要求。
尺寸检验主要包括焊缝的宽度、高度、深度等尺寸参数的测量。
通过尺寸检验,可以验证焊接接头的几何形状是否满足设计要求,确保焊接接头的尺寸精度。
三、无损检测无损检测是一种通过对焊接接头进行检测,不破坏焊接接头的方法。
常用的无损检测方法包括超声波检测、射线检测和涡流检测等。
通过无损检测,可以检测焊接接头内部的缺陷,如裂纹、夹杂物等,并对其进行评估和分类。
无损检测可以发现隐蔽的缺陷,提高焊接接头的质量。
四、力学性能检验力学性能检验是通过对焊接接头进行拉伸、弯曲、冲击等试验,评估焊接接头的力学性能。
力学性能检验可以验证焊接接头的强度、韧性和冲击性能是否满足要求。
常用的力学性能检验方法包括拉伸试验、冲击试验和硬度试验等。
五、金相检验金相检验是通过对焊接接头进行金相组织观察和分析,评估焊接接头的组织性能。
金相检验可以检测焊接接头的晶粒尺寸、晶体结构、相含量和相组成等。
金相检验可以发现焊接接头的晶粒异常、相变和相分离等缺陷,对焊接接头的质量评估具有重要意义。
焊接质量的检验方法包括目视检验、尺寸检验、无损检测、力学性能检验和金相检验。
这些检验方法各具特点,可以对焊接接头的质量进行全面评估,确保焊接接头的质量合格。
在实际焊接过程中,应根据具体情况选择合适的检验方法,以保证焊接质量的可靠性和稳定性。
焊接检测方法及应用

焊接检测方法及应用焊接是一种连接金属的常用方法,但在焊接过程中可能会出现一些问题,如未完全熔化、缺陷等。
为了保证焊接质量和产品的安全性,需要对焊接进行检测。
以下是常用的焊接检测方法及其应用。
1. 目测检测:目测是一种简单直观的检测方法,通过肉眼观察焊缝以及周围区域,识别焊接缺陷。
这种方法适用于大型零件焊接检测,可以快速识别明显的缺陷,如气孔、裂纹等。
2. 渗透检测(PT):渗透检测是一种液体浸渗的方法,通过表面缺陷与表面张力的作用,将液体渗入缺陷并通过显色剂显示缺陷位置。
这种方法可以检测出裂纹、夹渣等表面缺陷,适用于焊缝表面的检测。
3. 磁粉检测(MT):磁粉检测是利用电磁感应原理,通过施加电磁场和散射磁粉来检测材料表面和近表面的缺陷。
这种方法适用于检测磁性金属材料的缺陷,如裂纹和气孔等。
4. 超声波检测(UT):超声波检测是一种利用超声波在材料中的传播特性来检测焊缝缺陷的方法。
通过发射超声波并接收回波,可以分析回波特性,如幅值、时间和频谱等,来识别焊缝中的缺陷。
这种方法适用于焊缝内部的检测。
5. X射线检测(RT):X射线检测是一种利用X射线穿透材料并通过接收器接收衰减信号来检测焊缝缺陷的方法。
通过分析接收到的信号,可以识别焊缝中的缺陷,如裂纹、夹渣和气孔等,适用于较厚的金属焊接检测。
这些焊接检测方法在不同的应用领域有着广泛的应用。
在航空航天领域,焊接质量对于飞行器的安全至关重要。
采用超声波检测和X 射线检测方法,可以对飞行器的焊接连接进行全面无损检测,确保焊接质量。
在汽车制造领域,焊接被广泛应用于车身制造。
通过目测和渗透检测方法,可以检测出车身焊接的裂纹和气孔等缺陷,保证汽车制造的质量。
在核工业领域,焊接质量对于核设施的安全至关重要。
采用X射线检测和超声波检测方法,可以对核设施中的焊接连接进行无损检测,确保焊接质量和工作安全。
在建筑领域,焊接被广泛应用于钢结构的制造。
采用目测和磁粉检测方法,可以检测出结构焊缝的裂纹和气孔等缺陷,确保建筑结构的安全稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊缝无损检测的常用方法及代号
无损检测方法很多,据美国国家宇航局调研分析,其认为可分为六大类约70余种。
但在实际应用中比较常见的有以下几种:目视检测(VT)
目视检测,在国内实施的比较少,但在国际上非常重视的无损检测第一阶段首要方法。
按照国际惯例,目视检测要先做,以确认不会影响后面的检验,再接着做四大常规检验。
例如BINDT的PCN认证,就有专门的VT1、2、3级考核,更有专门的持证要求。
VT常常用于目视检查焊缝,焊缝本身有工艺评定标准,都是可以通过目测和直接测量尺寸来做初步检验,发现咬边等不合格的外观缺陷,就要先打磨或者修整,之后才做其他深入的仪器检测。
例如焊接件表面和铸件表面较多VT做的比较多,而锻件就很少,并且其检查标准是基本相符的。
射线照相法(RT)
是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。
原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,
能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质
对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。
总的来说,RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。
超声波检测(UT)原理:通过超声波与试件相互作用,就反射、透射和散射的波进行究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm 的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
但其对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。
磁粉检测(MT)
原理:铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的
磁痕,从而显示出不连续性的位置、形状和大小。
适用性和局限性:
磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹)目视难以看出的不连续性;
也可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测,可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。
但磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢
焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。
对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。
渗透检测(PT)原理:零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。
优点及局限性:
渗透检测可检测各种材料,金属、非金属材料;磁性、非磁
性材料;焊接、锻造、轧制等加工方式;具有较高的灵敏度(可发现0.1μm宽缺陷),同时显示直观、操作方便、检测费用低。
但它只能检出表面开口的缺陷,不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;
只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价,检出结果受操作者的影响也较大。
涡流检测(ECT)原理:将通有交流电的线圈置于待测的金属板上或套在待测的金属管外。
这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。
涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。
因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。
但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。
应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过式、探头式和插入式线圈3种。
穿过式线圈用来检测管材、棒材和线材,它的内径略大于被检物件,使用时使被检物体以一定的速度在线圈内通过,可发现裂纹、夹杂、凹坑等缺陷。
探头式线圈适用于对试件进行局部探测。
应用时线圈置于金属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳裂纹等。
插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可用于检查各种管道内壁的腐蚀程度等。
为了提高检测灵敏度,探头式和插入式线圈大多装有磁芯。
涡流法主要用于生产线上的金属管、棒、线的快速检测以及大批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传送的机械装置)、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。
优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。
声发射(AE)通过接收和分析材料的声发射信号来评定材料性能或结构完整性的无损检测方法。
材料中因裂缝扩展、塑性变形或相变等引起应变能快速释放而产生的应力波现象称为声发射。
1950年联邦德国J.凯泽对金属中的声发射现象进行了系统的研究。
1964年美国首先将声发射检测技术应用于火箭发动机
壳体的质量检验并取得成功。
此后,声发射检测方法获得迅速发展。
这是一种新增的无损检测方法,通过材料内部的裂纹扩张等发出的声音进行检测。
主要用于检测在用设备、器件的缺陷即缺陷发展情况,以判断其良好性。
声发射技术的应用已较广泛。
可以用声发射鉴定不同范性变形的类型,研究断裂过程并区分断裂方式,
检测出小于0.01mm长的裂纹扩展,研究应力腐蚀断裂和氢脆,检测马氏体相变,评价表面化学热处理渗层的脆性,以及监视焊后裂纹产生和扩展等等。
在工业生产中,声发射技术已用于压力容器、锅炉、管道和火箭发动机壳体等大型构件的水压检验,评定缺陷的危险性等级,作出实时报警。
在生产过程中,用PXWAE声发射技术可以连续监视高压容器、核反应堆容器和海底采油装置等构件的完整性。
声发射技术还应用于测量固体火箭发动机火药的燃烧速度和研究燃烧过程,检测渗漏,研究岩石的断裂,监视矿井的崩塌,并预报矿井的安全性。
超声波衍射时差法(TOFD)TOFD技术于20世纪70年代由英国哈威尔的国家无损检测中心Silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。
在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展
出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。
TOFD要求探头接收微弱的衍射波时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。
而同一时期工业探伤的技术水平没能达到可满足这些技术
要求的水平。
直到20实际90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。
但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。
是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。
非常规检测方法除以上指出的八种,还有以下三种非常规检测方法值得注意:泄漏检测Leak Testing(缩写LT);相控阵检测Phased Array(缩写PA);导波检测Guided Wave Testing;。