《半导体器件物理》教学大纲(精)
物理学相关 半导体物理与器件实验教学大纲

《半导体物理与器件》课程实验教学大纲Semiconductor Physics and devices课程编号:(03320070)课程教学总学时:45 实验总学时:3 总学分:3先修课程:普通物理、量子力学、半导体物理适用专业:光电信系科学与工程一、目的与任务本课程实验是光信息科学与技术专业及光电信息工程专业的主要基础课程实验之一。
本系列实验的目的和任务是通过对本实验课程的教学,培养学生对半导体拉曼光谱的测量的专业实验知识和技能,充分发挥学生的主动性和培养独立实验能力,使学生系统地掌握拉曼散射的基本原理,提高学生实验技能,学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。
二、实验教学的基本要求(1)掌握实验的基本原理;(2)了解所涉及的常用装置、仪器的正确使用方法;(3)测试有关数据;(4)数据处理,将理论计算结果与实验测试结果进行比较,得出拉曼光谱线,并对其进行分析。
通过实验,使学生能正确进行相应的仪器操作和使用、准确判断实验现象和结果的合理性,同时具有处理测量数据的能力。
三、本课程开设的实验项目:注:1、类型---指设计性、综合性、验证性;2、要求---指必修、选修;3、该表格不够可拓展。
四、实验成绩的考核与评定办法:实验成绩的考核,以实验报告和实验过程为考核依据,实验报告要求对基本原理、测量方法、实验数据记录和处理等过程描述详细准确。
考试课成绩按百分制记分,实验课成绩在本门课程总成绩中由任课老师在10%~15%内确定。
五、大纲说明学生在实验前应认真阅读实验指导书,了解实验目的和实验原理, 明确本次实验中所需测量结果, 所采用的实验方法, 使用什么仪器, 控制什么条件,需要注意什么问题,并设计好记录数据表格(包含原始数据、中间计算数据及实验结果)等。
在检查完实验器材完整后,根据预习内容进行实验,认真分析实验现象,整理实验结果,填写在实验报告相应位置处。
老师检查实验结果并认可后,学生须切断电源、清理实验仪器、整洁实验台面,经老师同意后学生方可离开实验室。
《半导体物理学》课程教学大纲

《半导体物理学》课程教学⼤纲《半导体物理学》课程教学⼤纲(Semiconductor Physics)课程编号:163151870学分:4学时:64(其中:讲课学时:64 实验学时:0 上机学时:0 )先修课程:《量⼦⼒学》、《固体物理》、《统计⼒学》和《数学物理⽅程》等后续课程:《半导体器件物理》、《微电⼦技术》、《集成电路设计》等适⽤专业:应⽤物理(微电⼦技术)、光信息科学与技术、电⼦信息类专业开课部门:理学院⼀、课程教学⽬的和课程性质《半导体物理学》是讲述半导体物理性质(电学性质、光学性质、热学性质、磁学性质等)的学科。
通过本课程的学习应使学⽣对半导体中的基本物理概念、基本实验技术和基本器件物理有⽐较全⾯、系统的认识,培养学⽣分析和解决半导体技术基础问题的能⼒,为进⼀步学习相关专业课打下基础。
作为应⽤物理专业(电⼦技术)的专业基础课,它主要介绍半导体的重要物理现象、物理性质、相关理论和实验⽅法。
为学⽣学习其它专业课(材料、器件、集成电路等)以及毕业后从事半导体专业⼯作打下必备的理论基础,为将来将基础理论与半导体技术最新需求相结合,提⾼⼯作能⼒做好理论储备。
⼆、课程的主要内容及基本要求第1单元半导体中的电⼦状态(6学时)[知识点]这⼀单元主要介绍能带论的⼀些基本概念。
常见半导体的能带结构的特点。
要求学⽣懂得半导体中有哪些可能的电⼦能量状态;在这些状态中电⼦运动有什么特点。
1. 半导体中的电⼦状态和能带;2. 半导体中电⼦的运动、有效质量;3. 两种载流⼦;4. 半导体的能带结构。
[重点]半导体结构,能带结构,有效质量,载流⼦。
[难点]能带结构,有效质量。
[基本要求]1、识记:晶体结构、有效质量、能带结构、载流⼦;2、领会:有效质量以及计算⽅法;3、简单应⽤:能带结构判断材料的电学性能;4、综合应⽤:载流⼦产⽣原理,能带结构与有效质量计算问题。
[实践与练习]能判断⼏种常见晶体结构,⾦刚⽯结构,判断能带结构对称性。
《半导体物理学》课程教学大纲

《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。
通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。
本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。
通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。
(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。
限于学时,第节可不讲授,学生可自学。
(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。
半导体物理课程教学大纲

半导体物理课程教学大纲(Semiconductor Physics)一、课程概况课程代码:2303106学分:3学时:48(其中:讲授学时48,实验学时4)先修课程:高等数学、大学物理,固体物理学适用专业:新能源科学与工程教材:《半导体物理学》,刘恩科,电子工业出版社,2017.06课程归口:光电工程学院课程的性质与任务:本课程是新能源科学与工程专业的专业基础必修课,也可作为材料类、微电子信息类专业和其它有关专业的必修课或选修课。
通过本课程的学习,培养学生掌握半导体相关知识理论概念,熟练分析方法,增强解决实际问题的能力,并根据所学知识,能够对半导体相关器件产品进行合理设计改造,为后续专业课程及实际知识运用奠定坚实的知识基础。
二、课程目标目标1. 了解固体物理相关知识,熟练半导体的概念与定义,了解半导体材料与社会生活的联系。
目标2. 掌握与理解半导体材料的电子状态和能带相关知识,了解一些不同半导体材料的能带结构。
目标3. 掌握半导体材料中载流子的概念,了解载流子的统计分布,掌握半导体的导电性机理内涵。
目标4. 熟练非平衡载流子的相关知识,掌握PN结相关知识概念,掌握金属与半导体接触的相关理论知识。
目标5. 了解半导体表面与MIS结构相关知识,掌握半导体异质结结构能带图。
目标6. 了解半导体的光学性质,热电性质,及霍尔效应,熟悉生活中的一些半导体器件所运用的原理。
本课程支撑专业培养计划中毕业要求1-4(占该指标点达成度的20%)、毕业要求3-1(占该指标点达成度的40%)、毕业要求4-4(占该指标点达成度的30%;)和毕业要求6-1(占该指标点达成度的40%),对应关系如表所示。
三、课程内容及要求(一)半导体中的电子状态1.教学内容(1)半导体概念及半导体晶格结构与结合性质。
(2)半导体的电子状态和能带及运动有效质量。
(3)不同半导体材料的能带结构2.基本要求(1)了解并掌握半导体基本概念,包括半导体的定义、结构及分类等。
(施敏)半导体器件物理(详尽版)

实际应用中的
半导体材料
原子并不是静止在具有严格周期性 的晶格的格点位置上,而是在其平 衡位置附近振动
并不是纯净的,而是含有若干杂质, 即在半导体晶格中存在着与组成半 导体的元素不同的其他化学元素的 原子
晶格结构并不是完整无缺的,而存 在着各种形式的缺陷
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动;
半导体中的电子是在周期性排列 且固定不动的大量原子核的势场 和其他大量电子的平均势场中运动。 这个平均势场也是周期性变化的, 且周期与晶格周期相同。
但内层电子的轨道交叠较 少,共有化程度弱些,外 层电子轨道交叠较多,共 有化程度强些。
思考
• 既然半导体电子和空穴都能导电,而导 体只有电子导电,为什么半导体的导电 能力比导体差?
江西科技师范大学
半导体器件物理
●导带底EC 导带电子的最低能量
●价带顶EV 价带电子的最高能量
●禁带宽度 Eg
Eg=Ec-Ev
●本征激发 由于温度,价键上的电子 激发成为准自由电子,亦 即价带电子激发成为导带 电子的过程 。
江西科技师范大学
半导体器件物理
如图,晶面ACC’A’在 坐标轴上的
截距为1,1,∞,
其倒数为1,1,0,
此平面用密勒指数表示 为(110),
此晶面的晶向(晶列指 数)即为[110];
晶面ABB’A’用密勒指 数表示为( 100 );
晶面D’AC用密勒指数 表示为( 111 )。
江西科技师范大学
半导体器件物理
图1-7 一定温度下半导体的能带示意图 江西科技师范大学
半导体器件物理
半导体物理课程教学大纲

《半导体物理实验》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:半导体物理实验所属专业:电子材料与器件工程专业本科生课程性质:专业必修课学分: 4(二)课程简介、目标与任务;本课程是为物理科学与技术学院电子材料与器件工程专业大四本科生所开设的实验课,是一门专业性和实践性都很强的实践教学课程。
开设本课程的目标和任务是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制坚定基础。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;由于是实验课,所以需要学生首先掌握《半导体物理》和《半导体器件》的基本知识,再通过本课程培养学生对半导体材料和器件的制备及测试方法的实践能力。
其具体要求包括:1、了解半导体材料与器件的基本研究方法;2、理解半导体材料与器件相关制备与基本测试设备的原理、功能及使用方法,并能够独立操作;3、通过亲自动手操作提高理论与实践相结合的能力,提高理论学习的主动性。
开设本课程的目的是培养学生实事求是、严谨的科学作风,培养学生的实际动手能力,提高实验技能。
(四)教材与主要参考书。
教材:《半导体物理实验讲义》,自编教材参考书:1. 半导体器件物理与工艺(第三版),施敏,苏州大学出版社,2. [美]A.S.格罗夫编,齐健译.《半导体器件物理与工艺》.科学出版社,1976二、课程内容与安排实验一绪论1、介绍半导体物理实验的主要内容2、学生上课要求,分组情况等实验二四探针法测量电阻率一、实验目的或实验原理1、了解四探针电阻率测试仪的基本原理;2、了解的四探针电阻率测试仪组成、原理和使用方法;3、能对给定的薄膜和块体材料进行电阻率测量,并对实验结果进行分析、处理。
二、实验内容1、测量单晶硅样品的电阻率;2、测量FTO导电层的方块电阻;3、对测量结果进行必要的修正。
三、实验仪器与材料四探针测试仪、P型或N型硅片、FTO导电玻璃。
半导体物理学 课程教学大纲 .doc

半导体物理学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:半导体物理学所属专业:微电子科学与工程课程性质:专业基础课学分:4(二)课程简介、目标与任务;本课程是微电子科学与工程专业本科生必修的专业基础课。
该课程的主要内容可分为三大部分。
第1-5章是晶体半导体的基本知识和性质的阐述;第6-9章为半导体的接触现象;第10章介绍半导体的一些特殊效应。
本课程的任务是揭示和研究半导体的微观机构,从微观的角度解释发生在半导体中的宏观物理现象。
通过该课程的学习使学生熟练掌握半导体物理方面的基本概念、知识和理论及半导体物理的基本模型和分析方法,为进一步学习微电子科学的其他课程提供理论依据。
此外,半导体物理学是半导体材料、半导体工艺、半导体器件及半导体集成电路等相关研究领域的专业基础课,是微电子学与固体电子学专业方向硕士、博士研究生入学考试必考科目。
在微电子科学与工程专业教学中占有重要地位。
该课程的目的是使学生全面地了解和掌握半导体物理的基本知识和基本理论,重视理论与实践的结合,能够利用所学知识解决实际问题,为学生将来从事半导体物理方面的理论研究和相关后续课程的学习打好基础。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程:量子力学、固体物理、热力学统计物理本课程的学习需要掌握量子力学、固体物理及热力学统计物理的基本物理概念、模型及理论。
需要了解微观物质的基本运动规律、固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态、相互关系以及统计物理的基本概念。
这几门课程分别为本课程的学习提供最基本的理论支持。
同时半导体物理学也是后续相关课程如:半导体材料、半导体工艺、器件及集成电路等课程的基本理论基础。
(四)教材与主要参考书。
教材:刘恩科、朱秉升、罗晋生编,《半导体物理学》,电子工业出版社,2011,第七版。
主要参考书:1. 钱佑华、徐至中,《半导体物理学》,高等教育出版社,1999,第一版2. Semiconductor Physics and Devices Basic Principle(3rd Edition),Donald A. Neamen, McGraw- Hill Co. 2000 (清华大学出版社影印版,2003.12 )《半导体物理与器件》》(第三版) 国外电子与通信教材系列作者:(美)DonaldA.Neamen,电子工业出版社,2005。
半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《半导体器件物理》教学大纲(2006版)课程编码:07151022学时数:56一、课程性质、目的和要求半导体器件物理课是微电子学,半导体光电子学和电子科学与技术等专业本科生必修的主干专业基础课。
它的前修课程是固体物理学和半导体物理学,后续课程是半导体集成电路等专业课,是国家重点学科微电子学与固体电子学硕士研究生入学考试专业课。
本课程的教学目的和要求是使学生掌握半导体器件的基本结构、物理原理和特性,熟悉半导体器件的主要工艺技术及其对器件性能的影响,了解现代半导体器件的发展过程和发展趋势,对典型的新器件和新的工艺技术有所了解,为进一步学习相关的专业课打下坚实的理论基础。
二、教学内容、要点和课时安排第一章半导体物理基础(复习)(2学时)第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结(12学时)第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)P 结第二节加偏压的N一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象P-结的直流电流-电压特性第三节理想N一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示Fig2.12)I-特性的温度依赖关系第六节V一、反向饱和电流和温度的关系I-特性的温度依赖关系二、V第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管(10学时)第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系Ebers-)方程第四节爱拜耳斯-莫尔(Moll一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、h FE和I CE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(W T),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE 、τC 、τD及相关推导四、Kirk效应第九节混接 型等效电路一、参数:g m、g be 、C D的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:t d、t r、t f、t s三、解电荷控制方程求贮存时间t s第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结(4学时)第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管(4学时)第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:g l g ml g m C G二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型N—沟耗尽型二、P—沟增强型P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管(10学时)第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节等效电路和频率响应一、参数:g d g m r d二、等效电路三、截止频率第七节亚阈值区一、亚阈值概念二、MOSFET的亚阈值概念第九节MOS场效应晶体管的类型一、N—沟增强型N—沟耗尽型二、P—沟增强型P—沟耗尽型第十节器件尺寸比例MOSFET制造工艺一、P沟道工艺二、N沟道工艺三、硅栅工艺四、离子注入工艺第七章 太阳电池和光电二极管(6学时)第一节半导体中光吸收一、两种光吸收过程二、吸收系数三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m 二、效率的概念%100⨯=inL OC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程二、例1-1,求少子分布,电流分布 三、计算光子收集效率:O npt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响理解Fig7-9,Fig7-10所反映的物理意义第六节提高太阳能电池效率的考虑一、光谱考虑(多媒体演示)二、最大功率考虑三、串联电阻考虑四、表面反射的影响五、聚光作用第七节肖特基势垒和MIS太阳电池一、基本结构和能带图二、工作原理和特点阅读§7.8第九节光电二极管一、基本工作原理二、P-I-N光电二极管三、雪崩光电二极管四、金属-半导体光电二极管第十节光电二极管的特性参数一、量子效率和响应度二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP)四、探测率(D)、比探测率(D*)第八章发光二极管与半导体激光器(4学时)第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节LED的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节LED的特性参数一、I-V特性二:量子效率:注射效率γ、辐射效率rη、内量子效率iη,逸出概率oη、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布,峰值半高宽FWHM,峰值波长,主波长,亮度第四节可见光LED一、GaP LED二、GaAs1-x P x LED三、GaN LED第五节红外LED一、性能特点二、应用光隔离器阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件(阅读,不做作业和考试要求)第十章电荷转移器件(4学时)第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用三、教学方法板书、讲授、多媒体演示四、成绩评价方式闭卷考试加平时作业、课堂讨论五、主要参考书目1、孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005-6第二次印刷。