高能束及复合加工技术

合集下载

特种加工论文

特种加工论文

特种加工技术的现代应用及其发展研究摘要:特种加工技术是直接借助电能、热能、声能、光化学能或者复合能实现材料切削的加工方法,是难切削材料、复杂型面、低刚度零件及模具加工中的重要工艺方法。

本文介绍了概念、特点、分类以及近些年应用于特种加工的一些新方法、新工艺。

关键词:特种加工电火花加工电化学加工高能束流加工超声波加工复合加工1、特种加工技术的特点现代特种加工(SP,SpciaI Machining)技术是直接借助电能、热能、声能、光能、电化学能、化学能及特殊机械能等多种能量或其复合以实现材料切除的加工方法。

与常规机械加工方法相比它具有许多独到之处。

1.1以柔克刚。

因为工具与工件不直接接触,加工时无明显的强大机械作用力,故加工脆性材料和精密微细零件、薄壁零件、弹性元件时,工具硬度可低于被加工材料的硬度。

1.2用简单运动加工复杂型面。

特种加工技术只需简单的进给运动即可加工出三维复杂型面。

特种加工技术已成为复杂型面的主要加工手段。

1.3不受材料硬度限制。

因为特种加工技术主要不依靠机械力和机械能切除材料,而是直接用电、热、声、光、化学和电化学能去除金属和非金属材料。

它们瞬时能量密度高,可以直接有效地利用各种能量,造成瞬时或局部熔化,以强力、高速爆炸、冲击去除材料。

其加工性能与工件材料的强度或硬度力学性能无关,故可以加工各种超硬超强材料、高脆性和热敏材料以及特殊的金属和非金属材料,因此,特别适用于航空产品结构材料的加工。

1.4可以获得优异的表面质量。

由于在特种加工过程中,工件表面不产生强烈的弹、塑性变形,故有些特种加工方法可获得良好的表面粗糙度。

热应力、残余应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切削表面小。

各种加工方法可以任意复合,扬长避短,形成新的工艺方法,更突出其优越性,便于扩大应用范围。

由于特种加工技术具有其它常规加工技术无法比拟的优点,在现代加工技术中,占有越来越重要的地位。

许多现代技术装备,特别是航空航天高技术产品的一些结构件,如工程陶瓷、涡轮叶片、燃烧室的三维型腔、型孔的加工和航空陀螺、传感器等精细表面尺寸精度达0. 001Pm 或纳米(nm)级精度,表面粗糙度#$ <0. 01Pm 的超精密表面的加工,非采用特种加工技术不可。

超精密加工技术结课作业

超精密加工技术结课作业

超精密加工技术结课作业摘要超精密加工技术是现代机械制造业中先进制造技术最主要的发展方向,已经成为在全球市场竞争中取胜的关键技术,体现了一个国家的综合国力。

超精密加工技术已直接影响到一个国家尖端科技和国防工业的发展,发展国防航空工业,研发高端精密仪器设备等都需要具有超精密加工技术的制造设备。

同时超精密加工技术也代表了现代制造技术的前沿,是发展未来先进制造技术的基础,因此,发展超精密加工技术受到了世界各国的高度重视。

目前,超精密加工技术的发展趋势是:高精度、高效率、高稳定性、高自动化。

随着时代的发展,现在超精密加工技术日趋成熟,主要分为超精密切削、超精密磨削、超精密特种加工等。

虽然超精密加工迄今尚无确切的定义,但是它仍然在向更高的层次发展。

我相信在人类的创新思维以及先进制造模式的促进下,超精密技术必定会得到不断的完善。

关键词:先进制造技术超精密加工加工精度加工类型发展趋势1概述通常,按加工精度划分,机械加工技术可分为一般加工、精密加工、超精密加工三种,随着时代的发展和社会的进步,先进制造技术不断革新,超精密加工技术的发展已是社会所趋。

超精密加工技术,在现代机械制造业中占据着重要地位,在提高机械产品的性能、质量,提高其稳定性和可靠性,提高生产效率等方面发挥着至关重要的作用。

超精密加工是一个十分广泛的加工领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法,一般主要指加工精度为0.1µm,表面粗糙度小于Ra0.01µm的加工方法,同时目前超精密加工也正在向纳米级加工技术发展。

目前,超精密加工的核心技术主要掌握在西方发达国家手中,在超精密加工技术领域处于领先地位的国家主要是美国、英国和日本。

美国是开始超精密加工技术研究最早的国家,也是迄今在超精密加工仍处于领先地位的国家。

英国的克兰菲尔德精密工程研究所在超精密加工方面的研究成果也是享誉全球,是当今世界上超精密工程的研究中心之一。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术(EBW)是一种先进的焊接方法,它利用高速电子束来熔化和连接金属材料。

这种焊接技术具有高能量密度、高焊接速度、优质的焊接效果和适用于各种金属材料等优点,因此在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。

本文将从高能束焊接技术的发展历程和原理、应用领域、优势和挑战等方面进行介绍。

一、高能束焊接技术的发展历程和原理高能束焊接技术最早是在20世纪50年代发展起来的,最初是用于核工业和航天航空领域。

1958年,美国杜邦公司开发出了第一台商用的电子束焊接机,这标志着电子束焊接技术开始走向工业化生产。

高能束焊接技术通过电子枪产生高速电子束,电子束击中工件表面时,产生的能量将工件表面瞬间加热到熔化温度,然后通过电子束辐照区域产生高温熔池,从而实现熔化和连接金属材料的目的。

高能束焊接技术的原理是利用高速电子束的能量瞬间加热金属材料,使其熔化并形成熔池,然后利用合适的焊接工艺来实现金属材料的连接。

与传统的焊接方法相比,高能束焊接技术具有能量密度高、焊接速度快、热影响区小、热输入低等优点,因此可以实现高质量的焊接效果。

二、高能束焊接技术的应用领域高能束焊接技术在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。

在航空航天领域,高能束焊接技术被广泛应用于飞机结构件、发动机零部件、航天器壳体等关键部件的焊接,以提高焊接质量和生产效率。

在汽车制造领域,高能束焊接技术通常应用于汽车车身焊接、汽车零部件焊接等工艺环节,以提高焊接强度和减少成本。

在核工业领域,高能束焊接技术被用于核反应堆压力容器、核燃料元件等核设备的焊接,以保证核设备的安全可靠性。

在电子行业领域,高能束焊接技术通常应用于电子器件的微细焊接和包装,以提高器件的性能和可靠性。

高能束焊接技术相对传统焊接方法有很多优势,主要包括以下几点:1. 高能量密度:高能束焊接技术的能量密度很高,可以实现瞬间加热和快速熔化金属材料,从而提高焊接速度和效率。

浅谈特种加工技术及其应用(论文)

浅谈特种加工技术及其应用(论文)

浅谈特种加工技术及其应用(论文)摘要:介绍特种加工技术的概念、特点、分类,探索电火花加工、复合加工等方面的实际应用与研究发展趋势。

关键词:技术特点;技术种类;发展趋势一、概述传统的机械加工技术对推动人类的进步和社会的发展起到了重大的作用。

随着科学技术的迅速发展,新型工程材料不断涌现和被采用,工件的复杂程度以及加工精度的要求越来越高,对机械制造工艺技术提出了更高的要求。

二、特种加工技术的特点(一)加工范围上不受材料强度、硬度等限制。

特种加工技术主要不依靠机械力和机械能去除材料,而是主要用其他能量(如电、化学、光、声、热等)去除金属和非金属材料,完成工件的加工。

故可以加工各种超强硬材料、高脆性及热敏材料以及特殊的金属和非金属材料。

(二)以柔克刚。

特种加工不一定需要工具,有的虽使用工具,但与工件不接触,加工过程中工具和工件间不存在明显的强大机械切削力,所以加工时不受工件的强度和硬度的制约,在加工超硬脆材料和精密微细零件、薄壁元件、弹性元件时,工具硬度可以低于被加工材料的硬度。

(三)加工方法日新月异,向精密加工方向发展。

当前已出现了精密特种加工,许多特种加工方法同时又是精密加工方法、微细加工方法,如电子束加工、离子束加工、激光束加工等就是精密特种加工:精密电火花加工的加工精密度可达微米级0.5~1um,表面粗糙度可达镜面Ra0.021.1m。

(四)容易获得良好的表面质量。

由于在加工过程中不产生宏观切屑,工件表面不会产生强烈的弹、塑性变形,故可以获得良好的表面粗糙度。

残余应力、热应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切割表面小,尺寸稳定性好,不存在加工中的机械应变或大面积的热应变。

特种加工的主要应用范围有1.加工各种难切削材料。

如硬质合金、钛、合金、耐热钢、不锈钢、淬硬钢、金刚石、红宝石、石英以及锗、硅等各种高硬度、高强度、高韧性、高熔点的金属及非金属材料。

2.加工各种特殊复杂零件的三维型腔、型孔、群孔和窄缝等。

《高能束加工》课件

《高能束加工》课件
高能束表面改性
通过高能束对材料表面进行辐照,改变材料表面的化学成分和结 构,提高材料表面的耐腐蚀性和抗氧化性。
高能束表面涂层技术
通过高能束将涂层材料熔融并沉积在材料表面,形成具有特殊性 能的涂层,提高材料表面的防护和装饰性能。
05
高能束加工发展现状 与趋势
高能束加工技术发展现状
高能束加工技术是指利用高能量密度的束流对材料进行加工 的方法,包括激光束、电子束、离子束等。目前,高能束加 工技术在航空航天、能源、电子信息等领域得到了广泛应用 。
纯度的特点。
高能束加工控制系统
加工过程控制系统
对高能束加工过程进行实时监测 和控制,确保加工过程的稳定性
和可靠性。
加工结果检测系统
对加工后的工件进行检测和评估, 确保加工质量符合要求。
加工数据管理系统
对加工过程中的数据进行收集、整 理和分析,为加工过程的优化提供 支持。
04
高能束加工材料与工 艺
新型高能束源的研发和应用将进一步提高加工效率和精度 ,同时降低能耗和成本。高能束加工技术的智能化和数字 化也将成为未来的发展趋势,实现加工过程的自动化和智 能化控制。
高能束加工技术面临的挑战与机遇
高能束加工技术虽然具有很多优点,但也面临着一些挑战,如设备成本高、加工效率低、材料适应性差等问题。同时,随着 环保意识的提高,高能束加工技术的环保性能也需要得到进一步提高。
激光加工材料与工艺
激光加工材料
激光加工适用于各种材料,如金属、非金属、复 合材料等。
激光加工工艺
激光切割、激光打标、激光焊接、激光熔覆等。
激光加工特点
高精度、高效率、非接触式加工。

电子束加工材料与工艺
电子束加工材料

高能束流焊接技术的最新进展

高能束流焊接技术的最新进展
强, 缺点是熔深浅 、 焊速低、 工件承受热载荷 大。 激光焊可形成深 在等离子弧焊接 方面,变极性等离子弧焊 以及铝合金穿孔 等离
而窄的焊缝 , 焊速 高、 热输入低 , 但投资高 , 对工件制备精度要求 子立焊是关注点之一。
高, 对铝等材料的适应性差 。从能量观点看 , 激光电弧复合对焊 3 国内高能束流焊接现状 在 国 内 , 能 束 流 焊接 越 来 越 引 起 更 多相 关 人 士 诸 如 焊 接 、 高 接效率的提高十分显著。这主要基于两种效应 , 一是较高的能量
密度 导致 了较高的焊接速度 ; 二是两热源相互作用的叠加效应 。 物理 、 激光 、 材料、 机床 、 计算机等工作者的关 注。国内在设备水 与 但在工艺研究上 , 水平则较为接近 , 甚 G A 激 光加丝和激光电弧 复合三种方法焊接 时线能量 、 M 、 焊缝断 平上 , 国外有一定差距 , 面以及能量利用率 的比较。L srT G H bi 可显著增加焊速 , 至在某些方面还有 自己的特色。 ae- I yr d
0 mm的不锈钢 , 深宽比达 7 :。 日、 、 01 俄 德开展 了双枪及填丝 机多用。 ) 2 采用一台激光机可进行多工位 ( 可达 6 ) 个 加工 。 ) 3光 2 0 纤长度最长可达 6 m。 ) 0 4 开放式 的控制接 口。 ) 5 具有远距离诊断 电子束焊接技术的研 究。法 国研制成功的双金属和三金属薄带
1 激光焊接的最新进展
方法由于表面的清理作用强和加丝 的合金化作用效果 为好。 1 激光熔覆 。激光熔覆与其它表直 流板条式 ( C Sa )O 激光器 ; ) . 1 ) D lb C 2 二极 快、 热输人少 , 变形极小 ; 结合强度高 ; 稀释率低 ; 改性层厚度可 管泵浦的 Y G激光器 ; ) O激光器 ;) A 3C 4 半导体 激光器 ; ) 5 准分 精确控制 , 定域性好、 可达性好 、 生产效率高。

先进制造技术——三束加工—激光束、电子束、离子束

先进制造技术——三束加工—激光束、电子束、离子束


2.特点及应用
离子束加工有如下特点:
(1) 离子束加工是目前特种加工中最精密、最微细的加工。离子刻蚀可达纳 米级精度,离子镀膜可控制在亚微米级精度,离子注入的深度和浓度亦可精 确地控制。
(2) 离子束加工在高真空中进行,污染少,特别适宜于对易氧化的金属、合 金和半导体材料进行加工。 (3) 离子束加工是靠离子轰击材料表面的原子来实现的,是一种微观作用, 所以加工应力和变形极小,适宜于对各种材料和低刚件零件进行加工。
4.束流控制方便,易实现加工过程自动化。
二、激光束加工

激光:源自在经过激励后由高能级院子跃迁到低能级而发射 的光子所产生的物理现象。
激光产生的原理:原子经过激励而发生跃迁现象。 激光加工:激光加工就是利用光的能量经过透镜聚焦后在焦点 上达到很高的能量密度产生的光热效应来加工各种材料。


加工原理
1)高速打孔 目前电子束打孔的最小直径可达Ø0.003mm左右。例如喷气发动机 套上的冷却孔,机翼的吸附屏的孔。在人造革、塑料上用电子束打大量微孔, 可使其具有如真皮革那样的透气性。电子束打孔还能加工小深孔,如在叶片 上打深度5mm、直径Ø0.4mm的孔,孔的深径比大于10:1。
2)加工型孔及特殊表面

激光加工的应用
激光加工是激光系统最常用的应用。根据激光束与材料相互作用的机理,大 体可将激光加工分为激光热加工和光化学反应加工两类。激光热加工是指利 用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激 光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指 激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。 包括光化学沉积、立体光刻、激光刻蚀等。
0.03~ 0.07 mm

高能束流加工技术的现状及发展

高能束流加工技术的现状及发展

高能束流加工技术的现状及发展一、引言高能束流加工技术是一种先进的制造加工技术,其利用高能束流对材料进行加工处理,可以实现高精度、高效率、低损伤的加工效果。

随着科技的不断进步和应用领域的不断扩展,高能束流加工技术已经成为了当前最具前景和潜力的制造加工技术之一。

二、高能束流加工技术的基本原理1. 高能束流的产生高能束流包括电子束、离子束和激光束等。

其中,电子束和离子束是通过电子枪或离子源产生,并通过磁场聚焦形成细小且密集的束流;激光束则是通过激光器产生,并通过透镜系统聚焦形成极小直径的光斑。

2. 高能束流与材料相互作用当高能束流与材料相互作用时,会发生以下几种物理过程:撞击效应、热效应、化学效应和辐射效应。

其中,撞击效应主要指由于高速粒子与固体表面发生碰撞而导致表面变形或破裂;热效应主要指由于高能束流的能量被转化为材料内部的热能而导致材料熔化或蒸发;化学效应主要指由于高能束流与材料发生化学反应而导致表面化学性质的改变;辐射效应主要指由于高能束流所产生的辐射而导致材料受到辐射损伤。

3. 高能束流加工技术的基本过程高能束流加工技术包括预处理、加工和后处理三个基本过程。

其中,预处理主要是对待加工材料进行表面清洗和处理,以确保其表面光洁度和化学性质符合加工要求;加工过程则是将高能束流对材料进行精细加工,包括切割、打孔、雕刻等多种形式;后处理则是对已经完成的产品进行表面处理和质量检测,以确保其符合产品标准。

三、高能束流加工技术在各领域中的应用1. 航空航天领域在航空航天领域中,高能束流加工技术被广泛应用于制造发动机喷口、涡轮叶片等关键部件。

这些部件需要高精度、高强度和高温性能,而高能束流加工技术可以实现对这些部件的精细加工和表面处理,提高其性能和寿命。

2. 电子信息领域在电子信息领域中,高能束流加工技术被广泛应用于制造微电子器件、光学器件等高精度产品。

这些产品需要极高的精度和表面光洁度,而高能束流加工技术可以实现对这些产品的微米级别加工和表面处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章高能束及复合加工技术一、概述1)高能束加工技术:①利用高能量密度的束流作为热源,对材料或构件进行加工的先进的特种加工技术。

包括焊接、切割、打孔、喷涂、表面改性、刻蚀和精细加工等各类工艺方法,并已扩展到新型材料制备领域。

②高能束加工技术利用高能束热源、高能量密度、可精密控制微焦点和高速扫描的技术特性,实现对材料和构件的深穿透、高速加热和高速冷却的全方位加工。

③高能束加工技术正朝着高精度、大功率、高速度和自动控制的方向发展。

二.激光加工三.电子束和离子束加工四.磨料水射流加工五.超声波复合加工一、概述1、常用的高能密度束流加工方法: 激光加工、电子束加工、离子束加工等。

2、技术背景高新技术产品要求:高比强度,高精度、工作速度、功率,小型化,恶劣环境下可靠工作;传统机械加工难以胜任结构形状的复杂性、材料的可加工性、加工精度及表面完整性方面的要求。

3、H EBM加工技术的应用广泛应用于焊接、切割、打孔和涂覆加工在表面改性、微细加工和新材料制备领域开拓和应用。

4、复合加工及其应用1)复合加工应用机械、化学、光学、电力、磁力、流体力学和声波等多种能量,在加工过程中同时运用两种或者多种加工方法,通过不同的作用原理对加工部位进行改性和去除的加工技术。

2)提高了加工效率,生产率一般大大高于单独用各种加工方法的生产率之和。

3)在提高加工效率的同时,又兼顾了加工精度、加工表面质量和工具损耗等。

二、激光加工1、激光:受激辐射的光放大电子只有在最靠近原子核的轨道上转动时才是稳定的,称为“基态” 。

光照射或用高温或高压电厂激发原子,最外层电子激发到高能阶,称为“激发态” 。

原子从高能阶落到低能阶的过程称为“跃迁” 。

2、激光的特性①方向性好:光束几乎在一条直线上传播,发散角几毫弧度②单色性好: He-Ne 激光的谱线宽度约2X10-9 nm③相干性好:He-Ne的相干长度200Kn,而普通光源中最好的氪灯为0.78m④高亮度:普通激光的亮度比太阳高100亿倍⑤可调谐:通过改变腔长可改变波长⑥可调制:振幅、偏振方向及频率等参数可以调制(光通信采用)⑦能量可压缩:激光脉冲的持续时间可以短到皮秒、飞秒、阿秒。

3、激光加工原理①激光加工(laser beam machining,LBM是利用材料在在激光聚焦照射下瞬时急剧熔化和气化,并产生很强的冲击波,使被熔化的物质爆炸式地喷溅来实现材料去除的加工技术。

是一种在光热效应下产生的高温熔融和冲击波的综合作用过程。

②激光加工是通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达107〜1011w/cm2温度可达一万摄氏度,将材料在瞬间(10-3S)熔化和蒸发,工件表面不断吸收激光能量,凹坑处的金属蒸汽迅速膨胀,压力猛然增大,熔融物被产生的强烈冲击波喷溅出去。

2、复合加工及其应用复合加工应用机械、化学、光学、电力、磁力、流体力学和声波等多种能量,在加工过程中同时运用两种或者多种加工方法,通过不同的作用原理对加工部位进行改性和去除的加工技术。

提高了加工效率,生产率一般大大高于单独用各种加工方法的生产率之和。

在提高加工效率的同时,又兼顾了加工精度、加工表面质量和工具损耗等。

电子只有在最靠近原子核的轨道上转动时才是稳定的,称为“基态” 。

光照射或用高温或高压电厂激发原子,最外层电子激发到高能阶,称为“激发态”。

原子从高能阶落到低能阶的过程称为“跃迁”。

4、原子的辐射5、激光加工过程激光加工过程一般分为四个阶段:1 ). 激光束照射材料2).材料吸收光能3).光能转变为热能使材料加热4).经由熔融和气化使材料去除或破坏。

6、激光加工的特点1 )激光加工属非接触加工,无明显机械力,也无工具损耗,工件不变形,加工速度快,热影响区小,可达高精度加工,易实现自动化。

2)因功率密度是所有加工方法中最高的,所以不受材料限制,几乎可加工任何金属与非金属材料。

3)激光加工可通过惰性气体、空气或透明介质对工件进行加工,如可通过玻璃对隔离室内的工件进行加工或对真空管内的工件进行焊接。

4)激光可聚焦形成微米级光斑,输出功率大小可调节,常用于精密细微加工,最高加工精度可达0.001mm表面粗糙度Ra值可达0.4〜0.1。

5)能源消耗少,无加工污染,在节能、环保等方面有较大优势。

7、激光器激光器是激光加工设备的核心,它能把电能转换成光能,获得方向性好、能量密度高、稳定的激光束输出。

激光器可分为:固体、气体、液体、半导体及自由电子激光器,常用的激光器有固体和气体两大类。

8、激光打孔激光打孔主要用于特殊材料或特殊工件上的孔加工,如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模等非金属材料和硬质合金、不锈钢等金属材料的细微孔的加工。

激光打孔效率非常高,功率密度通常为107〜108W/cm2打孔时间甚至可缩短至传统切削加工的百分之一以下,生产率大大提高。

激光打孔的尺寸公差等级可达IT7,表面粗糙度Ra值可达0.16〜0.08。

9、激光切割激光切割是利用聚焦后的高功率密度(105〜107w/cm2),激光束连续照射工件,光束能量以及活性气体辅助切割过程附加的化学反应热能均被材料吸收,引起照射点材料温度急剧上升,到达沸点后材料开始汽化,并形成孔洞,且光束与工件相对移动,使材料形成切缝,切缝处熔渣被一定压力的辅助气体吹除。

激光切割是激光加工中应用最广泛的,其切割速度快、质量高、省材料、热影响区小、变形小、无刀具磨损、无接触能量损耗,噪音小,易实现自动化,且还可穿透玻璃切割真空管内的灯丝,不足之处是一次性投资较大,且切割深度受限。

10、激光束焊接激光束焊接是以聚集的激光束作为能源的特种熔化焊接方法。

焊接用激光器有YAG固体激光器和CO2气体激光器,此外还有CO激光器、半导体激光器和准分子激光器等。

激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。

经聚焦后,激光束的能量更为集中,能量密度可达105-107W/cm2如将焦点调节到焊件结合处,光能迅速转换成热能,使金属瞬间熔化,冷却凝固后成为焊缝。

钢板11、激光打标/ 雕刻12、激光打孔的典型值:几十到200 um,最小25um2000年以前全世界400 多台激光钻孔打标设备,其中300台在日本13、激光表面热处理①当激光能量密度在103〜105w/cm2左右时,对工件表面进行扫描,在极短的时间内加热到相变温度(由扫描速度决定时间长短),工件表层由于热量迅速向内传导快速冷却,实现了工件表层材料的相变硬化(激光淬火)。

②与其它表面热处理比较,激光热处理工艺简单,生产率高,工艺过程易实现自动化。

一般无须冷却介质,对环境无污染,对工件表面加热快,冷却快,硬度比常温淬火高约15%〜20%;耗能少,工件变形小,适合精密局部表面硬化及内孔或形状复杂零件表面的局部硬化处理,但激光表面热处理设备费用高,工件表面硬化深度受限,因而不适合大负荷的重型零件。

三、电子束和离子束加工1 、电子束加工在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106〜109w/cm2的极细束流高速冲击到工件表面上极小的部位,并在几分之一微秒时间内,其能量大部分转换为热能,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,来去除材料。

也可以利用能量密度较低的电子束轰击高分子材料,使其分子链切断或重新聚合,从而使高分子材料的化学性质和分子量产生变化,进行加工。

2、电子束加工应用3、电子枪4、电子束加工装置5、发射枪6、真空系统7、控制系统8、電子束加工的特點①能量使用率可高達90%②電子束的直徑能夠聚焦到0.1 um③於真空腔中進行,污染少,材料加工表面不氧化④利用磁場或電場對電子束,強度、位置、聚焦等直接控制⑤可使材料衝擊部位的溫度超過材料的熔化和氣化溫度,使材料瞬時蒸發⑥需要一套專用設備和真空系統,價格較貴9、电子束加工方法1 )、电子束焊接2)、电子束打孔3)、电子束切割4)、电子束表面改性5)、电子束曝光6)、电子束刻蚀10、电子束焊接优点①聚集的高速電子衝擊工件接縫處,使金屬迅速熔化和蒸發②銲縫深寬比大,可達60:1③在真空中可以進行遠距離的焊接④銲接速度快,熱影響區小⑤可實現複雜接縫的自動銲接⑥防止熔化金屬受到氧、氮等有害氣體的影響11、电子束焊接缺点①易受電磁場干擾②銲接時會產生X射線,有害人體③被焊工件尺寸和形狀受到工作室的限制④銲接前對接頭加工、裝配要求嚴格⑤設備複雜,比較昂貴12、电子束打孔电子束打孔应用不锈钢、耐热钢、宝石、陶瓷、玻璃等各种材料上的小孔、深孔。

最小加工直径可达0.003mm,最大深径比可达10。

像机翼吸附屏的孔、喷气发动机套上的冷却孔,此类孔数量巨大(高达数百万),且孔径微小,密度连续分布而孔径也有变化,非常适合电子束打孔,塑料和人造革上打许多微孔,令其象真皮一样具有透气性。

一些合成纤维为增加透气性和弹性,其喷丝头型孔往往制成异形孔截面,可利用脉冲电子束对图形扫描制出。

还可凭借偏转磁场的变化使电子束在工件内偏转方向加工出弯曲的孔,13、电子束切割可对各种材料进行切割,切口宽度仅有3〜6卩m。

利用电子束再配合工件的相对运动,可加工所需要的曲面。

14、离子束加工离子束加工(IBM)是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。

因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。

15、離子束加工主要特點16、離子束加工的基本原理離子束加工是在真空條件下,先由電子槍產生電子束,再引入已抽成真空且充滿惰性氣體之電離室中,使低壓惰性氣體離子化。

由負極引出陽離子又經加速、集束等步驟,最後射入工件表面。

离子束加工主要特点:①適於加工易氧化金屬,合金材料和半導體材料②採微量加工方式,故加工應力、熱變形等極小、加工精度高③加工的精度非常高;離子蝕刻可達毫微米(0. 001卩m)級加工精度離子鍍膜可控制在次微米級精度④成本高,加工效率低,但可進行自動化加工17、离子束加工的应用1)、离子蚀刻2)离子镀膜3)离子溅射沉积4)离子注入18、離子束蝕刻加工当所带能量为0.1〜5keV、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子(或分子)间键合力时,材料表面的原子(或分子)被逐个溅射出来,以达到加工目的。

这种加工本质上属于一种原子尺度的切削加工,通常又称为离子铣削。

离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等的高精度图形。

相关文档
最新文档