浅谈声波测井技术在油田开发中的应用

浅谈声波测井技术在油田开发中的应用

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

声波测井仪器的原理及应用

声波测井仪器的原理及应用 单位:胜利测井四分公司 姓名:王玉庆 日期:2011年7月

摘要 声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。 数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。 正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。 关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录 第1章前言 (1) 第2章岩石的声学特性 (2) 第3章数字声波测井原理及应用 (3) 3.1 数字声波测井原理 (3) 3.2仪器的工作模式 (5) 3.3时差计算 (5) 3.4 数字声波测井仪器的性能 (6) 3.5 SL6680测井仪器的不足 (7) 3.6数字声波仪器小结 (7) 第4章正交多极子阵列声波测井 (8) 4.1 XMACII多极子阵列声波测井原理 (8) 4.2 XMACII多极子阵列声波仪器组成 (9) 4.3 XMACII多极子阵列声波的使用及注意事项 (10) 4.4 应用效果及结论 (14) 第5章声波测井流程及注意事项 (15) 5.1 声波测井流程 (15) 5.2 注意事项 (16) 参考文献 (17)

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

测井曲线代码-整理版

原始测井曲线代码 代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AA VG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMA V 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率ARO4 方位电阻率 ARO5 方位电阻率 ARO6 方位电阻率 ARO7 方位电阻率 ARO8 方位电阻率 ARO9 方位电阻率 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 ATA V 平均衰减率 ATC1 声波衰减率 ATC2 声波衰减率 ATC3 声波衰减率 ATC4 声波衰减率 ATC5 声波衰减率 ATC6 声波衰减率 ATMN 最小衰减率 ATR T 阵列感应电阻率 ATRX 阵列感应电阻率 AZ 1号极板方位 AZ1 1号极板方位 AZI 1号极板方位 AZIM 井斜方位 BGF 远探头背景计数率 BGN 近探头背景计数率 BHTA 声波传播时间数据 BHTT 声波幅度数据 BLKC 块数 BS 钻头直径 BTNS 极板原始数据 C1 井径 C2 井径 C3 井径 CAL 井径 CAL1 井径 CAL2 井径 CALI 井径 CALS 井径 CASI 钙硅比 CBL 声波幅度 CCL 磁性定位 CEMC 水泥图 CGR 自然伽马 CI 总能谱比 CMFF 核磁共振自由流体体积 CMRP 核磁共振有效孔隙度 CN 补偿中子 CNL 补偿中子 CO 碳氧比 CON1 感应电导率 COND 感应电导率 CORR 密度校正值 D2EC 200兆赫兹介电常数 D4EC 47兆赫兹介电常数 DAZ 井斜方位 DCNT 数据计数 DEN 补偿密度 DEN_1 岩性密度 DEPTH 测量深度 DEV 井斜 DEVI 井斜 DFL 数字聚焦电阻率 DIA1 井径 DIA2 井径 DIA3 井径 DIFF 核磁差谱 DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线 DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线 DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线 DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线 DIP5 极板倾角曲线 DIP6 极板倾角曲线 DRH 密度校正值 DRHO 密度校正值 DT 声波时差 DT1 下偶极横波时差 DT2 上偶极横波时差 DT4P 纵横波方式单极纵波时 差 DT4S 纵横波方式单极横波时 差 DTL 声波时差

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

工程物探方法综述

工程物探方法综述 摘要 随着经济的发展,工程物探方法显得尤为重要;本文简单介绍了用地质雷达、高分辨率SH 波浅层反射波法、瞬态瑞雷面波法勘探及高密度多波列地震映像法等工程物探方法. 关键词 地质雷达瑞雷波 工程物探 浅层反射勘探 随着我国国民经济的高速发展,城市现代化进程的不断深入,各种城市工程建设方兴未艾,而城市工程建设在规划、设计、施工阶段都必须对建设区域内的地质情况及地下埋设物情况有一个系统的了解,在建设工程中及建成后还必须对工程质量进行检测和监测,另外,在工程抢险、地质灾害调查、考古等工作中都须进行适当的探测工作。工程物探的应用领域大致有以下几个方面: (1)工程地质调查;(2)工程质量检查;(3)环境检测、监测;(4)工程抢险;(5)地质灾害调查;(6)地下、水下埋设物及障碍物探测;(7)地下管线测漏及防腐层完整性检测;(8)水文工程参数测定;(9)考古。 可以毫不夸张的说,工程物探在国民经济高速发展的时代显得越来越重要,现就把常用的工程物探方法简单介绍如下: 1 工程地震勘探 工程上常用的地震波法勘探可分为:高分辨率浅层地勘探、瑞雷波勘探、地震映像、横波勘探四种。 在工程及水文地质调查领域,地震波法勘探经常被用来详细划分第四纪地层、确定目标层的深度、厚度、起伏形态、横向分布,探测异常体的位置和埋深、寻找溶洞、断层及破碎带。 x u y o u j i n

1.1高分辨率浅层地勘探 这里先介绍高分辨率浅层地勘探中的反射波法及折射波法。其主要原理是根据对反射波或折射波时间场沿测线方向的时空分布规律的观测确定地下反射面或折射面深度及构造形态和性质。地震勘探相比其它物探方法,具有精度高、解释成果单一的优点。我们所看到的物探剖面是一种经过校正后的并赋以地质内涵的反射波或折射波时间剖面(实质是不同地质体的反射波或折射波波速差异)。地震勘探成果同其它物探解释成果一样,由于物理力学指标差异,不同地质体的波速有可能相近,而相同地质体由于所遭受的内力或外力地质作用不同,波速也有可能不同。选择有代表性的钻孔资料能更好的确定剖面中各界线的代表的地质体,从而提高地震勘探解释成果的可靠性,也能够使其成果在邻区或类似地区推广应用,使其优点更好的发挥高分辨浅层地震勘探 在工程地球物理领域的应用极为广泛. 1.1.1浅层地震反射法 浅层地震反射法勘探主要采用多次覆盖技术,是根据水平叠加技术的要求而设计的。水平叠加又称共发射点叠加或共中心点叠加,就是把不同激发点、不同接收点上接收到的来自同一反射点的地震记录进行叠加,这样可以压制多次波和各种随机干扰波,从而大大地提高信噪比和地震剖面的质量,并且可以提取速度等重要参数。 1.1.2浅层初至折射波法 浅层初至折射波法地震勘探是国内外公认的勘测浅层地震构造的有效方法之一。它能探测基岩的深度、起伏、岩性接触带及断裂破碎带的位置和延伸方向,尤其能测定基岩中的纵波速度的大小及其分布范围,从而了解测区基岩的岩性变化和致密程度等。这是其它物探方法所无法替代的,因此,被广泛应用于陆地和水域中的桥梁、建筑等大型工程建设的地基勘x u y o u j i n

测井曲线解释

测井曲线基本原理及其应用 一.国产测井系列 1、标准测井曲线 2.5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0.5m电位曲线。测量地层的侵入带电阻率。0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性和铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2.5米底部梯度曲线。以其极大值和极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2.5粘梯度和自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

变质岩储层识别技术综述

变质岩储层识别技术
储层识别技术是变质岩油气藏测井评价的核心技术系列: 包括储层识别技术和裂缝有效 性评价技术。利用 常规测井资料定性 识别储层,通过成 像测井资料实现对 储层裂缝发育程度 及产状的定性描 述,并采用多极子
声/电成像 裂缝产状 岩性识别 阵列声波 常规测井 储层识别 储层测井 识别、分类 岩心 试油试采 录井 钻井
阵列声波资料评价储层裂缝的有效性,从而达到识别储层的目的。
(一)储层识别技术
1.基于测井响应模型的常规测井资料识别储层技术
RS(Ω·m) RT(Ω·m) RMLD(Ω·m) Pe(B/e) AC(μs/ft) DEN(g/cm3) CN(%)
全烃% 0.01 100
深 度 (m)
0
GR(API)
250
2 2
2000 2000
0 140 2
20 40 3 -18
6
CAL(in)
测井 解释 岩性 剖面
测井 一次 解释 结论
有效 厚度
0.01 0.01 0.01 0.01
c1% c2% c3% nc4%
100 100 100 100
试 油 投 产
36
2
2000
42
161
13.5
162
20.5
163 3.0 164
2 0 0 9 . 5 . 2 7 2 0 0 9 . 6 . 1 1
3970 3980 3990 4000 401 0 402 0
165 166
u
技术定义:

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

水淹层测井解释与评价综述

水淹层测井解释与评价综述 水淹层测井技术,是20世纪50年代发展起来的一种测井工艺,是探测注水开发油田含水率高低、预测地下剩余油的重要技术。经过半个世纪的发展,水淹层测井技术已经形成了多个技术系列,成为为高含水油田开发中后期剩余油挖潜提供依据的重要手段[1]。0我国多数油田,一般都采用早期注水开发方式,随着油田水驱开发程度的不断提高,油田的水淹程度日趋增高,导致产层的流体性质、孔隙结构,岩石的物理化学性质,以及油气水分布规律等,都会发生一定程度的变化。水淹层测井解释利用测井资料对水驱油藏水淹所发生的变化进行评价,以便弄清水淹部位和水淹程度,是研究剩余油饱和度的主要手段,为进行二次乃至三次采油提高采收率提供依据,也为近一步调整油田开发方案,加密井布井,注采关系调整,确定老井封堵措施等方面提供了科学的指导[2]。 一、油层水淹后产层物理性质的变化 受注入水影响,储层性质发生了与开发初期不同的变化,主要表现在岩石的电学性质、孔隙结构、水动力学系统等方面[3]。 1、孔隙度、渗透率的变化 注水开发过程中,注入水的推进和冲刷使岩石的孔隙度、渗透率发生改变,其变化大小与水洗程度有关。弱水洗时,岩石中的粘土矿物受注入水浸泡发生膨胀,孔喉变窄,孔径变小,被冲刷的胶结物也可能堵塞孔道,导致孔隙度变小、渗透率降低;强水洗时,受注入水的长期冲刷,粘土矿物被冲洗,使得泥质含量降低,孔隙度变大,渗透率提高。因此,在注水井附近的高水淹区域,储层渗透率有明显提高[3]。 2、含油性及油水分布的变化 注水开发前,储层内主要为束缚水,含油饱和度高。随着水驱程度的提高,油水分布发生变化[3]。由于储层的非均质性的差异,物性好并且与注水井连通性好的区域先水淹,含油饱和度降低;相反,物性差且与注水井层连通差的区域后水淹或未水淹,剩余油饱和度相对较高,成为挖潜调整的主要对象。 3、润湿性的变化 岩石的润湿性与岩石的性质和孔隙结构有关,并由其亲水能力表现出来。实验表明,水淹后,石英、长石的裸露面增大,岩石的自吸水能力增强,逐渐由弱亲水向强亲水转化,使水淹层的孔隙度指数m和饱和度指数n的值也有所减小[3]。 4、地层水矿化度的变化 注入水进入地层后,与原始地层水发生溶液混合作用和离子扩散运动,导致地层水矿化度发生变化。注入淡水时,地层混合水的矿化度将低于原始地层水矿化度,并随着累积注入

测井曲线一览表

测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 --------------------------------------------------- GRSL—能谱自然伽马 POR 孔隙度 NEWSAND PORW 含水孔隙度 NEWSAND PORF 冲洗带含水孔隙度 NEWSAND PORT 总孔隙度 NEWSAND PORX 流体孔隙度 NEWSAND PORH 油气重量 NEWSAND BULK 出砂指数 NEWSAND PERM 渗透率 NEWSAND SW 含水饱和度 NEWSAND SH 泥质含量 NEWSAND CALO 井径差值 NEWSAND CL 粘土含量 NEWSAND DHY 残余烃密度 NEWSAND SXO 冲洗带含水饱和度 NEWSAND DA 第一判别向量的判别函数 NEWSAND DB 第二判别向量的判别函数 NEWSAND DAB 综合判别函数 NEWSAND CI 煤层标志 NEWSAND

声波变密度测井技术及其应用

声波变密度测井技术及其应用 目前油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。声波变密度测井是由声幅测井发展而来的,其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。井下仪器主要包括声系和电子线路两部分。声系的功能是为了进行声波测井,它包括发射探头和接收探头,仪器的源距有两种,3ft和5ft,3ft的用于声幅测量,5ft的用于变密度测量。电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。 一、声波变密度下井仪 测井仪的声系由两个压电晶体组成,一个发射,一个接收。声源的工作频率为20KHz,重复频率15-20Hz。测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。 井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。 二、声波变密度测井能够解决的问题 1、全波列分析 全波列测井包含声波的速度、幅度、频率等信息,我们主要对前12-14个波的幅度及到达时间进行分析。一般情况下,前3个波与套管波有关,反映套管与水泥环的胶结状况;第4-6条相线与水泥环中传播的声波信号有关,它反映水泥环与地层的胶结状况。 2、声波变密度测井检查固井质量 (1)套管外无水泥。这种情况下,套管波反射能力很强,地层波较弱或没有,变密度的相线差别不大,基本均匀分布,套管接箍明显,固井声幅为高幅值。 (2)水泥与套管和地层胶结良好。这种情况下,由于套管和固结水泥的差别较小,声波大量进入地层,因而套管波很弱,地层波很强,固井声幅为低幅值。 (3)水泥仅与套管胶结良好,与地层胶结差。这种情况声波不在套管界面反射而是进入水泥环,水泥环对声波能量衰减很大,传给地层的声波能量很小,所以套管波和地层波都很弱,但固井声幅显示低幅值。 (4)水泥与套管胶结一般。这种情况下套管把大部分声波能量反射回来,只有小部分声波能量进入地层,套管波和地层波都有一定的幅度。 3、声波变密度测井的优点 (1)能够对即套管与水泥和水泥与地层两个界面进行胶结状况的评价。 (2)施工效率提高。采用组合测井方式,缩短了作业时间,降低了劳动强度,缩短了完井周期。

相关文档
最新文档