风功率控制预测介绍
风电场功率控制系统调度功能技术要求

风电场功率控制系统调度功能技术要求1. 风电场功率控制系统的调度要快准稳呀!就像百米赛跑选手听到枪响后迅速起跑一样,必须快速响应各种变化。
比如,突然风速变了,它能马上调整功率输出,是不是超厉害?2. 它得能精准预测才行啊!这不就跟天气预报一样嘛,要尽可能准确地知道未来的情况。
要是预测错了,那可不得了!举个例子,预测风速错误,那功率调度不就乱套啦!3. 风电场功率控制系统调度还要超级智能哟!就好比一个聪明的管家,把一切都安排得井井有条。
当有多个设备同时运行时,它要能合理分配功率,多了不起呀!想想看,如果它不智能,那会多糟糕!4. 可靠性也是至关重要的呀!可不能关键时刻掉链子,这不跟我们的手机一样嘛,关键时刻可不能死机。
如果风电场功率控制系统不可靠,那风电场还怎么稳定运行呢,绝对不行啊!5. 它还要有很好的适应性呢!无论什么环境都能应对自如,就像一棵坚韧的小草,在哪都能茁壮成长。
比如遇到恶劣天气,它也能正常工作,这多牛啊!6. 风电场功率控制系统的交互性也要棒才行呀!能够和其他系统很好地配合,就像乐队里的不同乐器完美协作奏出美妙音乐一样。
如果交互性不好,那不就乱套啦!7. 它的稳定性得有保障啊!不能三天两头出问题,这就跟我们的房子一样,得稳稳当当的。
要是不稳定,那风电场的发电不就受影响啦,绝对不允许!8. 风电场功率控制系统的可扩展性也很重要哟!就像搭积木一样,可以根据需要不断增加新的功能。
不然以后要升级都没办法,那多可悲呀!9. 哎呀呀,总之呢,风电场功率控制系统的调度功能真的太重要啦!必须具备这些技术要求,才能让风电场高效、稳定地运行呀!我的观点结论:风电场功率控制系统的调度功能至关重要,以上技术要求都不可或缺,只有这样才能保障风电场的良好运作和发展。
关于风力发电技术与功率控制策略的研究分析

摘
0 1 0 0 0 0 )
策略两个方面 , 对风力发 电技术的功率控 制策略进行详 细阐述。
中图分 类号 : T M6 1 4 文献标识码 : A
要: 文章通过结合风力发 电技术及其相 关运 行特 性的相 关内容 , 并分别从 风速控制 策略 和风 向标 与功 率控 制 。 关键词 : 风力发 电技术 ; 功 率控制 ; 策略研 究
风 电、 定 桨距 到变桨及 变速恒频 , 以及有 齿轮箱到无齿轮箱等 四个发展阶段。 结合风力发 电技术的空气动力 学特性分 析 , 通 常风力发 电机组输出功率可借 助以下公式表示 :
p m = I C v p RZ V
-
了重要保 障。
其中, c 表示风 能利用 系数 ; R表 示风轮 半径 ; P表示 空 气密度 ; v表示风速 。结合 ( 1 ) 式来看 , 在 风速 、 风 轮半 径以及 空气密度 等一定 的情况 下 , 风 能利用系数 , 即c 是风 力发 电 机输出功率 的主要影 响因素 , 呈正比相关。 根据尖速 比 的函
第 4 0卷 第 1 1期 ・ 学 术
V o1 . 40 N ok / . 11
湖
南
农
机
2O1 3年 1 1 月
风电有功功率自动控制技术规范

风电有功功率自动控制技术规范Technical specificati on for automatic generation control of wind power2014-12-20发布2014-12-20实施目次前言 (II)1范围 (1)2规范性引用文件 (1)3术语和定义 (1)4总则 (3)5调度中心侧风电有功功率自动控制技术要求 (3)6风电场侧有功功率自动控制技术要求....................................................5 附录A (8)编制说明 (12)I前言为促进风电接入电网后的安全、优质、经济运行,规范国家电网范围内风电有功功率自动控制工作,提高风电利用率,特制订本标准。
本标准由国家电网公司国家电力调度控制中心提出并解释。
本标准由国家电网公司科技部归口。
本标准起草单位:国网吉林省电力有限公司,清华大学,中国电力科学研究院。
本标准主要起草人:郑太一,董存,孙勇,张小奇,杨国新,王彬,和青,范国英,范高锋,黄越辉,吴文传,李育发,张继国,李振元,李宝聚,曹政,王泽一。
本标准首次发布。
风电有功功率自动控制技术规范1范围本标准规定了风电有功功率自动控制的技术要求,包括控制模式、控制策略、功能要求及性能指标等。
本标准适用于含风电场接入的电网调度控制中心及通过110(66)kV 及以上电压等级线路接入电力系统的风电场。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T19963—2011风电场接入电力系统技术规定DL/T516—电力调度自动化系统运行管理规程DL/T634.5101—2002远动设备及系统第5101部分:传输规约基本远动任务配套标准(IE C60870-5-101:2002ID T)DL/T634.5104—2002远动设备及系统第5104部分:传输规约采用标准传输协议子集的IEC60870-5-104网络访问(IEC60870-5-104:2000IDT)国家电监会5号令电力二次系统安全防护规定Q/GDW1907—2013风电场调度运行信息交换规范Q/GDW680.35—2011智能电网调度技术支持系统第3-5部分:基础平台数据采集与交换Q/GDW680.42—2011智能电网调度技术支持系统第4-2部分:实时监控与预警类应用水电及新能源监测分析Q/GDW680.43—2011智能电网调度技术支持系统第4-3部分:实时监控与预警类应用电网自动控制3术语和定义下列术语和定义适用于本文件。
风电场能量管理系统

预测程序的一般流程
① 初始化:数据准备 ② 建模:利用历史数据建 立风电场输出功率模型 ③ ; ④ 预测:利用NWP、风电场 发电计划进行预测 ⑤ 可视化:展示预测结果 ⑥ 评价:评价预测效果, 对比预测方案
2009年投运至今 数十家风电场实 施运行
2007年启动研发至今 国家级项目7项,国家重 点实验室项目3项,其中重 点/重大类项目5项; 省部企业项目30余项。
– “不可靠”:风速随机性一套在风电场综合数据采 – “不可调”:风机调节能力差 集系统的基础上,实现自动
闭环、协调控制风场内所有 • 可控性风场建设:优质电源 有功、无功调节设备以满足
– 可预测 – 可靠 – 可调度
-12-
风电场 常规电厂 风场并网综合需求的监控管 理系统。 能源供给稳定,有功出 能源供给不稳定,有
功出力不稳定
有功/无功主动调节困 难 风电预测难度大,精 度低
力稳定
有功/无功可在大范围内 灵活调节 负荷预测精度高,发电 计划定制相对容易
并网点
DFIG
数据 指令
储能
数据 指令 变电站SCADA 电量管理
测风塔
风机SCADA
指令
数据
SVC 数据 指令 能量管理系统
控制指令
运行调度
气象服务
风场AGC 风场AVC 储能控制
产品业绩与服务
电网对风功率预测系统的要求
用途 调频 阻塞管理 调峰/发电 计划 类型 功率 功率 功率 预测时长 分辨率 预测 范围 全网 区域 全网/ 区域 精度 要求 很高 很高 高 1~6h(超短期) 15min 1~6h(超短期) 15min 24~48h(短期) 1h(15mi n)
调度
短期风功率预测的基本原理
超短期风电功率预测研究现状

Power Electronics •电力电子Electronic Technology & Software Engineering 电子技术与软件工程• 211【关键词】风电场发电 超短期风电功率预测 准确率到目前为止,国际上已经研究出了许多风电功率预测方法,总的来说分为两类:物理方法和统计方法。
物理方法主要是利用数值天气预报,并结合风电场周围地形地貌等物理信息对风电场的风速和风能进行预测得到预测功率;而统计方法则是在统计模型方法的基础上利用风电场的历史实测数据,用线性或者非线性的方法在历史数据和未来风速之间建立映射关系。
在所有的统计方法当中,最简单的为持续法。
持续法很好地将历史数据以及现阶段天超短期风电功率预测研究现状文/侯梦玲气变化情况对风电功率的影响考虑在内,所以在超短期风电功率的预测时准确率较高。
但是由于风力本身存在着多变性,所以风电场超短期风电功率预测准确率并不稳定。
为了保证风电功率预测有明显的改进,预测方式还有待提高。
1 超短期风电功率预测研究现状对超短期风电功率进行预测虽然不会减少风电功率的随机性,但是却能有效地降低其模糊性,使其从整体不确定的范围缩小到一定误差区间,对电网来说电力调度部门能够提前在风电出力变化前及时调整调度计划,优化电网调度,合理制定风电场控制策略,降低电网旋转备用容量,减小其对电力系统以及电力市场的干扰,进而降低风电成本,提高风电上网竞价的竞争力。
从风电场本身来说,可以根据预测结果,选择小风天气安排机组维护和检修,从而提高发电量,减少发电损失。
2 影响超短期风电功率预测的因素2.1 数据的采集与处理在进行超短期风电功率预测时,既需要风机运行数据,也需要气象相关数据,这两项数据的完整性和真实性都会对最终的预测效果产生巨大的影响。
气象数据与风机运行数据的缺失,风电场数据采集、传输与处理软件及设备的缺陷及故障,都会影响风电场超短期风电功率预测的准确率。
数据预处理技术包括数据同步、异常数据的识别与处理、缺失数据的替代等。
功率预测及控制系统知识讲座

特殊情况下的功率预测; ❖ 考虑电场装机扩容对发电的影响,支持不断扩建中的电场的功率预测; ❖ 结合实时气象观测系统,可以完成理论电量,损失电量的计算。
Thank you !
谢谢大家
格尔木光伏项目现场
功率预测的意义
❖根据功率预测系统的预测结果,可以合理安排常规电源 发电计划,保证电力市场正常运行,减少系统的旋转备 用容量,提高整个电力系统运行的经济性。
❖提前预测风电/光伏发电功率的波动,合理安排运行方 式和应对措施,提高电网的安全性和可靠性。
格尔木光伏项目现场
基本要求
❖ 可以完成电场0-24小时、0-48小时、0-72小时短期功率预测,时间 分辨率为15分钟;
电厂运行参 数统计
功率报表
气象报表
限电记录报 表
检修记录报 表
故障记录报 表
格尔木光伏项目现场
用户设置
操作记录
电厂信 检修容 息设置 量设置
光伏板信 息设置
系统参数 设置
限电设置 故障录入
6.1电厂管理
6.2用户管理
系统更新 系统重启
Tomcat日 志下载
运行监控 日志
数据库导 出
6.3系统管理
格尔木光伏项目现场
❖ 数值天气预报计算流程: ❖ 初值场:欧洲气象中心、德国气象局、美国国家海洋和大气管理局; ❖ 支持单位:中国气象局、中国电科院、中科院大气物理研究所; ❖ 中尺度天气预报模式:WRF模式、MM5模式; ❖ 降尺度嵌套计算; ❖ 气象数据同化技术。
风力发电原理(控制)

风力发电原理(控制)一、风力发电的基本原理风力发电是指利用风能转换成电力的一种清洁能源,其基本原理是将风能转化为机械能,再由发电机将机械能转化为电能。
因此,风力发电系统主要包括风能转化系统和发电系统两大部分。
风能转化系统风能转化系统一般由风轮、变桨机构和转速限制器组成。
具体来说,风轮是通过风能驱动旋转,变桨机构可以改变风轮叶片的角度以便控制风轮的旋转速度和转向,而转速限制器则可以限制风轮的旋转速度,以防风轮过快损坏风力发电系统。
发电系统发电系统由发电机、变流器和电子控制系统组成。
发电机将机械能转化为电能并输出到电网中,变流器则将交流电转化为直流电,并控制电能输出的电压和频率。
电子控制系统则可以实现对风力发电系统的监控和维护。
二、风力发电的控制风力发电系统的控制方案主要分为以下几种:1. 恒功率控制恒功率控制是指在风速超过额定风速时,通过调节风轮的旋转速度来控制风力发电系统的输出功率,以便让发电机输出恒定的电功率。
这种控制方式可以保证风力发电系统的稳定运行,但是当风速超过一定限制时,风轮的旋转速度会超过允许范围,从而导致发电系统的停机或受损。
2. 变桨控制变桨控制是指通过改变风轮叶片的角度来控制风力发电系统的输出功率。
当风速超过额定风速时,风力发电系统会自动调节叶片角度,以减小叶片受到的风力,从而控制风力发电系统的输出功率。
这种控制方式可以确保风力发电系统的安全运行,但是其控制精度相对较低,且需要涉及到大量的机械运动部件,容易受到外部环境的影响。
3. 惯性控制惯性控制是指通过测量风轮旋转速度和转向来控制发电机的输出功率。
当风速超过额定风速时,惯性控制系统会立即闸掉风轮,以避免风力发电系统受到损坏。
这种控制方式可以使风力发电系统的响应速度更快,但是需要消耗大量的电能,不太适合长期运行。
三、风力发电系统的优点相比于传统的化石能源和核能发电技术,风力发电有以下几个优点:1.清洁能源。
风力发电不会产生任何污染物,对环境更加友好。
风电场有功功率控制系统研究与应用

风电场有功功率控制系统研究与应用一、有功功率控制系统的工作原理有功功率控制系统是指通过控制发电机转子角度,来调整风电场的发电功率输出,从而保持风电场的有功功率在稳定状态下运行。
其基本工作原理是根据风机的输出功率和预期的功率曲线,通过控制风机的轴角度,来调整风机的扭矩和转速,使得风电场的发电功率始终保持在最佳状态。
通过这种方式,可以最大限度地提高风电场的发电效率,同时降低风电场对电网的影响。
有功功率控制系统通常由控制器、传感器和执行器等部件组成。
控制器负责接收传感器采集到的数据,经过处理后输出控制信号给执行器,从而实现对风机转角的调节。
传感器用于监测风机的转速、风速、电网情况等关键参数,为控制器提供必要的输入信号。
执行器则根据控制信号调整风机的转角,实现对风机的控制。
有功功率控制系统在风电场中的应用具有重要意义。
有功功率控制系统可以有效提高风电场的发电效率。
通过控制风机的转角,使得风机在不同风速下可以输出最佳的有功功率,最大限度地利用风能资源。
有功功率控制系统可以保证风电场的稳定运行。
在电网故障或电网负荷变化时,有功功率控制系统可以快速响应,通过调整风机的转角,使得风电场的有功功率保持在稳定状态,保护电网和风电场的安全运行。
有功功率控制系统还可以降低风电场对电网的影响。
通过控制风机的输出功率,可以减少因风能波动导致的电网频率和电压的波动,提高电网的稳定性和安全性。
随着风能行业的不断发展和成熟,有功功率控制系统也面临着新的挑战和机遇。
未来,有望出现更加智能化和自动化的有功功率控制系统。
通过引入先进的控制算法和人工智能技术,可以实现对风电场的全面监测和智能控制,使得风电场可以更好地适应复杂多变的外部环境。
有望出现更加柔性化和高效化的有功功率控制系统。
随着新型材料和新型技术的不断进步,有望开发出更加轻量化和高效化的风机转角控制装置,减小风机的机械损耗,提高风电场的发电效率。