数学建模讲义(PPT35张)

合集下载

数学建模第一章初等方法建模--数学模型讲义课件绪论

数学建模第一章初等方法建模--数学模型讲义课件绪论

模型 准备 模型 检验 模型 应用
模型 假设 模型 分析
模型 构成 模型 求解数学模型 Nhomakorabea王宏健 编
(内部使用 版权所有 翻印必究)
什么是数学建模?
数学建模就是对于现实世界的一个特定对象, 为了一个特定目的,根据特有的内在规律,做 出一些必要的简化假设,把一个现实问题转变 成一个数学问题,再通过求解该数学问题,从 而达到解决现实问题的目的。
数学模型的重要性
• 数学工具的应用范围近几十年来不断扩大,
已从传统的工程技术领域渗透到其他各领 域(如经济、管理、体育、医学、人文、 社会、生态、环境等)。 • 电子计算机的迅速发展使得数学的真正应 用成为可能。美国科学院院士A.Fridman 在一份报告中指出:“数学建模以及相关 的计算正在成为工程设计中的关键工具。”
建立数学模型的方法和步骤
• 在实验、观察和分析的基础上,对实际问题 的主要方面作出合理简化和假设; • 明确变量和参数,应用数学的语言和方法形 成一个明确的数学问题; • 用数学或计算的方法精确或近似地求解该问 题; • 分析、检验结果是否能说明实际问题的主要 现象。 • 这样的过程多次反复进行,直到能较好地解 决问题,这就是数学建模的全过程。

数学模型第01章第五版ppt课件

数学模型第01章第五版ppt课件
2)由 f, g 连续可得 h连续.
3)据连续函数的基本性质, 必存在0 ( 0< 0 < /2) , 使h(0)=0, 即 f(0) = g(0) . 4)因为 f(0) • g(0)=0, 所以 f(0) = g(0) = 0.
结论:在模型假设条件下,将椅子绕中心旋转, 一定能找到四只脚着地的稳定点.
表现特性 建模目的
确定和随机
静态和动态
离散和连续
线性和非线性
描述、优化、预报、决策、…
了解程度 白箱
灰箱
黑箱
1.8 怎样学习数学建模—— 学习课程和参加竞赛
数学建模与其说是一门技术,不如说是一门艺术.
技术大致有章可循. 艺术无法归纳成普遍适用的准则.
• 着重培养数学建模的意识和能力 数学建模的意识 对于日常生活和工作中那些需要 或者可以用数学知识分析、解决的实际问题,能够 敏锐地发现并从建模的角度去积极地思考、研究.
用 x 表示船速,y 表示水速,列出方程:
(x y) 30 750
x=20
( x y) 50 750 求解 y =5
答:船速为20km/h.
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数) • 用符号表示有关量(x, y分别表示船速和水速) • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程) • 求解得到数学解答(x=20, y=5)
1.4 建模示例之二 路障间距的设计
背景 校园、居民小区道路需要限制车速——设置路障 问题 限制车速≤40km/h, 相距多远设置一个路障?
分析 汽车过路障时速度接近零, 过路障后加速.
车速达到40km/h时让司机看到下一路障而 减速, 至路障处车速又接近零. 如此循环以达到限速的目的.

数学建模基础的讲义PPT104页

数学建模基础的讲义PPT104页
1x 3 2 2 0 1x 9 2 3 0 1x 5 2 4 0 1x 9 3 1 0 2x 0 3 2 0 2x 3 3 3 0
供应约束 约束条件
需求约束
x1 1x12 x13 x14 50 x21 x22 x23 x24 60 x31x32x3350
30 x11 x21 x31 80 70 x12 x22 x32 140 10 x13 x23 x33 30 10 x14 x24 50
1桶 牛奶 或
12小时 8小时
3公斤A1 4公斤A2
获利24元/公斤 获利16元/公斤
每天: 50桶牛奶 时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大
决策变量 x1桶牛奶生产A1 x2桶牛奶生产A2
目标函数 获利 24×3x1
获利 16×4 x2
每天获利 Mz a7 xx2 16x4 2
(五)按问题求解的特性可分为: 1.目标规划 2.动态规划 3.多层规划 4.网络优化 5.……等等
生产计划问题
例1 汽车厂生产计划
小型 钢材 1.5 时间 280 利润 2
中型 大型 现有量 3 5 600
250 400 60000 34
制订生产计划,使利润最大
决策变量 生产小型x1 中型x2 大型x3
决策变量 货物i装在第j舱的重量为xij 吨
i=1,2,3,4依次表示4种货物 j=1,2,3 分别代表前、中、后舱
目标函数 m Z a3x1 (x 1 0 1 x 10 2x 1)3 38 (x 2 0 1 x 20 2x 2)3
35 (x 3 0 1 x 30 2x 3)3 28 (x 4 5 1 x 40 2x 4)3
(二)按决策变量取值是否连续可分为:

数学建模介绍PPT课件

数学建模介绍PPT课件

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答


数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5

数学建模课件

数学建模课件

模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物. 模型集中反映了原型中人们需要的那一部分特征.
你碰到过的数学模型——“航行问题”
甲乙两地相距750km,船从甲到乙顺水航行需30h, 从乙到甲逆水航行需50h,问船的速度是多少? 用 x 表示船速,y 表示水速,列出方程:
数学建模的重要意义
―数学是一种关键的、普遍的、可以应用的技术”. 数学“由研究到工业领域的技术转化,对加强 经济竞争力具有重要意义”.
―计算和建模重新成为中心课题,它们是数学 科学技术转化的主要途径” .
数学建模的具体应用
• 分析与设计
• 预报与决策

控制与优化
• 规划与管理
数学建模
如虎添翼
计算机技术
评注和思考
建模的关键: 用表示椅子的位置 用 f(), g()表示椅脚与地面的距离 假设条件中哪些是本质的, 哪些是非本质的? 考察四脚连线呈长方形的椅子 (习题4). 证明过程的粗糙之处: 椅子的旋转轴在哪里,它在旋转过程中怎样 变化?
1.3.2 商人们怎样安全过河
问题(智力游戏) 随从们密约, 在河的任 一岸, 一旦随从的人数 比商人多, 就杀人越货. 乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 问题分析 多步决策过程
(ln 2) / 6 0.1155 (1 / h)
结果及分析
1200 1000 x(t) 800
胃肠道药量 x(t ) 1100 e 0.1386t
(e 0.1155t e 0.1386t ) 血液系统药量 y(t ) 6600 血液总量2000ml 血药浓度100μg/ml y(t) =200mg
认为血液系统内药物的分布,即血药浓度是均匀的, 可以将血液系统看作一个房室,建立“一室模型” . 血液系统对药物的吸收率 (胃肠道到血液系统的转移 率) 和排除率可以由半衰期确定. 半衰期可以从药品说明书上查到.

数学建模PPT课件

数学建模PPT课件
“树上有十只鸟,开枪打死一只,还剩几只?”
二、相关的数学基础
• 线性规划 • 概率统计 • 图论 • 常微分方程 • 最优化理论
三、如何组队及合作
• 根据数学建模竞赛章程,三人组成一队,这 三人中必须一人数学基础较好,一人应用数学 软件(如Matlab,lindo,maple等)和编程(如 c,Matlab,vc++等)的能力较强,一人科技论文 写作的水平较好。科技论文的写作要求整篇论 文的结构严谨,语言要有逻辑性,用词要准确。
2
• 它要用到各方面的综合的知识,但还不限于 此.参赛选手不只是要有各方面的知识,还要 驾驭这些知识,应用这些知识处理实际问题的 能力。知识是无止境的,还必须有善于获得新 的知识的能力。总之,数学建模竟赛,既要比 赛各方面的综合知识,也要比赛各方面的综合 能力。它的特点就是综合,它的优点也是综合。 在这个意义上看,它与任何一个学科领域内的 纯知识竞赛都不相同的特点就是不纯,它的优 点也就是不纯,综合就是不纯。
• 三人之间要能够配合得起来。若三人之间配 合不好,会降低效率,导致整个建模的失败。
• 如果可能的话,最好是数学好的懂得编程的 一些知识,编程好的了解建模,搞论文写作也
5
• 要了解建模,这样会合作得更好。因为 数学好的在建立模型方案时会考虑到编 程的便利性,以利于编程;编程好的能 够很好地理解模型,论文写作的能够更 好、更完全地阐述模型。否则会出现建 立的模型不利于编程,程序不能完全概 括模型,论文写作时会漏掉一些不经意 的东西。
• 于处理的是静态的独立数据,故称为数理统计 方法。
• 4. 时序分析法--处理的是动态的相关数据,又 称为过程统计方法。
• 三、仿真和其他方法
• 1. 计算机仿真(模拟)--实质上是统计估计方 法,等效于抽样试验。

数学建模ppt


例2 – cont.
• 模拟马式过程,先要抽出一随机数p • 可以通过上次确定状态的办法:
– 如果是健康状态且p<0.2,则下一状态为 生病,若p>=0.2,则下一状态为健康 – 如果是健康状态且p<0.2,则下一状态为 生病,若p>=0.2,则下一状态为健康
• 重复上述过程
例2 – cont.
模拟的几个主要方面
• • • • • • • 积分-Monte-Carlo 方法 泊松过程模拟 排队理论 正态分布模拟 布朗运动 随机游走 马式链
例1(离散事件模拟)
• 图书馆里有一本教学参考书,下表显示连续索 借间隔时间和借出时间与概率之间的关系:
索借间隔时 1 间(天)
2 0.4 0.5 3 0.10 0.15 4
1
6
1+1=2 2+2=4
5 5
√பைடு நூலகம்
-
2 6 …
解模
• • • • 写出Matlab程序, 1.模拟30天内索借请求序列 2.模拟30天内该书借出状态序列 3.回答索借请求被拒绝的概率以及书本 在外的时间比例 • 4.考虑模拟该书有两本Copy的情形
例2 马式链的模拟
• 设 t=1,2,… 表示年龄的时段,假定在 一年中,今年健康而明年患病的概率 是 0.2 而今年患病明年转为健康的概 率为 0.7 假设一个人在初时处于健康 状态,我们来研究若干年之后他健康 状态的过程。
• 写出Matlab 程序模拟十年,二十年这 个过程; • 反复模拟30次,计算在二十年这个节 点,这30次模拟的结果健康和生病状 态的比例; • 比较理论结果 • 模拟有死亡可能性的状态过程
例3 – 二叉树模拟
• 股票价格服从二叉数运动,即第二天的价格 只有两种可能:分别以概率p上跳u倍,或以 1-p的概率下跳d倍 • 写成随机方程:

数学建模常用方法介绍ppt课件


遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法

数学建模培训精品课件ppt


Python在数学建模中的应用
开源、跨平台
VS
Python是一种开源的、跨平台的编 程语言,被广泛应用于数学建模领域 。Python具有简洁的语法和丰富的 库,可以方便地进行数值计算和数据 可视化。
Python在数学建模中的应用
科学计算、数据分析
Python拥有许多科学计算和数据分析的库,如 NumPy、Pandas和SciPy等,可以方便地进行矩阵运 算、统计分析等。
MATLAB在数学建模中的应用
功能强大、广泛使用
MATLAB是一款由MathWorks公司开发的商业数学软件,主要用于算法开发、 数据可视化、数据分析以及数值计算。在数学建模领域,MATLAB因其强大的矩 阵运算和绘图功能被广泛使用。
MATLAB在数学建模中的应用
数值计算、算法开发
MATLAB提供了大量的内置函数,可以方便地进行数值计算,包括线性代数、微积分、常微分方程求解等。同时,它也支持 用户自定义函数,可以方便地进行算法开发。
2023 WORK SUMMARY
数学建模培训精品课 件
汇报人:可编辑
2023-12-26
REPORTING
目录
• 数学建模基础 • 数学建模应用实例 • 数学建模软件介绍 • 数学建模竞赛经验分享 • 数学建模前沿动态 • 数学建模课程建议与展望
PART 01
数学建模基础
数学建模的定义与重要性
方案优化等。
未来数学建模的发展趋势
跨学科融合
大数据与机器学习
随着各学科的交叉融合,数学建模将与其 他领域更加紧密地结合,形成新的研究领 域和应用方向。
随着大数据和机器学习技术的发展,数学 建模将更多地应用于数据分析和预测等领 域。

数学建模培训精品课件ppt


03
数学建模基础知识
代数基础
代数基本概念:定义、性质、 分类等
代数运算:加法、减法、乘法、 除法等
代数方程:一元一次方程、一 元二次方程等
代数不等式:一元一次不等式、 一元二次不等式等
几何基础
空间点、线、 面
方向导数与梯 度
欧几里得距离 公式
曲线和曲面的 切线与法平面
概率统计基础
概率论基本概念:事件、概率、 独立性等
添加标题
添加标题
添加标题
添加标题
数学建模是一种将数学语言应用 于实际问题的过程
数学建模是一种将数学模型应用 于实际问题的过程
数学建模的应用领域
工程科学:机械工程、电子 工程、土木工程、化学工程 等
自然科学:物理学、化学、 生物学、地球科学等
社会科学:经济学、社会学、 政治学、历史学等
医学与健康:生物医学、临 床医学、预防医学等
数学建模培训精品 课件ppt
单击此处添加副标题
汇报人:XXX
目录
添加目录项标题 数学建模基础知识 数学建模案例分析 数学建模培训总结与展望
数学建模概述 数学建模方法与技巧 数学建模实践项目
01
添加章节标题
02
数学建模概述
数学建模的定义
数学建模是一种用数学方法解决 实际问题的手段
数学建模是一种将实际问题抽象 为数学模型的过程
统计推断方法:参数估计和假设 检验
添加标题
添加标题
添加标题
添加标题
随机变量及其分布:离散型和连 续型随机变量
回归分析:线性回归和非线性回 归模型
微积分基础
导数与微分
积分
微积分的应用
微积分与数学 建模的联系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档