数学建模简单13个例子讲义.教学提纲

数学建模小实例

数学建模小实例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员 解: 设i x为第i班应报到的人员 i,建立线性模型如下: )6, ( ,2,1 LINGO程序如下: MODEL:

min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢 解答:

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

广东工业大学应用数学学院数学建模教学大纲Word版

《数学模型》课程教学大纲 Mathematics Modeling 课程编号:课程性质:专业基础理论课/ 选修 适用专业:信息安全、统计开课学期:4 学时数:56 学分数:3.5 编写年月:2006年6月修订年月:2007年1月 执笔者:陈学松 一、课程的性质、目的及任务 随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少的解决问题工具。“数学建模”课是培养学生在实际问题中的数学应用意识、训练学生把科技、社会等领域中的实际问题按照既定的目标归结为数学形式,以便于用数学方法求解得出更深刻的规律和属性,提高学生数学建模素质的一门数学应用类课程。因此,设立数学建模课程的意义在于:提高学生的数学素质和应用数学知识解决实际问题的能力,大力培养应用型人才。本课程是沟通实际问题与数学工具之间联系的必不可少的桥梁。是一门充分应用其它各数学分支的应用类课程,其主要任务不是“学数学”,而是学着“用数学”,是为培养善于运用数学知识建立实际问题的数学模型,从而善于解决实际问题的应用型数学人材服务的。通过本课程的学习,使学生较为系统的获得利用数学工具建立数学模型的基本知识、基本技能与常用技巧,培养学生的抽象概括问题的能力,用数学方法和思想进行综合应用与分析问题的能力,并着力导引实践—理论—实践的认识过程,培养学生辩证唯物主义的世界观。 二.课程教学基本要求 通过本课程的学习,使学生了解数学建模是利用数学知识构造刻划客观事物原型的数学模型,利用计算机解决实际问题的一种科学方法。掌握数学建模的基本步骤,即从实际问题出发,遵循“实践——认识——实践”的辨证唯物主义认识规律,紧紧围绕建模的目的,运用观察力、想象力和逻辑思维,对实际问题进行抽象、简化、反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。会利用数学知识和计算机解决问题,并能够撰写符合要求的数学建模论文。 三.课程教学基本内容、重点和难点 本课程的目的不是向学生传授系统的数学知识,而是将已学过的知识灵活运用到实际问题当中。其教学要求是逐步培养学生能够将实际问题“翻译”为数学语言,并予以求解,然后再解释实际现象,继而应用于实际的思想方法,最终提高学生的数学素质和应用数学知识

数学建模 简单的投资问题

数学建模简单的投资问题 建模论文—— 2011114114 覃婧 资金投资问题 摘要: 投资公司对现有资金进行投资,采取在无风险情况下,周期投资规律以及周期回收的资金的情况下,求取在一定时期内所掌握的的最大资金,建立相关线性规划公式,运用matlab或者lingo软件进行相关求解,得出最好的投资方式以盈利最大。此类问题适用于金融投资、证券投资等相关行业。关键词: matlab 目标函数设计变量目标变量新投资最大值 正文 一、问题重述: 某投资公司有资金200万元,现想投资一个项目,每年的投资方案如下“假设第一年投入一笔资金,第二年又继续投入此资金的50%,那么第三年就可回收第一年投入资金的一倍的金额。”请给该公司决定最优的投资策略使第六年所掌握的资金最多。 二、问题分析: 该问题作为线性规划问题,题目中给定的投资方案可以理解为每年投资金额,两年作为一个投资周期,三年作为一个资金回收周期,即第三年回收资金,每一个投资周期中偶数年的投资额与前一年是有关的,而且从第三年开始,每一年的回收金额是前两年投资金额的两倍,故以此类推,我们可以得到每年所掌握的资金,以求得第n年所掌握的最大金额。 所以该模型的目标变量为每年所掌握的资金,而设计变量为每年所进行的新投资。 设表示第i年所进行新投资的的资金,表示第i年所掌握的资金,xyii

(i=1,2,3,...n)则有: y,200,x第一年 11 3xx11200200y,,x,,x,,,x第二年: 212222 xx312y,200,,x,,x,2x第三年: 323122 xx3112y,200,,,x,x,x,2x第四年: 43342222 xx3112y,200,,,x,x,x,2x,x 第五年: 5344352222 13xxx1252002y,,,,x,x,x,,x 第六年: 6344622222 以此类推: xxx3n12,4y,200,,,...,,x,2x第n-1年: n,1n,3n,32222 xxx3n12,3y,200,,,...,,x,2x第n年: nn,2n,22222三、模型假设: 1(该投资模型实在稳定的经济条件下进行,没有任何风险; 2(每年的投资项目固定不变,不会有资金的额外转移; 3(每年所回收的资金都是依据题目条件固定的纯收益; 4. 每年的资金投资是连续的,是可以进行零投资的; 5. 新的投资不影响旧的投资。 四、符号定义与说明: 1. 表示第i年所进行新投资的的资金, xi 2.表示第i年所掌握的资金,(i=1,2,3,...n); yi 3. 表示最初手头上的资金。 y0 五、模型求解: 根据线性模型中目标变量与设计变量的线性关系我们可以得出该模型的线性公式为: xxx3n12,3max(200,,,...,,x,2x) n,2n,22222 x,200 1 x1,x,200,x 212

简单的数学建模题目

《数学模型及数学软件》上机报告 专业:班级::学号: 地点及机位编号:日期时间:5月26日 一、上机训练题目或容 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。 二、数学模型或求解分析或算法描述 解:设: 报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要确定最优订购量n。 n的意义:n是每天购进报纸的数量,确定n一方面可以使报童长期以拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸浪费。所以,笔者认为n的意义是双重的。 本题就是让我们根据a、b、c及r来确定每日进购数n。 基本假设 1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。 2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的分布函数,只知道每份报纸的进价b、售价a及退回价c。 3、假设每日的定购量是n。 4、报童的目的是尽可能的多赚钱。 建立模型 应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。而报童却因为自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。但是要得到n值,我们可以从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。 由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。现在用简单的数学式表示这三种结果。 1、赚钱。赚钱又可分为两种情况: ①r>n,则最终收益为(a-b)n (1) r0 整理得:r/n>(b-c)/(a-c) (2) 2、由(2)式容易得出不赚钱不赔钱 r/n=(b-c)/(a-c) (3) 3、赔钱 r/n<(b-c)/(a-c) (4) 三、结果或结论 模型的求解 首先由(1)式可以看出n与最终的收益呈正相关。收益越多,n的取值越大。但同时订购量n又由需求

数学建模 教学大纲

《数学建模》教学大纲 一、课程的基本信息 课程编码:课程性质:专业必修课 总学时:64学时学分:4 开课单位:信息管理学院适用专业:信息与计算科学 先修课程:高等数学、线性代数、概率论与数理统计 二、课程目的与任务 数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。是基础数学科学联系实际的主要途径之一。通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。 三、课程教学基本要求 数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。 五、课程教学基本内容 导引建立数学模型 教学内容:

1、什么是数学建模 2、为什么学习数学建模 3、怎样学习数学建模 MATLAB软件初步(1) MATLAB软件初步(2) 重点: 1、数学建模基本方法; 2、数学建模能力的培养; 难点:MATLAB软件应用; 第1章数据分析模型 教学内容: 薪金到底是多少 评选举重总冠军 估计出租车的总数 解读CPI MATLAB 矩阵 NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式 重点: 1、薪金到底是多少; 2、评选举重总冠军; 3、NBA赛程的分析与评价; 难点: MATLAB 矩阵; 第2章简单优化模型 教学内容: 倾倒的啤酒杯 铅球掷远 不买贵的只买对的 MATLAB符号计算 影院里的视角和仰角 MATLAB 绘图 易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点: 1、倾倒的啤酒杯; 2、不买贵的只买对的; 3、易拉罐形状和尺寸的最优设计; 难点:MATLAB 绘图; 第3章差分方程模型 教学内容: 贷款购房 管住嘴迈开腿 MATLAB m文件与m函数 物价的波动

数学建模 练习题1

2.14成绩与体重数学建模 一、问题 举重比赛按照体育运动员的体重分组,你能在一些合理、简单的假设下,建立比赛成绩与体重之间的关系吗?下面是下一届奥运会的成绩,可供检验你的模型。 一、问题分析 成绩与肌肉的力度有直接关系,随着力度的增加,成绩呈上升趋势。 假设力度与肌肉横截面积成正比,而截面积和体重都与身体的某个特征尺寸有直接关联。由此可以找到成绩和体重之间的关系。可以以此建立模型。

二、模型假设以及符号说明 1.本模型主要考虑运动员举重总成绩和体重的关系,所以假设运动员其他条件相差不大。 2.运动员的举重能力用其举重的总成绩来刻画 3.符号说明: 人的体重 W 人的身高 h 肌肉横截面积 S 人的体积 V 肌肉强度 T 举重成绩 C 非肌肉重量 W1 斜率 K 三、模型构成 模型一 1.题中给出举重比赛按照体育运动员的体重分组,所以我们猜测成绩与体重应该是正比关系。 2.画出坐标图,体重越重,成绩越好,进一步验证了正比关系。 最大体重

从上图可以看出,体重越大,举重总成绩相对越好,所以我们猜测举重总成绩与体重大概成线性关系。则,我们可以用一次函数C=kW+b对三个体重进行拟合,根据图中数据,可得: = = 2.66, = = 1.45, = = 1.17 把b代入得出三个一次函数为: = 2.66W+143.8, = 1.45W+75.1, = 1.17W+69.7, 用上述模型计算得到的理论值,并画出图表与原图表进行比较: 最大体重

通过比较两个图表,我们可以推测体重与成绩数据的推测图表和已知图标的拟合度并不是特别的理想,所以我们可以认为用线性函数对举重总成绩与体重进行拟合的模型过于简单、粗略,考虑的因素比较少。 模型二 我们这一次综合各种因素来进行分析建模。 通过查阅各种自然科学磁疗,我们可以近似以为:一般举重运动员的举重能力是用举重成绩来衡量,而举重运动员的举重能力与其肌肉强度近似成正比关系,从而举重运动员的举重总成绩与其肌肉强度近似成正比,即: C = T (为常数且>0) ○1从运动生理学得知,肌肉的强度与其横截面积近似成正比,即: T = S (为常数且>0) ○ 2综合○1,○2可得 C=T=S ○3通过查阅资料,我们可以假设肌肉的横截面积正比于身高的平方,人的体重正比于身高的三次方,即可得: S = , W = (,为常数且>0,>0) 综合上述所有算式,我们有: C= S = ○ 4 因为W = ,我们可以推测出举重运动员举重总成绩与其体重的关系为: C = 利用题目表格中所给的体重和举重总成绩数据,求出上述模型的常数M。利用题目表格中所给的体重和举重总成绩数据,运用最小二乘法求出上述模型的系数 K 。因为体重超过108千克的运动员的体重没有具体的数据,为了模型的准确性,故将这个数据舍去。经过代入9次运算得出平均常数,为=20.3,=9.6,=9.0。于是举重运动员的举重总成绩与体重的关系模型为

《数学建模》课程教学大纲

《数学建模》课程教学大纲 课程编号: 总学时数:32 总学分数:2 课程性质:专业必修课 适用专业:数学与应用数学、信息与计算科学 一、课程的任务和基本要求: 课程的性质和任务: 数学建模是数学与应用数学专业、信息与计算数学专业的一门必修课程,是大学数学课程的重要组成部分,它是在数学分析、高等代数、概率论与数理统计等课程基础上开设的重要教学环节,它将数学知识、实际问题与计算机应用有机地结合起来,旨在培养学生运用所学知识解决实际问题的意识和创新思维,激发学生学习数学的兴趣,了解数学广泛的应用领域,提高学生的综合素质和分析问题、解决问题的能力。 课程的基本要求: 1、在大学数学基础课的教学内容基础上进一步突出培养学生解决实际问题的能力; 2、学会运用数学知识建立实际问题的数学模型并求解,对较复杂的问题能够使用数学软件或编程求解; 二、基本内容和要求: (一)建立数学模型 内容: (1)初等建模示例:椅子能在不平地面上放稳吗,预报人口增长等; (2)有关数学建模的基本知识。 目的和要求: 理解数学模型的意义、内容和方法,掌握建立数学模型的一般步骤。 (二)初等模型 内容: (1)建模示例:公平席位分配,双层玻璃窗的功效等; (2)讨论与交流:录音机计数器,商品的包装。 目的和要求: 由建模实例进一步了解和熟悉建模的方法和步骤,了解对实际问题的分析、抽象过程,基本掌握用初等方法建立数学模型。 (三)简单的优化模型 内容: (1)建模示例:存储模型,森林救火,最优价格等; (2)讨论与交流:冰山运输 目的和要求: 基本掌握建立静态优化模型的一般方法,会利用微分法解决优化问题。 (四)数学规划模型 内容: (1)建模示例:奶制品的生产与销售,汽车生产与原油采购,钢管和易拉罐下料等; (2)讨论与交流:自来水的输送,接力队员的选拔 目的和要求: 理解规划优化模型的思想与意义,掌握建立规划模型的一般方法,能够利用优化软件求解规划模型的解。

数学建模教学大纲

数学建模教学大纲 适合非数学专业理工科课程(60学时) 一、课程内容简介 数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、图论模型、线性规划模型等模型的基本建模方法及求解方法。 二、教学目的及任务 数学建模是继本科生高等数学、工程数学之后进一步提高运用数学知识解决实际问题、基本技能,培育和训练综合能力所开设的一门新学科。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。 三、本课程与其它课程的关系 在学习本课程前需要基本掌握下列课程内容:高等数学、线性代数、概率论与数理统计。由于本课程的学习,只要是使学生掌握数学知识,解决实际问题能力,这种能力提高有助其它专业课的学习。 四、本课程基本内容要求 1、绪论 1)、基本要求使学生正确地了解数学描写和数学建模的不同于数学理论的思维特征,了解数学模型的意义及分类,理解建立数学模型的方法及步骤。 2)、课程内容建模概论、数学模型概念、建立数学模方法、步骤和模型分类、数学模型实例: (1)稳定的椅子问题(2)商人过河问题(3)人口增长问题(4)公平的席位问题 2、初等模型 1)、基本要求掌握比例方法、类比方法、图解法、定性分析方法及量纲分析方法建模的基本特点。能运用所学知识建立数学模型,并对模型进行综合分析。 2)、课程内容(1)双层玻璃窗的功效问题(2)划艇比赛的成绩(3)动物身长和体重(4)核军备竞赛(5)量纲分析与无量纲化 3、简单优化模型 1)、基本要求了解优化模型的建模建立思想,理解优化模型的一般意义,掌握优化模型求解方法。 2)、课程内容(1)存贮模型(2)森林救火(3)血管分支(4)冰山运输 4、线性规划模型 1)、基本要求熟练掌握单纯形方法,深刻理解线性规划模型的基本特点,理解优化模型的一般意义,能结合计算机软件解决线性规划模型。 2)、课程内容(1)线性规划预备知识(2)奶制品的生产与销售(3)自来水输送与货机装运 (4)汽车生产与原油采购(5)接力队的选拔与选课策略 5、离散模型 1)、基本要求了解层次分析法,深刻理解层次分析法建模的基本特点,熟练掌握层次分析法建模 方法。 2)、课程内容(1)层次分析法模(2)循环比赛的名次(3)效益的合理分配 6、微分方程模型

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

《数学建模》通识选修课教学大纲

《数学建模》同时选修课课程教学大纲 课程编码: 课程名称:数学建模 总学时:32 讲课学时:32 实验学时:0 学分:2 一说明 1、教学目的及任务 数学建模是继本科生高等数学、工程数学之后进一步提高运用数学知识解决实际问题、基本技能,培育和训练综合能力所开设的一门新学科。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。 2、本课程与其它课程的关系 在学习本课程前需要基本掌握下列课程内容:高等数学、线性代数、概率论与数理统计。由于本课程的学习,只要是使学生掌握数学知识,解决实际问题能力,这种能力提高有助其它专业课的学习。该课程是计算机、信息与计算科学及应用数学各专业的必修课程,是各专业的专业基础课程。离散数学是现代数学的一个重要分支。是计算机科学中基础理论的核心课程,是计算机科学和计算机技术的重要基础课之一。通过这门课程的学习,不但要使学生掌握离散量的结构及其相互间的关系,而且要培养学生的抽象思维,逻辑推理,符号演算和慎密思维的能力。为计算机科学中的数据结构,操作系统,编译理论,算法分析,逻辑设计,系统结构等课程的学习垫定必要的数学基础。 4、本课程的考核办法 平时成绩+期末成绩。 二课程讲授内容 1、绪论(2学时) 基本要求:使学生正确地了解数学描写和数学建模的不同于数学理论的思维特征;了解数学模型的意义及分类;理解建立数学模型的方法及步骤。

数学建模练习试题

1、放射性废料的处理问题 美国原子能委员会以往处理浓缩的放射性废料的方法,一直是把它们装入密封的圆桶里,然后扔到水深为90多米的海底。生态学家和科学家们表示担心,怕圆桶下沉到海底时与海底碰撞而发生破裂,从而造成核污染。原子能委员会分辨说这是不可能的。为此工程师们进行了碰撞实验。发现当圆桶下沉速度超过12.2 m/s 与海底相撞时,圆桶就可能发生碰裂。这样为避免圆桶碰裂,需要计算一下圆桶沉到海底时速度是多少? 这时已知圆桶重量为239.46 kg,体积为 0.2058m3,海水密度为1035.71kg/m3,如果圆桶速度小于12.2 m/s就说明这种方法是安全可靠的,否则就要禁止使用这种方法来处理放射性废料。假设水的阻力与速度大小成正比例,其正比例常数k=0.6。现要求建立合理的数学模型,解决如下实际问题: 1. 判断这种处理废料的方法是否合理? 2. 一般情况下,v大,k也大;v小,k也小。当v很大时,常用kv来代替k,那么这时速度与时间关系如何? 并求出当速度不超过12.2 m/s,圆桶的运动时间和位移应不超过多少? (的值仍设为0.6) 鱼雷攻击问题 在一场战争中,甲方一潜艇在乙方领海进行秘密侦察活动。当甲方潜艇位于乙方一潜艇的正西100千米处,两方潜艇士兵同时发现对方。甲方潜艇开始向正北60千米处的营地逃跑,在甲方潜艇开始逃跑的同时,乙方潜艇发射了鱼雷进行追踪攻击。假设甲方潜艇与乙方鱼雷是在同一平面上进行运动。已知甲方潜艇和乙方鱼雷的速度均匀且鱼雷的速度是甲方潜艇速度的两倍。 试建立合理的数学模型解决以下问题: 1) 求鱼雷在追踪攻击过程中的运动轨迹; 2) 确定甲方潜艇能否安全的回到营地而不会被乙方鱼雷击中 3、贷款买房问题 某居民买房向银行贷款6万元,利息为月利率1%,贷款期为25年,要求建立数学模型解决如下问题: 1) 问该居民每月应定额偿还多少钱? 2)假设此居民每月可节余700元,是否可以去买房? 4、养老保险问题 养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案以供选择,分析保险品种的实际投资价值。 某保险公司的一份材料指出:在每月交费200元至60岁开始领取养老金的约定下,男子若25岁起投保,届时月养老金2282元;若35岁起投保,月养老金1056元;若45岁起投保,月养老金420元. 试求出保险公司为了兑现保险责任,每月至少应有多少投资收益率(也就是投保人的实际收益率)? 5、生物种群数量问题

《数学建模》教学大纲与教学计划

江西工业贸易职业技术学院 《数学建模》公选课教学大纲与教学计划 (30学时) 一、课程内容简介 数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、图论模型、线性规划模型等模型的基本建模方法及求解方法。 二、教学目的及任务 数学建模是继高等数学、工程数学之后进一步提高运用数学知识解决实际问题、基本技能,培育和训练综合能力所开设的一门新学科。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。 三、本课程与其它课程的关系 在学习本课程前需要基本掌握下列课程内容:高等数学、线性代数、概率论与数理统计、线性规划等课程。由于本课程的学习,只要是使学生掌握数学知识,解决实际问题能力,这种能力提高有助其它专业课的学习。 四、本课程基本内容要求 1、绪论 1)、基本要求:使学生正确了解数学描写和数学建模的不同于数学理论的思维特征,了解数学模型的意义及分类,理解建立数学模型的方法及步骤。 2)、课程内容:建模概论、数学模型概念、建立数学模方法、步骤和模型分

类、数学模型实例: (1)稳定的椅子问题(2)商人过河问题(3)人口增长问题(4)公 平的席位问题 2、初等模型 1)、基本要求:掌握比例方法、类比方法、图解法、定性分析方法及量纲分析方法建模的基本特点。能运用所学知识建立数学模型,并对模型进行 综合分析。 2)、课程内容:(1)双层玻璃窗的功效问题(2)划艇比赛的成绩(3)动物身长和体重(4)核军备竞赛(5)量纲分析与无量纲化 3、简单优化模型 1)、基本要求:了解优化模型的建模建立思想,理解优化模型的一般意义,掌握优化模型求解方法。 2)、课程内容:(1)存贮模型(2)森林救火(3)血管分支(4)冰山运输4、线性规划模型 1)、基本要求:熟练掌握单纯形方法,深刻理解线性规划模型的基本特点,理解优化模型的一般意义,能结合计算机软件解决线性规划模型。 2)、课程内容:(1)线性规划预备知识(2)奶制品的生产与销售(3)自来水输送与货机装运 5、微分方程模型 1)、基本要求:了解微分方程定性与稳定性基本理论及变分法的基本理论,深刻理解微分方程,微分方程定性与稳定性及变分法建模的基本特点。 熟练掌握微分方程,微分方程定性与稳定性理论及变分法建模方法。 2)、课程内容:(1)传染病模型(2)济济增长模型(3)正规战与游击战(4)药物在体内的分布与排除(5)微分方程稳定性理论简介 6、差分方程模型 1)、基本要求:了解差分法基本理论,深刻理解差分法基本特点,熟练掌握差分法建模方法。 2)、课程内容:(1)市场经济中的蛛网模型(2)减肥计划—节食与运动(3)按年龄分组的种群增长

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角 坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A 、B 离地距离之和, ()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ 的连续函数。又由假设(3),三条腿总能同时着地, 故 ()f θ()g θ=0必成立(?θ )。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ 的连续函数, (0)0f =,(0)0g >且对任意θ 有 00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθ θ=-,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

数学建模练习题

数学建模习题 题目1 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.5元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减小的程度变小,解释实际意义是什么。 解答: (1)分析:生产成本主要与重量w成正比,包装成本主要与表面积s成正比,其他成本也包含与w和s成正比的部分,上述三种成本中都包含有与w,s 均无关的成本。又因为形状一定时一般有,故商品的价格可表示 为(α,β,γ为大于0的常数)。 (2)单位重量价格,显然c是w的减函数。说明大 包装比小包装的商品更便宜,曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。 函数图像如下图所示: 题目2 2.在考虑最优定价问题时设销售期为T,由于商品的损耗,成本q随时间增长,设,β为增长率。又设单位时间的销售量为(p为价格)。今将销售期分为和两段,每段的价格固定,记为,.求,的最优值,使销售期内的总利润最大。如果要求销售期T内的总销售量为,

再求,的最优值。 解答: 由题意得:总利润为 ,=+ = 由=0,,可得最优价格 , 设总销量为, 在此约束条件下的最大值点为 , 题目3 (与数量无关),随3.某商店要订购一批商品零售,设购进价,售出,订购费c 机需求量r的概率密度为p(r),每件商品的贮存费为(与时间无关)。问如何确定订购量才能使商店的平均利润最大,这个平均利润是多少。为使这个平均利 加什么限制? 润为正值,需要对订购费c 解答: 设订购量为u,则平均利润为

《数学建模》课程教学大纲

《数学建模》课程教学大纲 课程编号: 90907011 学时:32 学分:2 适用专业:本科各专业 开课部门:各学院 一、课程的性质与任务 数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。本课程主要介绍初等模型、简单优化模型、微分方程模型、概率统计模型、数学规划模型等模型的基本建模方法及求解方法。 通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。 三、实践教学的基本要求 (无) 四、课程的基本教学内容及要求 第一章数学模型概述 1.教学内容 数学模型与数学建模、数学建模的基本方法和步骤、数学模型的特点和分类。 2.重点与难点 重点:数学模型与数学建模。 难点:数学建模的基本方法和步骤。

3.课程教学要求 了解数学模型与数学建模过程;了解数学建模竞赛规程;掌握几个简单的智力问题模型。 第二章初等模型 1.教学内容 双层玻璃窗的功效、动物的身长与体重。 2.重点与难点 重点:初等方法建模的思想与方法。 难点:初等方法建模的思想与方法。 3.课程教学要求 了解比例模型及其应用。 第三章简单的优化模型 1.教学内容 存贮模型、最优价格。 2.重点与难点 重点:存贮模型。 难点:存贮模型。 3.课程教学要求 掌握利用导数、微分方法建模的思想方法;能解决简单的经济批量问题和连续问题模型。 第四章数学规划模型 1.教学内容 线性规划建模、非线性规划建模,奶制品的生产与销售、接力队的选拔与选课策略、钢管和易拉罐下料。 2.重点与难点 重点:线性规划方法建模、非线性规划建模。 难点:非线性规划方法建模、Lingo软件的使用。 3.课程教学要求 掌握线性规划建模方法;了解对偶单纯形的经济意义;了解Lingo数学软件在解决规划问题中的作用。 第五章微分方程模型 1.教学内容 传染病模型、药物在体内的分布与排除、人口的预测和控制。 2.重点与难点 重点:微分方程方法建模。 难点:微分方程方法建模。 3.课程教学要求 掌握微分方程建模的基本方法;掌握用Matlab求解微分方程的方法。 第六章离散模型 1.教学内容

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

“数学建模”课程简介及教学大纲

“数学建模”课程简介及教学大纲 课程代码:112010131 课程名称:数学建模 课程类别:专业基础课 总学时/学分:72/4 开课学期:第五学期 适用对象:数学与应用数学专业、信息与计算科学专业 先修课程:数学分析、高等代数、概率统计 内容简介:本课程主要通过各个领域中的实例介绍各种数学方法建模,主要包括:初等数学方法与实验;Matlab、Lingo的使用;微分法建模与实验;微分方程建模与实验;差分法建模与实验;优化方法建模与实验;离散方法建模与实验;随机方法建模与实验。 一、课程性质、目的和任务 1.性质:数学与应用数学、信息与计算科学专业必修课。数学建模是将实际问题依其自身的特点和规律,经过去粗取精、去伪存真、抓住主要矛盾,进行抽象简化和合理假设,用数学的语言和方法转化为数学问题,然后选择适当的数学方法和工具,给予数学的分析与解答,再将所给出的结果返回到所论的实际问题中去进行检验,符合实际则数学建模成功,否则再从头开始,如此反复多次,直至通过实践检验为止。数学模型是架于数学理论和实际问题之间的桥梁,?数学建模是应用数学解决实际问题的重要手段和途径。本课程通过大量实例介绍数学建模的全过程。 2.目的:通过向学生展示各种不同实际领域中的数学问题和数学建模方法,通过对一系列来自不同领域的实际问题的提出、分析、建模和求解的学习与训练,激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,开拓知识面,培养创新精神,提高学生分析问题、解决问题和计算机应用的能力。 3. 任务:本课程旨在通过建模训练培养:(1)学生用数学工具分析解决实际问题的意识并逐步提高其洞察能力。(2)学生用数学思想和方法综合分析实际问题的能力。(3)学生的联想能力。(4)学生熟练地使用计算机和数学软件包的能力。即培养学生的建模能力和解决实际问题的能力。 二、课程教学内容及要求 第一章绪论: 1、数学建模的意义; 2、数学建模的方法和步骤;数学模型的分类。 要求:1.理解数学模型和数学建模的意义; 2.掌握数学建模的方法和步骤; 3.了解数学模型的特点和建模能力的培养; 4.了解数学模型的分类。 第二章实验软件介绍: 1、Matlab入门; 2、Matlab作图; 3、工具箱使用; 4、Lingo使用。 要求:1.了解Matlab、Lingo的特点;

相关文档
最新文档