基于单片机的数字温度计设计
单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计
数字温度计是一种用于测量环境温度的设备。
在这个问题中,我们将使用基于STM32的单片机来设计一个数字温度计。
为了设计这个温度计,我们需要以下组件和步骤:
1. STM32单片机:STM32是一种基于ARM架构的单片机,它具有强大的计算能力和丰富的外设接口,适用于各种应用。
2. 温度传感器:我们需要选择一种适合的温度传感器,常用的有数字式温度传感器,如DS18B20。
3. 连接电路:将温度传感器连接到STM32单片机。
这通常需要使用一些电子元件,如电阻、电容和连接线等来建立电路连接。
4. 编程:使用适合STM32单片机的编程语言,如C语言,来编写程序。
程序将读取温度传感器的数据,并将其转换为数字值。
5. 温度显示:将温度数据显示在合适的显示设备上,如LCD显示屏或七段数码管。
可以使用STM32单片机的GPIO口控制这些显示设备。
6. 数据处理:可以对温度数据进行进一步处理,如计算平均温度、设定警报阈值等。
以上是一个基本的数字温度计设计的流程。
具体的实现细节和代码编写可能需要根据具体的硬件和软件平台进行调整。
基于单片机的数字温度计的课程设计

基于单片机的数字温度计的课程设计随着科技发展,单片机技术受到了广泛的应用,并得到了广泛的重视。
本设计以现有单片机ADUC7024系统为基础,设计和实现了一款基于单片机的数字温度计,旨在解决过热或者过冷的问题,通过温度检测器在给定的温度范围内确定温度,并控制过热和过冷的情况。
(一)设计的概述本设计的主要内容是分析ADUC7024硬件,对硬件进行器件选型,完成系统模块的设计,以及ADUC7024以现有程序设计语言完成控制程序设计,最后采用ADUC7024作为控制器,与温度检测器、LED等模块进行硬件联通,完成一个简单的温度检测控制系统。
1、器件选型:本设计采用ADUC7024作为系统的控制器,采取温度传感器采用的是DS18B20温度芯片芯片,显示采用的是LED系列的指示灯,系统开关采用的是两个按键作为上升按钮和下降按钮。
2、硬件模块:本次设计以ADUC7024硬件为主框架,以温度检测器连接ADUC7024控制器,可以实现温度范围内数字检测,LED显示屏以温度为参数,可根据设定的温度范围指示异常温度;系统开关采用按键开关来控制,多出的端口可实现报警功能。
本设计采用ADUC7024系统控制器,设计一款基于单片机的温度检测控制系统的电路,主要包括:外部中断、输入输出口、充电输出和按键检测电路,电路图如下图1所示:1、主程序:本次设计采用C语言编写,主程序负责实现温度检测、控制操作功能。
主程序中采用外部中断和充电输出实现数据的获取和操作的控制,采用按键输入调节温度,并且可以把某一温度范围内的上下限定值写入EEPROM,控制系统会及时获取当前温度,比较当前温度与上下限值,如果出现过热或者过冷,则会发出警报。
2、子程序:本次设计还编写了多个子程序,用于实现数据处理、按键检测等功能,并在主程序中进行调用,使程序更加规范。
51单片机数字温度计设计与应用

51单片机数字温度计设计与应用数字温度计在现代生活中有着广泛的应用,它能够将环境温度转换为数字信号,提供直观、准确的温度数据。
本文将介绍基于51单片机的数字温度计的设计与应用。
设计思路:1. 硬件设计首先,我们需要选取一个合适的温度传感器,例如DS18B20。
该传感器具有高精度、数字输出、带有内部校准和非易失性存储器等特点,非常适合作为数字温度计的传感器。
其次,我们需要引入一个51单片机,常用的有AT89C51、AT89S52等。
单片机负责控制传感器和显示器,并处理温度数据。
接下来,我们需要一个LED数码管或液晶显示屏作为温度显示器。
数码管简单且易于操作,而液晶显示屏可以提供更多的信息显示。
最后,我们还需添加一些辅助电路,如稳压电路、时钟电路等,以确保正常的运行。
2. 软件设计在单片机的程序设计方面,我们需要考虑以下几个步骤:(1)初始化各个引脚和外部设备,如温度传感器和显示屏。
(2)读取温度传感器输出的数字信号,通过数据线将其与单片机相连。
(3)通过一系列算法将数字信号转换为实际的温度值。
因为DS18B20传感器提供数字输出,所以支持该类算法的编程非常简单。
(4)将计算得到的温度值通过数码管或液晶显示屏进行显示。
如果是数码管,可以通过数码管驱动芯片来实现多位数的显示。
(5)可选的增加报警功能,当温度超过一定阈值时,触发报警。
应用场景:数字温度计可以在许多场景中应用,下面介绍几个常见的应用场景:1. 家庭温度监测在家庭中,我们可以将数字温度计放置在客厅、卧室等常用区域,用于监测室内温度。
通过数字温度计,我们可以实时了解室内的温度状况,根据需要进行调节,提供舒适的生活环境。
2. 温室控制在温室种植中,保持适宜的温度对于植物的生长至关重要。
数字温度计可以帮助种植者实时监测温室内的温度,并及时采取相应的措施,维持温室内的温度在适宜的范围内。
3. 实验室温度监测实验室需要严格控制温度,以确保实验的准确性和稳定性。
基于单片机数字温度计课程设计

基于单片机数字温度计课程设计
基于单片机的数字温度计课程设计是一个非常有趣和实用的项目。
首先,我们需要选择合适的单片机,比如常用的Arduino或者STM32等。
然后,我们需要选择合适的温度传感器,比如LM35或者DS18B20等。
接下来,我们可以按照以下步骤进行课程设计:
1. 硬件设计,首先,我们需要将单片机和温度传感器连接起来,这涉及到电路设计和焊接。
我们需要确保电路连接正确,传感器能
够准确地读取温度,并且单片机能够正确地接收并处理传感器的数据。
2. 软件设计,接下来,我们需要编写单片机的程序,以便能够
读取传感器的数据,并将其转换为数字温度值。
我们可以使用C语
言或者Arduino的编程语言来实现这一步骤。
在程序设计中,需要
考虑到温度的单位转换、数据的精度等问题。
3. 显示设计,我们可以选择合适的显示设备来展示温度数值,
比如数码管、液晶显示屏或者OLED屏幕等。
在设计中,我们需要考
虑到显示的清晰度、易读性以及节能等因素。
4. 功能扩展,除了基本的温度显示功能,我们还可以考虑对数
字温度计进行功能扩展,比如添加报警功能、数据存储功能或者远
程监控功能等,这些功能的添加可以提升数字温度计的实用性和趣
味性。
5. 测试与优化,最后,我们需要对设计的数字温度计进行测试,并不断优化,确保其稳定可靠、准确无误地显示温度。
总的来说,基于单片机的数字温度计课程设计涉及到硬件设计、软件设计、显示设计、功能扩展、测试与优化等多个方面,学生可
以通过这样的课程设计项目,全面提升自己的电子设计和编程能力,同时也能够实现一个实用的数字温度计产品。
基于单片机的数字温度计的设计

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1 设计简介 (1)1.1设计背景 (1)1.2设计达到的预期目的 (1)2方案论证 (1)2.1测温电路方案设计 (1)2.2显示电路方案设计 (2)2.3方案比较 (3)2.4温度计工作原理 (3)3硬件电路设计 (1)3.1系统电源电路的设计 (1)3.2主板电路 (1)3.2.1单片机 AT89S52芯片介绍 (1)3.2.2 DS18B20温度传感器简介 (5)3.3 温度显示电路 (10)3.3.1 液晶显示器各种图形的显示原理 (11)3.3.2字符型LCD1602简介 (12)4软件设计 (2)4.1 主程序流程图 (2)4.2 读出温度子程序流程图 (3)4.3 温度转换命令子程序流程图 (3)4.4 计算温度子程序流程图 (4)4.5显示数据刷新子程序流程图 (4)5 Proteus仿真调试 (1)5.1 Proteus软件介绍 (1)5.2 Proteus界面介绍 (1)5.3 Keil软件简介 (2)5.4 设计仿真过程 (4)5.4.1 仿真原理图绘制 (4)5.4.2 系统调试 (5)5.4.3开始仿真 (5)6 总结和改进方法 (1)参考文献 (1)致谢 (1)附录1 程序清单 (1)附录2 元器件清单 (8)基于单片机的数字温度计设计摘要:单片机自20世纪70年代问世以来,已广泛的应用在工业自动化、自动检测与控制系统、智能仪器仪表、机电一体化设备、汽车电子、家用电器等各方面。
本文将介绍一种基于单片机控制的数字温度计,用单片机实现水温测量。
传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。
本次采用DS18B20数字温度传感器来实现基于AT89S52单片机的数字温度计的设计,用LCD1602液晶显示以串口传送数据,实现温度显示,单片机能独立对温度进行检测、控制,能准确达到要求。
基于51单片机的数字温度计

引言:数字温度计是一种基于51单片机的温度测量装置,它通过传感器感知环境的温度,并使用单片机将温度值转换为数字形式,并显示在液晶屏上。
本文将详细介绍数字温度计的设计原理、硬件连接、软件编程以及应用领域。
概述:数字温度计基于51单片机的设计理念,其基本原理是通过传感器将温度转换为电信号,然后通过ADC(模数转换器)将电信号转换为数字信号,最后使用单片机将数字信号转换为温度值。
同时,数字温度计还将温度值显示在液晶屏上,方便用户直观地了解环境温度。
正文内容:1. 硬件连接:1.1 使用温度传感器感知环境温度:常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
通过将传感器连接到51单片机的引脚上,可以实现对环境温度的感知。
1.2 连接ADC进行模数转换:ADC是将模拟信号转换为数字信号的关键部件。
通过将51单片机的引脚连接到ADC芯片的输入端,可以将模拟的温度信号转换为数字信号。
1.3 连接液晶屏显示温度值:通过将51单片机的引脚连接到液晶屏的控制引脚和数据引脚,可以将温度值以数字形式显示在液晶屏上。
2. 软件编程:2.1 初始化引脚和ADC:在软件编程中,需要初始化51单片机的引脚设置和ADC的工作模式。
通过设置引脚为输入或输出,以及设置ADC的参考电压和工作模式,可以确保硬件正常工作。
2.2 温度测量算法:根据传感器的工作原理和电压-温度特性曲线,可以编写相应的算法将ADC测得的电压值转换为温度值。
例如,对于NTC热敏电阻,可以使用Steinhart-Hart公式进行温度计算。
2.3 温度值显示:将温度值以数字形式显示在液晶屏上。
通过设置液晶屏的控制引脚和数据引脚,可以控制液晶屏的显示内容,并将温度值以数字形式显示在屏幕上。
3. 基于51单片机的数字温度计应用:3.1 家庭温度监测:数字温度计可以安装在家庭中的不同区域,实时监测室内温度,并通过数字显示提供直观的温度信息。
这对于家庭的舒适性和节能都有重要意义。
基于AT89C51单片机的温度计设计
引言概述:AT89C51单片机是一种常用的单片机型号,广泛应用于各种数字电子设备中。
本文将基于AT89C51单片机,设计一款温度计,用于测量环境温度。
通过该设计,可以实时监测环境温度,并将温度值以数字形式显示在屏幕上,提供给用户参考。
正文内容:1. 硬件设计1.1 传感器选择首先,需要选择适合的传感器来测量环境温度。
常见的温度传感器有热敏电阻、温度传感器模块等。
在本设计中,选择了DS18B20温度传感器模块,该传感器具有精度高、体积小等特点,适合本温度计的设计需求。
1.2 电路连接在硬件设计中,需要将DS18B20温度传感器模块与AT89C51单片机相连。
具体步骤如下:1) 将DS18B20传感器的VCC引脚连接至单片机的VCC引脚,将GND引脚连接至单片机的GND引脚,将DQ引脚连接至单片机的P1口,通过电阻和电容设置硬件复位电路。
2) 设置单片机的相应引脚为输入或输出引脚,使其与传感器的引脚相对应,并根据需要设置引脚的电平状态。
3) 根据DS18B20传感器的通信协议,使用单片机的串口通信功能与传感器进行通信,获取温度值。
2. 软件设计2.1 程序框架在软件设计中,需要设计相应的程序框架,以实现温度的测量与显示。
整体的程序框架如下:1) 初始化单片机的串口通信功能,设置波特率等参数。
2) 初始化DS18B20传感器,包括设定分辨率、温度精度等参数。
3) 循环读取传感器的温度数值,并进行必要的温度转换处理。
4) 将处理好的温度数值通过单片机的数码管显示出来。
2.2 温度转换在软件设计中,需要对从传感器获取的温度数值进行转换处理,以得到真实的温度值。
具体的转换公式如下:1) 首先,读取传感器内部存储器中的原始温度数据。
2) 根据DS18B20传感器的配置,进行温度计算。
3) 最后,将计算得到的温度值转换为摄氏度或华氏度,并存储到相应的变量中,以便后续显示。
3. 测试与调试在进行实际应用之前,需要对设计的温度计进行测试与调试,确保其功能正常。
基于51单片机和DS18B20的数字温度计设计说明
基于51单片机和DS18B20的数字温度计设计说明
1.硬件设计:
-51单片机:选择合适的型号,如STC89C52或AT89C52等。
-DS18B20温度传感器:该传感器是一种数字温度传感器,具有单总线接口和高精度测量能力。
-接口电路:将51单片机和DS18B20传感器连接起来,要注意电平转换和信号线的阻抗匹配。
2.软件设计:
-初始化:在主函数中,首先对单片机进行初始化设置,包括时钟设置、串口配置等。
-DS18B20通信协议:使用单总线协议与DS18B20传感器进行通信,包括发送复位信号、读写数据等操作。
-温度测量:通过向DS18B20发送读取温度的命令,从传感器中读取温度值并保存。
-数据传输:将温度值转换为可显示的格式,如摄氏度或华氏度,并通过串口输出或LED显示。
3.程序流程:
-初始化单片机,设置时钟和串口参数。
-进入主循环,循环执行以下操作:
-发送复位信号,启动温度转换。
-等待转换完成,发送读取温度命令。
-读取温度值,并进行数据处理转换。
-输出温度值。
4.其他功能:
-可以添加LCD显示模块,将温度值显示在液晶屏上。
-可以添加按键输入模块,通过按键切换温度单位或进行其他操作。
需要注意的是,该设计只是一个简单的示例,实际应用中可能需要根据具体需求进行扩展和修改。
同时,在程序设计过程中,也要注意低功耗和数据稳定性等方面的考虑。
基于单片机的数字温度计的设计
基于单片机的数字温度计的设计引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S52,测温传感器使用DS18B20,用4位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。
总体设计方案考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
温度计电路设计总体设计方框图如下图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用4位LED数码管以串口传送数据实现温度显示。
总体设计方框图主控制器单片机AT89S52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
显示电路显示电路采用4位共阳LED数码管,从P3口RXD,TXD串口输出段码。
温度传感器DS18B20温度传感器是一种智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信;●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;●无须外部器件;●可通过数据线供电,电压范围为3.0~5.5V;●零待机功耗;●温度以9或12位数字;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚PR -35封装或8脚SOIC 封装,其内部结构框图如下图所示。
基于单片机的数字温度计的设计
摘要随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用。
本设计分为硬件设计和软件设计。
硬件系统由3个模块组成:主控制器、测温电路和显示电路。
软件系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。
单片机AT89C51具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点。
所以在本设计中采用单片机AT89C51作为控制器来控制电路。
测温传感器使用 DS18B20,因为传感器DS18B20具有读数方便,测温范围广,测温准确。
用4位LED数码管以串口传送数据,实现温度显示。
关键词:单片机AT89C51、DS18B20传感器、4位共阳极LED数码显示管。
AbstractWith the constant improvement of people's living standard, it is undoubtedly one of the goals which people pursue that the one-chip computer controls, the convenience that it brings to somebody can't be denied either, among them the digital thermometer is a typical examp .But the requirements to it of people are higher and higher, want working for modern, scientific research, life, offering the better facilities more conveniently to need starting with counting the one-chipOriginally design digital thermometers recommended to compare with traditional thermometer, convenient to have reading, it is warm and in extensive range to examine, it is warm and accurate to examineOriginally design and is divided into hardware designing and software design. The hardware system is made up of 3 pieces of module: Master controller, examining the warm circuit and revealing the circuit. The software system procedure mainly includes the main program, reads the temperature subprogram, temperature changes the order subprogram, accounting temperature subprogram.The one-chip computer AT89C51 has strong, small functions, low power dissipation, the price is cheap, it is reliable to work, characteristic easy to use. So control circuit adopts the one-chip computerExamine the warm transducer and use DS18B20, because the transducer DS18B20 has reading convenient, it is warm and in extensive range to examine, Realize temperature reveals.Keyword: One-chip computer AT89C51, DS18B20 transducer, 4 positive pole LED number reveal, in charge of together。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1. 设计目的与要求 (1)1.1设计要求 (1)1.2设计思路简述 (1)1.3整体结构框图 (1)2.系统硬件设计 (2)2.1单片机最小系统模块 (2)2.1 单片机AT89C51 (2)2.1.2 晶振电路 (3)2.1.3 复位电路 (3)2.3温度传感器DS18B20模块 (4)2.3.1结构特点 (4)2.3.2引脚说明 (5)2.4LED数码管模块 (5)2.4.1工作原理 (5)2.4.2显示方式 (6)3.系统软件设计 (7)3.1主程序流程图 (7)3.2数据采集电路流程图 (8)3.3显示电路流程图 (9)4.系统仿真与调试 (10)参考文献 (11)附录 (12)1.设计目的与要求利用本学期学习的单片机知识完成一个单片机的设计并且进行仿真实现其功能,从而达到对单片机软硬件的进一步理解以及掌握相关传感器的原理以及使用方法,获得一定的实践经验,培养相互协作,理论与实践相结合,提过发现问题并且解决问题的能力。
1.1设计要求实时显示温度环境,四位数码管显示,3位整数,1位小数。
温度范围-55-127度。
1.2设计思路简述本设计使用DS18B20温度传感器,AT89C51单片机作为主控制器,结合反相驱动IC和共阳极4位数码管实现一个能够显示具体温度的数字温度计。
1.3整体结构框图基于单片机数字温度计的设计主要包括三大模块,分别为主控电路单片机AT89C51模块、数据采集电路温度传感器DS18B20模块和显示电路LED数码管模块。
整体结构如错误!未找到引用源。
所示图表 1.1整体结构框图2.系统硬件设计2.1单片机最小系统模块2.1 单片机AT89C511、AT89C51标准功能4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
2、AT89C51引脚说明VCC:供电电压。
GND:接地。
P0口:P0口是一个8位漏极开路双向I/O口。
当P0口的管脚第一次写1时,被定义为高祖输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。
在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须连接上拉电阻。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为低八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口。
当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
P2口用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
P3口:P3口管脚是8个带有内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
2.1.2 晶振电路电路中C1无极性电容和C2无极性电容是起振电容。
当12MHz晶振在高频的情况工作时,会产生一定的寄生的电感。
单片机的内部有一振荡电路,我们需要在外部接上晶振电路单片机才能工作。
晶振和电容与内部的电路组成振荡电路。
只要单片机一上电,电容启振,晶振工作,这样单片机就有一个持续的时钟信号。
51单片机内部有一个12分频器,因此时钟周期为 t = 1/12000000 ≈ 1us。
图表 2.1 晶振电路2.1.3 复位电路单片机复位是使CPU和系统中的其他功能不见都处在一个确定的初始状态,并从这个状态开始工作,复位后 PC=0000H,使单片机从第一个单元取指令。
单片机复位的条件是:必须使RST/VPD 或 RST引脚加上持续两个机器周期(即24个振荡器)的高μ以上时间的高电平,电平。
若时钟频率为12MHZ每台机器周期为1sμ,则只需2s在RST 引脚出现高电平后的第二个机器周期执行复位。
图表2.2复位电路2.3温度传感器DS18B20模块温度传感器DS18B20是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
图表 3温度传感器DS18B20结构图2.3.1结构特点DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。
当工作于寄生电源时,此引脚必须接地。
结构特点如下独特的单线接口仅需一个端口引脚进行通讯简单的多点分布应用无需外部器件可通过数据线供电零待机功耗测温范围-55~+125℃,以0.5℃递增。
华氏器件-67~+2570F,以0.90F递增温度以9位数字量读出2.3.2引脚说明DQ为数字信号输入/输出端GND为电源地VDD为外接电源供电电源输入端2.4LED数码管模块2.4.1工作原理LED数码管(LED Segment Displays)是由8个发光二极管构成。
其中7个LED 构成7笔字形,1个LED构成小数点(固有时成为八段数码管)。
图表 4LED数码管结构图2.4.2显示方式LED数码管有两大类,一类是共阴极接法,另一类是共阳极接法,共阴极就是7段的显示字码共用一个电源的负极,是高电平点亮,共阳极就是7段的显示字码共用一个电源的正极,是低电平点亮。
LED数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数字,因此根据LED数码管的驱动方式的不同,可以分为静态式和动态式两类。
1、静态显示静态驱动也称直流驱动。
静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。
静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O端口多,如驱动5个数码管静态显示则需要5×8=40根I/O端口来驱动,要知道一个89S51单片机可用的I/O端口才32个,实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。
2、动态显示LED数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。
通过分时轮流控制各个数码管的COM端,就使各个数码管轮流受控显示,这就是动态驱动。
在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。
3.系统软件设计3.1主程序流程图3.2数据采集电路流程图Y3.3显示电路流程图4.系统仿真与调试通过Proteus仿真软件进行模拟调试。
根据硬件设计画出数字温度计的电路图,将软件设计中的zz.hex文件加载到单片机AT89C51中,单击仿真工具按键进行全速仿真,如图所示,点击DS18B20模型的高\低温度调节钮,则可看到温度的变化同步反映到数码管显示上。
由此可说明本次设计顺利完成。
参考文献[1] 万隆.单片机原理及应用技术.第2版.北京:清华大学出版社,2010[2] 王静霞.单片机应用技术.第2版. 北京:电子工业出版社 ,2014[3] 谢维成 ,杨加国.单片机原理与应用及C51程序设计.第2版.北京:清华大学出版社,2009[4] 彭伟.单片机C语言程序设计实训100例—基于8051+Proteus仿真.北京:电子工业出版社,2009[5] 西安唐都科技仪器公司.单片机实验指导书[C].2006.[6] 张靖武,周灵彬.单片机系统的PROTEUS设计与仿真[M].北京:北京电子工业出版社,2007[7] 王小明.电动机的单片机控制[M].北京:北京航空航天大学出版社,2002[8 ]胡伟季晓衡.单片机C程序设计与应用实例[M].北京:人民邮电出版社,2003附录数字温度计的C语言源程序如下// #include<1820.h>#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned int//bit flag;//#define wei 0xa0;//#define duan 0x90;uchar data disdata[5];//uint tvalueuchar tflag;sbit DQ=P3^7;bit f=0;uchar tempint,tempdp;uchar TempTab[4];uchar code discode[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xbf};void delay(){uchar i,j;for(i=0;i<5;i++)for(j=0;j<250;j++){_nop_();_nop_();}}void delay_18B20(uint i){while(i--);}void ds1820rst(){unsigned char x=0;DQ=1;delay_18B20(4);DQ=0;delay_18B20(100);delay_18B20(40);}uchar ds1820rd(){unsigned char i=0;unsigned char dat=0;for(i=8;i>0;i--){DQ=0;dat>>=1;DQ=1;if(DQ)dat|=0x80;delay_18B20(20);}return(dat);}void ds1820wr(uchar wdata){unsigned char i=0;for(i=8;i>0;i--){DQ=0;DQ=wdata&0x01;delay_18B20(10);DQ=1;wdata>>=1;}}void read_temp(){uchar temph = 0,templ = 0,k = 0;f=0;ds1820rst();ds1820wr(0xcc);ds1820wr(0x44);ds1820rst();ds1820wr(0xcc);ds1820wr(0xbe);templ=ds1820rd();temph=ds1820rd();if((temph&0xf8)!=0x00){temph=~temph;templ=~templ;k= templ+1;templ=k;if(k>255){temph++;}}tempdp=(templ&0x0f)*10/16;templ>>=4;temph<<=4;tempint=temph|templ;}void distemp(){uchar i,j;if(f==0){TempTab[0]=tempint/100;TempTab[1]=(tempint/10)%10;TempTab[2]=tempint%10;TempTab[3]=tempdp;}else{TempTab[0]=10;TempTab[1]=tempint/10;TempTab[2]=tempint%10;TempTab[3]=tempdp;}for(i=0;i<4;i++){P2=_cror_(0xf7,i);j= TempTab[i];if(i==2)P1=discode[j]&0x7f;elseP1=discode[j];delay();P2=0xff;}}void main(){while(1){_nop_();_nop_();read_temp();_nop_();_nop_();P2 = 0x00;distemp();}//仿真的时候先显示85,原因DS18B20上电初值为85 }。