基于单片机控制的数字温度计
单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计
数字温度计是一种用于测量环境温度的设备。
在这个问题中,我们将使用基于STM32的单片机来设计一个数字温度计。
为了设计这个温度计,我们需要以下组件和步骤:
1. STM32单片机:STM32是一种基于ARM架构的单片机,它具有强大的计算能力和丰富的外设接口,适用于各种应用。
2. 温度传感器:我们需要选择一种适合的温度传感器,常用的有数字式温度传感器,如DS18B20。
3. 连接电路:将温度传感器连接到STM32单片机。
这通常需要使用一些电子元件,如电阻、电容和连接线等来建立电路连接。
4. 编程:使用适合STM32单片机的编程语言,如C语言,来编写程序。
程序将读取温度传感器的数据,并将其转换为数字值。
5. 温度显示:将温度数据显示在合适的显示设备上,如LCD显示屏或七段数码管。
可以使用STM32单片机的GPIO口控制这些显示设备。
6. 数据处理:可以对温度数据进行进一步处理,如计算平均温度、设定警报阈值等。
以上是一个基本的数字温度计设计的流程。
具体的实现细节和代码编写可能需要根据具体的硬件和软件平台进行调整。
基于单片机的数字温度计的课程设计

基于单片机的数字温度计的课程设计随着科技发展,单片机技术受到了广泛的应用,并得到了广泛的重视。
本设计以现有单片机ADUC7024系统为基础,设计和实现了一款基于单片机的数字温度计,旨在解决过热或者过冷的问题,通过温度检测器在给定的温度范围内确定温度,并控制过热和过冷的情况。
(一)设计的概述本设计的主要内容是分析ADUC7024硬件,对硬件进行器件选型,完成系统模块的设计,以及ADUC7024以现有程序设计语言完成控制程序设计,最后采用ADUC7024作为控制器,与温度检测器、LED等模块进行硬件联通,完成一个简单的温度检测控制系统。
1、器件选型:本设计采用ADUC7024作为系统的控制器,采取温度传感器采用的是DS18B20温度芯片芯片,显示采用的是LED系列的指示灯,系统开关采用的是两个按键作为上升按钮和下降按钮。
2、硬件模块:本次设计以ADUC7024硬件为主框架,以温度检测器连接ADUC7024控制器,可以实现温度范围内数字检测,LED显示屏以温度为参数,可根据设定的温度范围指示异常温度;系统开关采用按键开关来控制,多出的端口可实现报警功能。
本设计采用ADUC7024系统控制器,设计一款基于单片机的温度检测控制系统的电路,主要包括:外部中断、输入输出口、充电输出和按键检测电路,电路图如下图1所示:1、主程序:本次设计采用C语言编写,主程序负责实现温度检测、控制操作功能。
主程序中采用外部中断和充电输出实现数据的获取和操作的控制,采用按键输入调节温度,并且可以把某一温度范围内的上下限定值写入EEPROM,控制系统会及时获取当前温度,比较当前温度与上下限值,如果出现过热或者过冷,则会发出警报。
2、子程序:本次设计还编写了多个子程序,用于实现数据处理、按键检测等功能,并在主程序中进行调用,使程序更加规范。
51单片机数字温度计设计与应用

51单片机数字温度计设计与应用数字温度计在现代生活中有着广泛的应用,它能够将环境温度转换为数字信号,提供直观、准确的温度数据。
本文将介绍基于51单片机的数字温度计的设计与应用。
设计思路:1. 硬件设计首先,我们需要选取一个合适的温度传感器,例如DS18B20。
该传感器具有高精度、数字输出、带有内部校准和非易失性存储器等特点,非常适合作为数字温度计的传感器。
其次,我们需要引入一个51单片机,常用的有AT89C51、AT89S52等。
单片机负责控制传感器和显示器,并处理温度数据。
接下来,我们需要一个LED数码管或液晶显示屏作为温度显示器。
数码管简单且易于操作,而液晶显示屏可以提供更多的信息显示。
最后,我们还需添加一些辅助电路,如稳压电路、时钟电路等,以确保正常的运行。
2. 软件设计在单片机的程序设计方面,我们需要考虑以下几个步骤:(1)初始化各个引脚和外部设备,如温度传感器和显示屏。
(2)读取温度传感器输出的数字信号,通过数据线将其与单片机相连。
(3)通过一系列算法将数字信号转换为实际的温度值。
因为DS18B20传感器提供数字输出,所以支持该类算法的编程非常简单。
(4)将计算得到的温度值通过数码管或液晶显示屏进行显示。
如果是数码管,可以通过数码管驱动芯片来实现多位数的显示。
(5)可选的增加报警功能,当温度超过一定阈值时,触发报警。
应用场景:数字温度计可以在许多场景中应用,下面介绍几个常见的应用场景:1. 家庭温度监测在家庭中,我们可以将数字温度计放置在客厅、卧室等常用区域,用于监测室内温度。
通过数字温度计,我们可以实时了解室内的温度状况,根据需要进行调节,提供舒适的生活环境。
2. 温室控制在温室种植中,保持适宜的温度对于植物的生长至关重要。
数字温度计可以帮助种植者实时监测温室内的温度,并及时采取相应的措施,维持温室内的温度在适宜的范围内。
3. 实验室温度监测实验室需要严格控制温度,以确保实验的准确性和稳定性。
基于单片机数字温度计课程设计

基于单片机数字温度计课程设计
基于单片机的数字温度计课程设计是一个非常有趣和实用的项目。
首先,我们需要选择合适的单片机,比如常用的Arduino或者STM32等。
然后,我们需要选择合适的温度传感器,比如LM35或者DS18B20等。
接下来,我们可以按照以下步骤进行课程设计:
1. 硬件设计,首先,我们需要将单片机和温度传感器连接起来,这涉及到电路设计和焊接。
我们需要确保电路连接正确,传感器能
够准确地读取温度,并且单片机能够正确地接收并处理传感器的数据。
2. 软件设计,接下来,我们需要编写单片机的程序,以便能够
读取传感器的数据,并将其转换为数字温度值。
我们可以使用C语
言或者Arduino的编程语言来实现这一步骤。
在程序设计中,需要
考虑到温度的单位转换、数据的精度等问题。
3. 显示设计,我们可以选择合适的显示设备来展示温度数值,
比如数码管、液晶显示屏或者OLED屏幕等。
在设计中,我们需要考
虑到显示的清晰度、易读性以及节能等因素。
4. 功能扩展,除了基本的温度显示功能,我们还可以考虑对数
字温度计进行功能扩展,比如添加报警功能、数据存储功能或者远
程监控功能等,这些功能的添加可以提升数字温度计的实用性和趣
味性。
5. 测试与优化,最后,我们需要对设计的数字温度计进行测试,并不断优化,确保其稳定可靠、准确无误地显示温度。
总的来说,基于单片机的数字温度计课程设计涉及到硬件设计、软件设计、显示设计、功能扩展、测试与优化等多个方面,学生可
以通过这样的课程设计项目,全面提升自己的电子设计和编程能力,同时也能够实现一个实用的数字温度计产品。
基于单片机的数字温度计设计(含程序、仿真图)

基于单片机的数字温度计设计1引言随着现代信息技术的飞速发展和传统工业改造的逐步实现.能够独立工作的温度检测和显示系统应用于诸多领域。
传统的温度检测以热敏电阻为温度敏感元件。
热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。
与传统的温度计相比,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。
选用AT89C51型单片机作为主控制器件,DSl8B20作为测温传感器通过4位共阳极LED数码管串口传送数据,实现温度显示。
通过DSl8B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.1℃。
该器件可直接向单片机传输数字信号,便于单片机处理及控制。
另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。
2 系统硬件设计方案根据系统功能要求,构造图1所示的系统原理结构框图。
图1 系统原理结构框图2.1单片机的选择AT89C51作为温度测试系统设计的核心器件。
该器件是INTEL公司生产的MCS一5l系列单片机中的基础产品,采用了可靠的CMOS工艺制造技术,具有高性能的8位单片机,属于标准的MCS—51的CMOS产品。
不仅结合了HMOS的高速和高密度技术及CHMOS 的低功耗特征,而且继承和扩展了MCS —48单片机的体系结构和指令系统。
单片机小系统的电路图如图2所示。
图2 单片机小系统电路AT89C51单片机的主要特性:(1)与MCS-51 兼容,4K 字节可编程闪烁存储器;(2)灵活的在线系统编程,掉电标识和快速编程特性;(3)寿命为1000次写/擦周期,数据保留时间可10年以上;(4)全静态工作模式:0Hz-33Hz ;(5)三级程序存储器锁定;(6)128*8位内部RAM ,32可编程I/O 线;(7)两个16位定时器/计数器,6个中断源;(8)全双工串行UART 通道,低功耗的闲置和掉电模式;(9)看门狗(WDT )及双数据指针;(9)片内振荡器和时钟电路;2.2 温度传感器介绍DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C 。
基于单片机的数字温度计设计_毕业设计论文

基于单片机的数字温度计设计_毕业设计论文洛阳理工学院毕业设计(论文)核准通过,归档资料。
未经允许,请勿外传~基于单片机的数字温度计设计摘要在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。
传统的测温元件有热电偶和二电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。
我们用一种相对比较简单的方式来测量。
我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度范围为-55~125?,最高分辨率可达0.0625?。
DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。
本文介绍一种基于AT89C52单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0?~+100?,使用LCD模块显示,能设置温度报警上下限。
正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C52I洛阳理工学院毕业设计(论文)单片机功能和应用。
该电路设计新颖、功能强大、结构简单。
关键词:温度测量,AT89C52,DS18B20,系统仿真Design of Digital Thermometer Based on SCMABSTRACTIn daily life and industrial production process, often used in the detection and control of temperature, temperature is the production process and scientific experiments in general and one of the important physical parameter. Traditional thermocouple and temperature components are the second resistor. The thermocouple and thermal resistance are generally measured voltage, and then replaced by the corresponding temperature, these methods are relatively complex, requiring arelatively large number of external hardware support. We use arelatively simple way to measure. We use the United States following DALLAS Semiconductor DS1820 improved after the introduction of a smart temperature sensor DS18B20 as the detection element, a temperature range of -55?~125?, up to a maximum resolution of 0.0625?. DS18B20 can be directly read out the temperature on the north side, andthree-wire system withII洛阳理工学院毕业设计(论文)single-chip connected to a decrease of the external hardware circuit, with low-cost and easy use. The introduction of a cost-based AT89C52 SCM a temperature measurement circuits, the circuits used DS18B20 high-precision temperature sensor, measuring scope 0?~+100?, can set the warning limitation, the use of seven segments LCD that can be displaythe current temperature. The paper focuses on providing a software andhardware system components circuit, introduced the theory of DS18B20, the functions and applications of AT89C52 .This circuit design innovative, powerful, can be expansionary strong.KEY WORDS: Temperature measurement,AT89C52,DS18B20,System simulationIII洛阳理工学院毕业设计(论文)目录前言 ..................................................................... ............................. 1 第1章绪论 ..................................................................... ................... 2 1.1 设计背景 ..................................................................... .. (2)1.1.1 温度计的介绍 (2)1.1.2 温度传感器的发展状况............................................... 3 1.2 选题的目的和意义.. (4)1.2.1 选题的目的 (4)1.2.2 选题的意义 (4)第2章系统概述 ..................................................................... ........... 5 2.1 设计方案的选择.....................................................................52.1.1 方案一 ..................................................................... .. (5)2.1.2 方案二 ..................................................................... ..... 6 2.2 系统设计原理...................................................................... ... 6 第3章系统硬件的设计 ....................................................................8 3.1 AT89C52的介绍 .....................................................................8 3.2 DS18B20的介绍 ...................................................................113.2.1 DS18B20的引脚排列 (11)3.2.2 DS18B20内部结构 (12)3.2.3 DS18B20的测温原理 (16)3.2.4 DS18B20使用的注意事项 .........................................17 3.3 数字温度计电路设计 (18)3.3.1 数字温度计原理图 (18)3.3.2 时钟电路的设计 (18)3.3.3 复位电路的设计 (19)3.3.4 接口电路的设计 (20)3.3.5 显示电路的设计 (20)3.3.6 报警电路的设计......................................................... 23 第4章系统软件的设计 (24)IV洛阳理工学院毕业设计(论文)4.1软件Proteus与Keil (24)4.1.1 Proteus软件 (24)4.1.2 Keil软件 .....................................................................274.2 系统主程序...................................................................... .. (29)4.2.1 主程序 ..................................................................... (29)4.2.2 DS18B20初始化 (30)4.2.3 温度转换命令子程序 (30)4.2.4 温度数据的计算处理方法.........................................314.3 源程序 ..................................................................... ............. 31 第5章仿真 ..................................................................... .. (32)5.1 仿真结果 .............................................................................. 32 结论 ..................................................................... ........................... 34 谢辞 ..................................................................... ............................. 35 参考文献 ..................................................................... ....................... 36 附录 ..................................................................... ........................... 37 外文资料翻译 ..................................................................... (47)V洛阳理工学院毕业设计(论文)前言随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确迅速的获得这些参数就需要受制于现代信息基础的发展水平。
基于单片机的数字温度计的设计

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1 设计简介 (1)1.1设计背景 (1)1.2设计达到的预期目的 (1)2方案论证 (1)2.1测温电路方案设计 (1)2.2显示电路方案设计 (2)2.3方案比较 (3)2.4温度计工作原理 (3)3硬件电路设计 (1)3.1系统电源电路的设计 (1)3.2主板电路 (1)3.2.1单片机 AT89S52芯片介绍 (1)3.2.2 DS18B20温度传感器简介 (5)3.3 温度显示电路 (10)3.3.1 液晶显示器各种图形的显示原理 (11)3.3.2字符型LCD1602简介 (12)4软件设计 (2)4.1 主程序流程图 (2)4.2 读出温度子程序流程图 (3)4.3 温度转换命令子程序流程图 (3)4.4 计算温度子程序流程图 (4)4.5显示数据刷新子程序流程图 (4)5 Proteus仿真调试 (1)5.1 Proteus软件介绍 (1)5.2 Proteus界面介绍 (1)5.3 Keil软件简介 (2)5.4 设计仿真过程 (4)5.4.1 仿真原理图绘制 (4)5.4.2 系统调试 (5)5.4.3开始仿真 (5)6 总结和改进方法 (1)参考文献 (1)致谢 (1)附录1 程序清单 (1)附录2 元器件清单 (8)基于单片机的数字温度计设计摘要:单片机自20世纪70年代问世以来,已广泛的应用在工业自动化、自动检测与控制系统、智能仪器仪表、机电一体化设备、汽车电子、家用电器等各方面。
本文将介绍一种基于单片机控制的数字温度计,用单片机实现水温测量。
传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。
本次采用DS18B20数字温度传感器来实现基于AT89S52单片机的数字温度计的设计,用LCD1602液晶显示以串口传送数据,实现温度显示,单片机能独立对温度进行检测、控制,能准确达到要求。
基于51单片机的数字温度计

引言:数字温度计是一种基于51单片机的温度测量装置,它通过传感器感知环境的温度,并使用单片机将温度值转换为数字形式,并显示在液晶屏上。
本文将详细介绍数字温度计的设计原理、硬件连接、软件编程以及应用领域。
概述:数字温度计基于51单片机的设计理念,其基本原理是通过传感器将温度转换为电信号,然后通过ADC(模数转换器)将电信号转换为数字信号,最后使用单片机将数字信号转换为温度值。
同时,数字温度计还将温度值显示在液晶屏上,方便用户直观地了解环境温度。
正文内容:1. 硬件连接:1.1 使用温度传感器感知环境温度:常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
通过将传感器连接到51单片机的引脚上,可以实现对环境温度的感知。
1.2 连接ADC进行模数转换:ADC是将模拟信号转换为数字信号的关键部件。
通过将51单片机的引脚连接到ADC芯片的输入端,可以将模拟的温度信号转换为数字信号。
1.3 连接液晶屏显示温度值:通过将51单片机的引脚连接到液晶屏的控制引脚和数据引脚,可以将温度值以数字形式显示在液晶屏上。
2. 软件编程:2.1 初始化引脚和ADC:在软件编程中,需要初始化51单片机的引脚设置和ADC的工作模式。
通过设置引脚为输入或输出,以及设置ADC的参考电压和工作模式,可以确保硬件正常工作。
2.2 温度测量算法:根据传感器的工作原理和电压-温度特性曲线,可以编写相应的算法将ADC测得的电压值转换为温度值。
例如,对于NTC热敏电阻,可以使用Steinhart-Hart公式进行温度计算。
2.3 温度值显示:将温度值以数字形式显示在液晶屏上。
通过设置液晶屏的控制引脚和数据引脚,可以控制液晶屏的显示内容,并将温度值以数字形式显示在屏幕上。
3. 基于51单片机的数字温度计应用:3.1 家庭温度监测:数字温度计可以安装在家庭中的不同区域,实时监测室内温度,并通过数字显示提供直观的温度信息。
这对于家庭的舒适性和节能都有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字温度计1 设计要求■基本范围-50℃-110℃■精度误差小于0.5℃■LED数码直读显示2 扩展功能■实现语音报数■可以任意设定温度的上下限报警功能数字温度计摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。
关键词:单片机,数字控制,温度计,DS18B20,A T89S511 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机A T89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。
2 总体设计方案2.1数字温度计设计方案论证2.1.1方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。
2.1.2 方案二进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。
2.2方案二的总体设计框图温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。
图1总体设计方框图2.2.1 主控制器单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
2.2.2 显示电路显示电路采用3位共阳LED数码管,从P3口RXD,TXD串口输出段码。
2.2.3温度传感器DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信;●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;●无须外部器件;●可通过数据线供电,电压范围为3.0~5.5V;●零待机功耗;●温度以9或12位数字;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。
图2 DS18B20内部结构64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。
温度报警触发器TH和TL,可通过软件写入户报警上下限。
DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。
高速暂存RAM的结构为8字节的存储器,结构如图3所示。
头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。
第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。
DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。
该字节各位的定义如图3所示。
低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0TM R11R01111....图3 DS18B20字节定义由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。
因此,在实际应用中要将分辨率和转换时间权衡考虑。
高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。
第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。
当DS18B20接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。
单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。
当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。
表2是一部分温度值对应的二进制温度数据。
表1 DS18B20温度转换时间表R0R10 00 1 0 11 19101112分辨率/位温度最大转向时间/ms93.75187.5375750....DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。
若T>TH 或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。
因此,可用多只DS18B20同时测量温度并进行报警搜索。
在64位ROM 的最高有效字节中存储有循环冗余检验码(CRC )。
主机ROM 的前56位来计算CRC 值,并和存入DS18B20的CRC 值作比较,以判断主机收到的ROM 数据是否正确。
DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。
器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。
其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。
表2 一部分温度对应值表另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。
系统对DS18B20的各种操作按协议进行。
操作协议为:初使化DS18B20(发复位脉冲)→发ROM 功能命令→发存储器操作命令→处理数据。
....图4 DS18B20与单片机的接口电路2.3 DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。
另一种是寄生电源供电方式,如图4 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。
当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。
采用寄生电源供电方式时VDD端接地。
由于单线制只有一根线,因此发送接口必须是三态的。
2.4 系统整体硬件电路2.4.1 主板电路系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,如图5 所示。
图5中有三个独立式按键可以分别调整温度计的上下限报警设置,图中蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音,同时LED数码管将没有被测温度值显示,这时可以调整报警上下限,从而测出被测的温度值。
图5 中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。
2.4.2 显示电路显示电路是使用的串口显示,这种显示最大的优点就是使用口资源比较少,只用p3口的RXD,和TXD,串口的发送和接收,四只数码管采用74LS164右移寄存器驱动,显示比较清晰。
图5 单片机主板电路图6 温度显示电路3系统软件算法分析系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。
3.1主程序主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s 进行一次。
这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。
图7 主程序流程图图8读温度流程图初始化调用显示子程序1S 到?初次上电读出温度值温度计算处理显示数据刷新发温度转换开始命令N YNYY发DS18B20复位命令发跳过ROM 命令发读取温度命令读取操作,CRC 校验9字节完?CRC 校验正?移入温度暂存器结束 NNY3.2读出温度子程序读出温度子程序的主要功能是读出RAM 中的9字节,在读出时需进行CRC 校验,校验有错时不进行温度数据的改写。
其程序流程图如图8示图9 温度转换流程图3.3温度转换命令子程序温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms ,在本程序设计中采用1s 显示程序延时法等待转换的完成。
温度转换命令子程序流程图如上图,图9所示3.4 计算温度子程序计算温度子程序将RAM 中读取值进行BCD 码的转换运算,并进行温度值正负的判定,其程序流程图如图10所示。
图10 计算温度流程图 图11 显示数据刷新流程图3.5 显示数据刷新子程序显示数据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高显示位为0时将符号显示位移入下一位。
程序流程图如图11。
4总结与体会经过将近三周的单片机课程设计,终于完成了我的数字温度计的设计,虽然没有完全达到设计要求,但从心底里说,还是高兴的,毕竟这次设计把实物都做了出来,高兴之余不得不深思呀!在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用除法去删分,感觉效果比较好,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。