第二章连续系统的时域分析

合集下载

第二章 连续系统的时域分析

第二章  连续系统的时域分析
c2 du 2 (t ) u1 (t ) − u 2 (t ) = R2 dt
du (t ) 整理方程组得:d 2u2 (t ) + 7 2 + 6u2 (t ) = 6e(t ) dt 2 dt 特征方程:a2+7a+6=0 特征根:a=-1, a=-6 齐次解:rh(t) = A1e-t +A2e-6t
5
第二章 连续系统的时域分析
② 选定特解后,将它代入到原微分方程,即得到一个由 yh(t)及其各阶导数以及激励共同组成的一个非齐次微 分方程,依据此方程求出待定系数,然后可确定方程 的特解。
3. 求系统的全响应y(t)
y(t)=方程的全解y(t)=齐次解yh(t) + 特解 yP(t)
=自由响应+强迫响应 将上面方程的全解代入系统的初始条件即可得齐次解中 的待定系数,从而进一步得到系统的全响应。此时, 方程的齐次解yh(t)为系统的自由响应,特解yP(t)为系 统的强迫响应(固有响应)。
解: 由原方程可得
dh 2 (t ) dh(t ) +3 + 2h(t ) = 2δ ′(t ) + 3δ (t ) 2 dt dt
(t ≥ 0)
特征方程: λ2+3λ+2 = 0 特征根: λ1= -1,λ2= -2,且n > m
h (t ) = Ae − t u (t ) + e −2 t (t ) u(t)
20
第二章 连续系统的时域分析
式中A、B为待定系数,将h(t)代入原方程 式,解得A=1,B=1。因此,系统的冲激 响应为 h(t ) = e − t u(t ) + e −2 t (t )
21
第二章 连续系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

第2章连续系统的时域分析

第2章连续系统的时域分析

信号与线性系统 令 t 0 ,可得
2.2 LTI连续系统的响应
1 uC (0 ) uC (0 ) C


0
0
iC ( )d 0
如果 iC ( t ) 为有限值,则

此时
0 0
iC ( )d 0
uC (0 ) uC (0 )
如果 iC ( t ) ( t ) ,则
y( t ) 2e
2 t
e
3 t
2 cos( t

4
),
t 0
瞬态响应
2-13
稳态响应
信号与线性系统
二、初始条件的确定
(1) t = 0+与t = 0-的概念
认为换路在 t=0时刻进行
x(0 ) x(0 )
x(t)
0- 0+
:换路前一瞬间 :换路后一瞬间
x(0 ) x(0 )
2-18
信号与线性系统
2.2 LTI连续系统的响应
(3)初始条件的确定
这里我们介绍用冲激函数匹配法来确定 0 状态的
值,它的基本原理根据 t 0 时刻微分方程左右两端
的 ( t ) 及其各阶导数应该平衡相等。
2-19
信号与线性系统
2.2 LTI连续系统的响应
例2-2:如果描述系统的微分方程为 y ( t ) 3 y ( t ) 3 ( t ) ,给 定 0 状态起始值为 y(0 ) ,确定它 0 的状态 y(0 ) 。
2-4
激励及其各 阶导数(最 高阶为m次)
信号与线性系统 (1)齐次解是齐次微分方程
2.2 LTI连续系统的响应 的解。
y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0

第二章 连续时间系统的时域分析 重要公式

第二章 连续时间系统的时域分析 重要公式

零状态响应 rzs ( t ) 的求解有两种方法 方法一:直接求解微分方程 步骤: (1)求出通解;
(k ) (0 + ) = r (k ) (0 + ) − r (k ) (0 − ) 确定 n 个待定常数。 (2)由跳变量 rzs
方法二:卷积积分法 步骤: (1)先求冲激响应 h(t ) ; (2)再利用 rzs (t ) = h(t ) ∗ e(t ) 求零状态响应。 五、冲激响应 h ( t ) 和阶跃响应 g ( t ) 1、冲激响应 h ( t ) 的定义 定义: 系统在单位冲激信号 δ ( t ) 的激励下产生的零状态响应, 称为冲激响应。 冲激响应 h ( t ) 满足的微分方程为:
4
方法一:比较系数(等式两端奇异函数项相平衡)法求 h ( t ) 步骤:a. 先求特征根,直接写出冲激响应的函数形式; b. 再用冲激函数平衡法确定系数 Ak 。 方法二:利用系统的线性时不变特性求 h ( t ) 对于 h ( t ) 满足的微分方程
dn d n −1 d h(t ) + a n −1 n −1 h(t ) + + a1 h(t ) + a 0 h(t ) n dt dt dt
dn d n −1 d ( ) r t a + r (t ) + + a1 r (t ) + a 0 r (t ) n −1 n n −1 dt dt dt
= bm dm d m −1 d ( ) e t b e(t ) + + b1 e(t ) + b0 e(t ) + m −1 m m −1 dt dt dt
dn d n −1 d ( ) h t a h(t ) + + a1 h(t ) + a 0 h(t ) + n −1 n n −1 dt dt dt

第2章连续系统的时域分析

第2章连续系统的时域分析
0 ( 1) ( 1) g (t ) g ( t ) t 2 2 t




2013年8月13日8时12分
2.2 卷积积分
2.2.2 卷积的图解机理
y( t ) f ( t ) h( t )


f ( )h(t )d
①变量替换t→τ
f (t ) f ( )
h(t ) h( )
11
2013年8月13日8时12分
2.2 卷积积分
2.2 卷积积分
2.2.3 卷积的性质
性质1:卷积代数 交换律:
f1 ( t ) f 2 ( t ) f 2 ( t ) f1 ( t )
结合律:
f1 ( t ) f 2 ( t ) f3 ( t ) f1 ( t ) f 2 ( t ) f3 ( t )


f ( )h(t )d
④相乘
f h t
⑤扫描积分



f h t d
13
2013年8月13日8时12分
2.2 卷积积分
2.2.2 卷积的图解机理 替换 翻转 平移 相乘 积分
14
2013年8月13日8时12分
(t mT )
f ( t mT )
f ( t ) T ( t )


m


f ( t
f (t ) A



… …

-3T -2T -T o T 2T 3T
- 0 1
1
t
- 2T T
o
T
2T
t

第二章_连续时间系统的时域分析

第二章_连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1 引言 2.2 微分方程式的建立与求解 2.3 起始点的跳变—从0-到0+状态的转换 2.4 零输入响应和零状态响应 2.5 冲激响应与阶跃响应 2.6 卷积 2.7 卷积的性质
1
重点和难点
重点: 连续时间系统的零输入响应和零状态响应的含义和求解; 理解冲激响应、阶跃响应的意义,掌握其求解方法;
R1i ( t ) v C ( t ) e ( t ), t 0
4 6 5 14 5 A
e (0 ) v C (0 )
1 d d i (0 ) e (0 ) v C (0 ) dt R1 d t dt d
1/C iC(0+)
10 B 4 4 B 8 5
12
(4)
完全响应
i ( t ) A1 e
2 t
A2 e
5t
8/5
d dt i(0 )
(5)
确定换路后的 i ( 0 ) 和
13
§2.3 起始点的跳变—从0-到0+状态的转换 一、初始条件的求解——根据电路求
激励e(t)在t=0时刻加入,系统的响应区间为 0 t

d dt
n 1
n 1
r ( 0 )]

求解方法:根据系统的起始状态、激励信号情况以及元 件约束和网络拓扑约束求。
14
求初始条件
(1)首先求出vC(0-)和iL(0-),即电容上的起始电压和 电感中的起始电流。 (2)根据能量连续性原理: a)当没有冲激电流(或阶跃电压)作用于电容C 有
v C (0 ) v C (0 )
6
a) 求齐次解rh(t):系统固有的响应

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。

信号与系统讲义-2

信号与系统讲义-2


f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)

2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us


R 2L
,
d

02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2

R L
duc dt

1 LC
uc

1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解得系数为 代入得
A1 2 A2 4
rzi (t) 2e2t 4et ,t 0
(3)零状态响应rzs(t) 满足 r”(t) + 3r’(t) + 2r(t) = 2δ(t) + 6u(t) 利用系数匹配法解得:
r'zs (0) r'zs (0) 2 2 rzs (0) rzs (0) 0 0
利用初始值解得: A1 1 A2 0
全响应为:
r(t)

e2t
3
t0
(2)零输入响应rzi(t), 激励为0 , rzi (0+)= rzi (0-)= rzi (0-)=2 rzi’(0+)= rzi’(0-)= rzi’(0-)=0
根据特征根求得通解为:
rzi (t) A1e2t A2et
四.系统响应划分
自由响应+强迫响应 (Natural+forced)
暂态响应+稳态响应 (Transient+Steady-state)
零输入响应+零状态响应 (Zero-input+Zero-state)
①自由响应:也称固有响应,由系统本身特性决定,与外加激励 形式无关。对应于齐次解。 强迫响应:形式取决于外加激励。对应于特解。
解得 A1 + B0 = 2 A2= –1
最后得微分方程的全解为
r(t) 2e2t e3t te2t
上式第一项的系数A1+B0= 2,不能区分A1和B0,因而也不能 区分自由响应和强迫响应。
二、关于 0- 和 0+ 初始值 1、0- 状态和 0+ 状态 0- 状态称为零输入时的初始状态。即初始值是由系统的储 能产生的; 0+ 状态称为加入输入后的初始状态。即初始值不仅有系统 的储能,还受激励的影响。 从 0- 状态到 0+ 状态的跃变 当系统已经用微分方程表示时,系统的初始值从0- 状态到 0+ 状态有没有跳变决定于微分方程右端自由项是否包含(t)及 其各阶导数。
①求系统的特征根,写出的通解表达式rzsh(t)。 ②根据e(t)的形式,确定特解形式,代入方程解得特解rzsp(t)
③求全解,若方程右边有冲激函数(及其各阶导数)时,
根据冲激函数匹配法求得
r (i) zs
(0)
,确定积分常数A1,
A2, …,An
④将确定出的积分常数A1,A2, …,An代入全解表达式,即得
rh(t)的函数形式由上述微分方程的特征根确定。
特征方程为:C 0 n C1 n1 ...... C n1 C n 0
①特征方程的根为n个单根 当特征方程的根(特征根)为n个单根(不论实根、虚
根、复数根)α1, α 2, …, α n时,则r (t)的通解表 达式为
r(t) A1e1t A2e2t ... Anent
故系统的冲激响应为 h(t) ( A1e2t A2e3t )u(t)
代入初始条件求得A1=1,A2=-1, 所以
h(t) (e2t e3t )u(t)
[例2.2.2] 描述某系统的微分方程为r”(t)+5r’(t)+6r(t)= e”(t) + 2e’(t) + 3e(t),求其冲激响应h(t)。 解:根据h(t)的定义有 h”(t) + 5h’(t) + 6h(t) = δ”(t)+ 2δ’(t)+3δ(t) (1) h’(0-) = h(0-) = 0 先求h’(0+)和h’(0-),根据冲激函数匹配法得:
E1
d m1 dt m1
e(t)
Em1
d dt
e(t) Eme(t)
微分方程的经典解: r(t)(完全解) = rh(t)(齐次解) + rp(t)(特解)
(1)齐次解是齐次微分方程的解
dn
d n1
d
C0 dtn r(t) C1 dtn1 r(t) Cn1 dt r(t) Cnr(t) 0
其特征根α1= – 2, α 2= – 3。
齐次解为
rh (t) A1e2t A2e2t
由表2-2可知,当e(t) = 2 et 时,其特解可设为
rp (t) Bet
将其代入微分方程得 解得 B=1
Bet 5(Bet ) 6Bet 2et
于是特解为 全解为:
rp (t) et
r(t) rh (t) rp (t) A1e2t A2e3t et
零状态是指 0- 状态为零。
2、冲激函数匹配法 目的: 用来求解初始值,求(0+)和(0-)时刻值 的关系。 应用条件:如果微分方程右边包含δ(t)及其各阶导 数,那么(0+)时刻的值不一定等于(0-) 时刻的值。 原理: 利用t=0时刻方程两边的δ(t)及各阶导数 应该平衡的原理来求解(0+)
a0r(t) a1r ' (t) ... anr (n) (t) b0 u b1 (t) b2 ' (t) ... bm (m) (t)
[例2.1.3]:描述某系统的微分方程为r”(t) + 3r’(t) + 2r(t) = 2e’(t) + 6e(t),已知r(0-)=2,r’(0-)=0,e(t)=u(t)。求 该系统的全响应,零输入响应和零状态响应。
解:(1)r”(t) + 3r’(t) + 2r(t) = 2δ(t) + 6u(t) 利用系数匹配法分析列式得: r’’(t)=aδ(t) +b, r’(t)=a , r(t)=0 代入原方程得a=2,b=0
r'(0) r'(0) 2 2 r (0) r (0) 0 2
根据微分方程经典求法:
齐次解: 2 2 0
齐次解形式为: rh (t) A1e2t A2et
特解,根据特解形式得到: rp (t) B
解得 B=3
解得全响应为:
r(t) A1e2t A2et 3 t 0
由表知:其特解为 代入微分方程可得
rp(t) = (B1t + B0) e2t
B1 e2t = e2t
所以 B1= 1 但B0不能求得。全解为
r(t) A1e2t A2e3t te2t B0e2t ( A1 B0 )e2t A2e3t te2t
将初始条件代入,得: r(0) = (A1+B0) + A2=1 , r’(0)= –2(A1+B0) –3A2+1=0
几种典型自由项函数相应的特解
[例2.1.1]描述某系统的微分方程为r”(t) + 5r’(t) + 6r(t) =
e(t),求(1)当e(t) = 2 et ,t≥0;r(0)=2,r’(0)= -1
时的全解;(2)当e(t) = e2t ,t≥0;r(0)= 1,
r’(0)=0时的全解。
解: (1) 特征方程为 2 5 6 0
其中待定常数A1,A2由初始条件确定。 r(0) = A1+A2+ 1 = 2, r’(0) = – 2A1 – 3A2 – 1= – 1
解得 A1 = 3 ,A2 = – 2 最后得全解
r(t) 3e2t 2e3t et
t≥0
(2)齐次解同上。
当激励e(t)= e2t 时,其指数与特征根之一相重。
第二章 连续系统的时域分析
微分方程的经典解法 0+和0-初始值 零输入响应与零状态响应 冲激响应和阶跃响应 卷积积分
2.1 LTI连续系统的响应 一、微分方程的经典解
C0
dn dt n
r(t) C1
d n1 dt n1
r(t) Cn1
d dt
r(t) Cnr(t)
E0
dm dt m
e(t)
②m≥n,则
...
r(t) Cm (mn) (t) ... Cn1 u
(2)将r(t)及其各阶导数带入原方程,求出C0….Cm ; (3)对r(t)及各阶导数求(0-,0+)的积分.
[例2.1.2]:描述某系统的微分方程为r”(t) + 3r’(t) + 2r(t) = 2e’(t) + 6e(t),已知r(0-)=2,r’(0-)= 0,e(t)=u(t), 求r(0+)和r’(0+)。
r' (0) r' (0) 2 从0-到0+积分得:
r (0) r (0) 0
r'(0) r'(0) 2 2 r (0) r (0) 0 2
由上可见,当微分方程等号右端含有冲激函数(及其各 阶导数)时,响应r(t)及其各阶导数中,有些在t=0处将发生 跃变。但如果右端不含时,则不会跃变。
①求系统的特征根,写出rzi(t)的通解表达式。
②由于激励为零,所以零输入的初始值:
r (i) zi
(0)
r (i) zi
(0)
确定积分常数A1,A2, …,An
③将确定出的积分常数A1,A2, …,An代入通解表达式, 即得rzi(t) 。
3、零状态响应(0-时刻值为0) (1)即求解对应非齐次微分方程的解 (2)求rzs(t)的基本步骤
三、零输入响应和零状态响应 1、定义: (1)零输入响应:没有外加激励信号的作用,只有起始
状态所产生的响应。 (2)零状态响应:不考虑起始时刻系统储能的作用,由
系统外加激励信号所产生的响应。
LTI的全响应:r(t) = rzi(t) + rzs(t)
2、零输入响应
即求解对应齐次微分方程的解 求rzi(t)的基本步骤
如果包含有(t)及其各阶导数,说明相应的0-状态到0+状态 发生了跳变。
0+ 状态的确定 已知 0- 状态求 0+ 状态的值,可用冲激函数匹配法。 求 0+ 状态的值还可以用拉普拉斯变换中的初值定理求出。
相关文档
最新文档