关于高效和小粗糙度的几种磨削方法
磨方法教学

磨方法教学磨是一种常见的制造工艺,用于将物体表面加工得更加平滑和光亮。
磨方法的掌握对于各行各业都非常重要,尤其是在制造业中。
本文将介绍一些常见的磨方法及其操作步骤,以帮助读者更好地理解和掌握磨的技巧。
一、手工磨方法1. 手工打磨:手工打磨是最基本的磨方法之一,适用于小型工件或需要精细处理的部位。
首先,选用合适的砂纸或砂布,根据需要的磨削程度选择不同的砂粒粗细。
然后,将砂纸或砂布固定在磨具上,用手轻轻按压并沿着工件表面来回磨擦,直到达到理想的光滑度。
2. 手工研磨:手工研磨主要用于对工件表面进行精细处理,以达到高光亮度的要求。
在手工研磨时,可以选择不同规格的研磨石或研磨膏,并使用石灰水或油作为润滑剂。
将研磨石或研磨膏涂抹在工件表面,用手按压并沿着同一方向进行研磨,直到工件表面光滑如镜。
二、机械磨方法1. 平面磨削:平面磨削是常见的机械磨方法之一,适用于平面工件的加工。
在平面磨削时,需要使用平面磨床或平面磨削机。
首先,将工件固定在工作台上,并调整磨削头的位置和角度。
然后,开启机床,使磨盘旋转并与工件表面接触,通过磨削头的上下移动来去除工件表面的不平整部分,直到达到所需的平整度。
2. 圆柱磨削:圆柱磨削适用于对圆柱形工件进行加工,常见的应用是对轴类零件的磨削。
在圆柱磨削时,需要使用圆柱磨床。
首先,将工件夹在磨床的夹具上,并调整夹具的位置和角度。
然后,启动机床,使磨盘旋转并与工件表面接触,通过磨盘的进给运动来去除工件表面的不平整部分,直到达到所需的精度和光滑度。
三、高级磨方法1. 镜面磨削:镜面磨削是一种对工件表面进行高精度处理的方法,常用于光学、精密仪器等领域。
在镜面磨削时,需要使用专用的镜面磨床和磨削液。
首先,将工件固定在工作台上,并调整磨削头的位置和角度。
然后,启动机床,使磨盘旋转并与工件表面接触,同时喷洒磨削液冷却和润滑,通过磨削头的微小移动来去除工件表面的微小凹凸,直到达到理想的光滑度和精度。
常用粗糙度

常用粗糙度
常用粗糙度是指在工业制造和工程设计中,为了改善材料表面质量、提高生产效率和降低成本,常常采用一些技术手段来处理表面,这些技术手段被称为粗糙度处理。
常用的粗糙度处理技术包括:
1. 机械打磨:机械打磨是利用机械力、摩擦力和压力来去除材料表面的毛刺、凸起和不平,以达到表面粗糙度的要求。
机械打磨可以根据不同的需求和材料选择不同的砂纸、磨石和磨头,以达到最佳的粗糙度效果。
2. 化学处理:化学处理是通过化学反应来改变材料表面的物理和化学性质,以达到粗糙度处理的目的。
常用的化学处理技术包括酸洗、碱洗、氧化和电镀等。
3. 激光切割:激光切割是一种高精度的切割技术,可以利用激光束对材料进行高精度的切割和镂空。
在粗糙度处理方面,激光切割可以用于去除材料表面的毛刺、凸起和不平,也可以用于制造微粗糙度表面。
4. 电火花加工:电火花加工是利用电火花放电的原理对材料进行加工。
在粗糙度处理方面,电火花加工可以用于去除材料表面的毛刺、凸起和不平,也可以用于制造微粗糙度表面。
常用的粗糙度处理技术多种多样,可以根据具体的应用场景和需求选择合适的技术。
粗糙度处理技术不仅可以提高材料表面的质量和精度,还可以提高生产效率和降低成本。
提高工件表面粗糙度的方法

提高工件表面粗糙度的方法
嘿,你知道不?提高工件表面粗糙度那可是有不少门道呢!咱先说说打磨这招,就像给工件做个美容,拿砂纸或者砂轮轻轻打磨,把那些不平整的地方给磨平喽。
这过程可得小心,别太用力,不然工件不得受伤啊?打磨的时候要注意角度和力度,均匀用力才能让表面更光滑。
这安全性也很重要啊,戴个护目镜啥的,保护好自己,可不能马虎。
稳定性也得考虑,拿工具得稳当,不然东一下西一下的,能弄好才怪。
再看看抛光这办法,哇塞,就跟给工件穿上了一件闪亮的外衣。
用抛光剂和抛光轮,让工件表面变得贼亮。
这过程中也得注意安全,抛光剂别弄到身上。
稳定性同样关键,机器得固定好,不然晃来晃去的可不行。
那提高工件表面粗糙度有啥用呢?在一些精密仪器制造中,那可太重要啦!就好比一个漂亮的手表,表面光滑才好看嘛。
而且光滑的表面摩擦力小,使用寿命也长啊。
在汽车制造中,零件表面光滑,运行起来更顺畅,这不是好事儿嘛。
我给你讲个实际案例哈。
有个工厂生产手机外壳,一开始表面粗糙度不行,后来用了打磨和抛光的方法,那外壳变得跟镜子似的,多漂亮。
产品质量一下子就上去了,销量也大增。
所以啊,提高工件表面粗糙度真的很重要。
只要咱注意安全,保证稳定性,用对方法,就能让工件变得美美的,发挥更大的作用。
几种高效和小粗糙度的磨削方法

几种高效和小粗糙度的磨削方法影响磨削加工表面粗糙度的主要因素按影响程度排序:1:工件材质(硬度密度越大的磨削后粗糙度越低,即越光滑);2:磨料材质(粒度越小硬度越高磨削后粗糙度越低,即越光滑);3:加工条件--一机床种类.主要是机床工作时的平稳性(需要低震动);二加工速度.主要是单位时间进给量和转速;三人为因素.加工工人的熟练程度.一、高精度、小粗糙度磨削二、高效磨削目前,磨削正朝着两个方向发展:—是高精度、小粗糙度磨削,二是高效磨削。
高精度、小粗糙度磨削的出现,可代替研磨加工。
这样可节省工时和减轻劳动强度。
高效磨削的出现,提高了生产率;特别是强力磨削,它可在铸、锻件毛坯上直接磨出合乎要求的零件,使粗、精加工工序合并在一个工序中完成,使生产率得到很大的提高。
一、高精度、小粗糙度磨削前面已谈到:磨削表面微观不平度变大的主要原因,是磨床主轴振动和砂轮表面的磨粒切削刃高度不一致。
这就是影响进行高精度、小粗糙度磨削的主要障碍。
因此,需从下列两方面入手解决这个问题。
1.对砂轮的要求实现高精度、小粗糙度磨削时,对砂轮表面状态的要求是:砂轮表面的磨粒应具有微刃性和等高性(图14—27)。
磨削时,磨粒在工件表面上只切下微细的切屑,同时在适当的磨削压力下,借助半钝状态的微刃与工件表面间产生的摩擦而起抛光作用来获得高精度和小粗糙度的磨削表面。
例如用小修整导程和小修整深度修整的较细粒度(60﹟一320﹟)的砂轮来磨削工件,能获得小粗糙度Rz0.1—0.2μm (▽12);若用更细的粒度(W14—W5)、树脂结合剂并加有石墨填料的砂轮,经过更精细地修整砂轮,在适当的磨削压力下,经过一定时间的磨削—抛光作用,则可获得Rz0.05μm(▽14)的表面—镜面。
2.对磨床的要求进行高精度、小粗糙度磨削的磨床,其砂轮主轴应有高的回转精度;运转部件要求经过很好地动平衡;进给机构运动精度要高、灵敏和稳定,其中特别要求工作台在低速修整砂轮时无爬行现象,往复速度差不超过10%,这是位砂轮表面磨粒切削刃获得微刃性和等高性的基本要求。
磨削的工艺特点及其应用

磨粒破碎或整块从砂轮表面脱 落,露出里面新的磨粒,继续 进行磨削
砂轮的这种自行推陈出新,保持“自身锋锐”的性能称为 砂轮的自锐性。
由于砂轮这种自锐性,一方面破碎磨粒会堵塞孔隙,另一 方面随机脱落的磨粒引起砂轮尺寸精度下降,所以,经一段磨 削的砂轮需要重新修整,以保证其加工精度。
三、磨削的加工工艺特点:
①外圆磨削 分为有心磨削和无心磨削 在普通外圆磨床和万能外圆磨床上进行的
外圆柱面的加工是有心磨削。根据磨削运动的 不同,有心磨削分为纵磨法、横磨法、综合磨 法和深磨法。
纵磨法 横磨法 综合磨法 深磨法
进给运动
工件旋转实现周向进给;工作台 往复直线运动实现纵向进给;工 件一次往复行程终了时,砂轮做 周期性的径向进给。
1. 砂轮的特性包括:
1)磨料 目前应用的主要是人造磨料,分为固结磨 具磨料(F系列,表3-1列出了常用磨料A、C、MBD、 CBN)和涂附磨具磨料(P系列)。
2)粒度 反映磨料颗粒大小的程度。粒度号用F+数 字 表示,数字越大颗粒越小。一般情况下,粗磨时选 用颗粒大的磨粒,精磨时选用颗粒较小的磨料。
结合剂:有陶瓷结合剂、树脂结合剂、橡胶结合 剂等。
陶瓷结合剂适用于外圆、内圆、平面和各种成形表 面磨削;树脂结合剂和橡胶结合剂适用于制成各种切 割用的薄片砂轮。
由于磨料、结合剂和制造工艺不同,砂轮性能差别 很大,对磨削效果、生产率和经济性有很大影响。
砂轮的特性是指磨料种类、粒度大小、硬度、结合 剂、结构组织、形状和砂轮尺寸等指标。
滑擦、 摩擦严重,切削热多。 ③砂轮本身传热性能很差,短时间内切削热传不出去 。
由于磨削过程切削温度很高。因此,磨削中应大 量采用切削液。切削液除冷却、润滑作用外,还可以 冲洗砂轮,保证磨削的正常运行,提高砂轮的耐用度 和工件的加工质量。
减小工件表面粗糙度的方法

减小工件表面粗糙度的方法引言工件表面粗糙度是指表面的几何形状与理想平坦表面之间的差异程度。
表面粗糙度对于许多工件的性能和功能起着重要的影响。
较小的表面粗糙度可以提高工件的光洁度、耐磨性和材料的强度。
本文将探讨一些减小工件表面粗糙度的方法。
表面加工方法机械加工1.车削–通过在旋转工件上切削材料来改善表面粗糙度。
–选择适当的切削速度、进给量和刀具形状可以获得更好的表面质量。
2.磨削–利用砂轮在工件表面切削和磨砂以减小表面粗糙度。
–使用不同颗粒大小和材料的砂轮可实现不同的表面光洁度。
化学方法1.电解抛光–通过电解作用将工件表面的材料溶解以减小表面粗糙度。
–控制电解液成分、温度和电流密度可获得所需的表面质量。
2.化学抛光–使用酸、碱等化学溶液对工件表面进行处理以改善表面光洁度。
–选择合适的溶液浓度和处理时间,避免过度腐蚀。
物理方法1.喷砂–利用高速流动的砂粒对工件表面进行冲击,去除表面的杂质和粗糙度。
–调节喷砂压力、砂粒种类和喷砂时间可控制表面质量。
2.光束照射–使用激光或电子束对工件表面进行照射,使其熔化和重新凝固以减小表面粗糙度。
–控制照射能量和速度可实现所需的表面质量。
表面处理技术酸洗1.酸洗方法–将工件浸泡在浓度适中的酸溶液中,去除表面的氧化层和锈蚀物。
–常用的酸洗方法包括浸泡法、喷淋法和刷洗法。
2.注意事项–控制酸洗时间,避免过度腐蚀工件表面。
–对不同材料应选择合适的酸洗液和浓度。
表面涂层1.喷涂–使用喷枪将涂料均匀地喷在工件表面上,形成一层保护性涂层。
–选择合适的涂料类型和喷涂工艺可改变表面粗糙度。
2.电镀–在工件表面通过电解沉积金属等材料以形成一层金属涂层。
–控制电镀时间和电流密度可获得所需的表面质量。
表面打磨1.机械打磨–使用砂纸、抛光布等工具对工件表面进行打磨以改善表面光洁度。
–选择合适的打磨材料和方法可实现不同的表面质量。
2.化学打磨–使用强酸或碱溶液对工件表面进行处理以降低表面粗糙度。
粗糙度 加工方法

粗糙度加工方法粗糙度是指物体表面的粗糙程度或不光滑程度。
在制造和加工过程中,粗糙度是一个重要的参数,需要控制在一定的范围内,以满足特定的功能和需求。
下面我将介绍一些常见的粗糙度加工方法。
1. 铣削:铣削是一种常见的粗糙度加工方法,通过切削工具在工件上进行走刀运动,去除不需要的材料,从而形成所需的形状和尺寸。
铣削可以实现高效的精细加工,其粗糙度通常可以控制在比较小的范围内。
2. 研磨:研磨是一种常用的粗糙度加工方法,通过磨料与工件表面的相对运动,去除表面的不规则凸起,使得工件表面变得更加光滑。
研磨既可以手动进行,也可以借助机械设备实现。
不同的研磨工艺和磨料的选择可以实现不同的粗糙度要求。
3. 抛光:抛光是一种通过在工件表面施加力和磨料的相对运动来改善表面质量的加工方法。
抛光可以进一步降低工件表面的粗糙度,提高表面的光滑度和亮度。
抛光通常需要使用特殊的设备和磨料,针对不同的材料和粗糙度要求选择合适的抛光工艺。
4. 拉削:拉削是一种通过金属刀具和工件之间的相对运动来加工工件表面的方法。
通常情况下,拉削可以实现高精度、高效率的加工,具有较低的表面粗糙度。
5. 电火花加工:电火花加工是一种通过电脉冲放电来去除工件表面材料的加工方法。
通过电极与工件之间的电脉冲放电,工件表面的材料可以被腐蚀和去除,从而改善表面的质量和粗糙度。
电火花加工可以实现较高的加工精度和表面质量。
除了上述介绍的几种常见的粗糙度加工方法,还有许多其他的方法,如喷砂、化学处理等。
这些加工方法根据具体的应用需求和工件的材料特性选择合适的方法,以实现所需的粗糙度要求。
需要注意的是,不同的加工方法和工艺参数对粗糙度的影响是不同的,需要根据具体情况进行调整和优化。
此外,在加工过程中,还需要严格控制设备、工具和刀具的质量,以保证加工的稳定性和一致性。
通过合理的加工方法和精细的工艺控制,可以实现满足不同应用需求的粗糙度要求。
普通外圆磨提高磨削精度方法?

普通外圆磨提高磨削精度方法?通常情况下,用只经过金刚笔修整的砂轮在普通磨床上只能磨出Ra0.4~0.8μm的表面粗糙度。
为使磨削表面达到Ra0.02~0.04μm的粗糙度要求,就必须对砂轮进行精修和细修两次修整。
修整方法可采用以下两种方法之一。
1) 用金刚笔精修、再用油石细修砂轮粒度一般选用46#~80#。
首先用锋利的单颗粒金刚石笔以微小而均匀的进给量对砂轮进行精修,以在砂轮磨粒上修整出较多的等高微刃。
精修时,砂轮修整器的安装应正确合理(见图2),每次进给量应控制在5μm,纵向进给速度建议选用最低速度。
在精修过程中,应注意修整发出声音的变化。
若发出均匀的沙沙声,说明修整状况正常;若发出的声音忽高忽低或渐高渐低,甚至发出不正常的嘟嘟声,则应立即检查工作台是否出现爬行,冷却是否充分,金刚笔是否锋利等,然后进行适当调整。
经金刚笔精修后,再用油石(或砂条)进行细修,以在砂轮磨粒上修整出更多的等高微刃。
油石需在平面磨床上磨平。
细修时,油石必须与砂轮圆周表面平行,油石与砂轮轻微接触,缓慢地纵向移动2~3次即可。
2) 用金刚笔精修、再用精车后的砂轮细修用金刚笔精修后,先用磨削长度与工件基本一致的芯轴进行锥度调整,然后用经精车后的砂轮进行细修。
上海天然金刚石工具提醒你:细修用砂轮可采用GC80-120#J-K,直径约100mm。
精车砂轮时,将砂轮安装在卡盘上,将卡盘夹紧在一根自动定心的芯轴上,然后顶在精密车床的两个顶尖上进行粗、精车外圆,使砂轮外圆无偏摆。
然后将精车后的砂轮顶在磨床的两顶尖上即可对磨削用砂轮进行细修。
细修时,头架带动修整用砂轮转动,选用低转速(约80~100r/min)、小进给量(往复一次约2μm),工作台往复速度应低于0.3m/min。
需作多次往复修整。
修整用砂轮与被修整砂轮的旋转方向应相同,即接触点两者的线速度方向相反。
冷却液应充分,以冲走浮砂,防止磨削时砂轮上残留的浮砂拉毛工件表面。
砂轮经精、细修整完后,可用手指顺着砂轮旋转方向轻轻靠近砂轮工作表面并作纵向移动,若手感平整光滑如触镜面,说明砂轮修整良好;若感觉有磨粒刺手,可用剪去2/3刷毛的漆刷轻轻刷去砂轮表面浮砂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于高效和小粗糙度的几种磨削方法
目前,磨削正朝着两个方向发展:—是高精度、小粗糙度磨削,二是高效磨削。
高精度、小粗糙度磨削的出现,可代替研磨加工。
这样可节省工时和减轻劳动强度。
高效磨削的出现,提高了生产率;特别是强力磨削,它可在铸、锻件毛坯上直接磨出合乎要求的零件,使粗、精加工工序合并在一个工序中完成,使生产率得到很大的提高。
一、高精度、小粗糙度磨削
前面已谈到:磨削表面微观不平度变大的主要原因,是磨床主轴振动和砂轮表面的磨粒切削刃高度不一致。
这就是影响进行高精度、小粗糙度磨削的主要障碍。
因此,需从下列两方面入手解决这个问题。
1.对砂轮的要求
实现高精度、小粗糙度磨削时,对砂轮表面状态的要求是:砂轮表面的磨粒应具有微刃性和等高性。
磨削时,磨粒在工件表面上只切下微细的切屑,同时在适当的磨削压力下,借助半钝状态的微刃与工件表面间产生的摩擦而起抛光作用来获得高精度和小
粗糙度的磨削表面。
例如用小修整导程和小修整深度修整的较细粒度(60﹟一320﹟)的砂轮来磨削工件,能获得小粗糙度Rz0.1—0.2μm(▽12);若用更细的粒度(W14—W5)、树脂结合剂并加有石墨填料的砂轮,经过更精细地修整砂轮,在适当的磨削压力下,经过一定时间的磨削—抛光作用,则可获得Rz0.05μm(▽14)的表面—镜面。
2.对磨床的要求
进行高精度、小粗糙度磨削的磨床,其砂轮主轴应有高的回转精度;运转部件要求经过很好地动平衡;进给机构运动精度要高、灵敏和稳定,其中特别要求工作台在低速修整砂轮时无爬行现象,往复速度差不超过10%,这是位砂轮表面磨粒切削刃获得微刃性和等高性的基本要求。
其次还要求切削液供应充分,并需进行精细的过滤。
二、高效磨削
采用高效磨削可提高生产效率,扩大磨削加工范围。
1.高速磨削
普通磨床的砂轮速度为30—35m/s。
当砂轮速度高于45或50m/s以上时,称为高速磨削。
(1)高速磨削机理:砂轮速度提高后,使单位时间内通过磨削区的磨粒数增加。
若进给量保持与普通磨削时相同,则高速磨削时每颗磨粒切削厚度变薄,同时使每颗磨粒的负荷减小。
因此,高速磨削有如下特点:
①生产率高。
如果高速磨削切削厚度保持与普通磨削一样,则高速磨削可相应提高进给量,所以生产率比普通磨削高30%—100%。
②砂轮使用寿命可提高。
由于每颗磨粒上所承受的切削负荷减小,则每颗磨粒的磨削时间可相对延长,因此可提高砂轮的使用寿命。
③可提高精度和减小磨削表面的粗糙度。
由于每颗磨粒切削厚度变薄,每颗磨粒在通过磨削区时,在工件表面上留下的磨痕深度减小。
同时,由于速度提高,使磨削表面由于塑性变形而形成的隆起高度也减小,因此可减小磨削表面粗糙度。
由于切削厚度薄,所以径向磨削力Fp也相应减小,从而有利于保证工件(特别是刚性差的工件)的加工精度。
④改善磨削表面质量。
在高速磨削时,需要相应提高工件转速,使砂轮与工件的接触时间缩短,这样使传至工件的磨削热减少,从而减少或避免产生烧伤和裂纹的现象。
(2)磨床改装及其他措施:由于高速磨削的速度(50—80m/s)比普通磨削高,因此磨床的功率应相应增加,同时,在防振和防止砂轮破裂的安全方面部要采取有效的措施。
高速磨削过程中,磨削温度较高。
为了减少和避免磨削烧伤和裂纹,可采用加有极压添加剂的切削液,以减少磨粒和工件之间的摩擦,从而减少磨削热的产生。
(3)砂轮的选择:由于高速磨削的特点,应用的砂轮需作恰当选择。
高速磨削一般碳钢或合金钢时,最好采用棕刚玉(A)和微晶刚玉(MA)。
磨球墨铸铁时则可采用棕钢玉(A)和绿色碳化硅(GC)的混合磨料。
(4)高速磨削参数以后介绍
2.强力磨削
强力磨削就是以大的径向进给量(可达十几毫米)和缓慢的纵向进给量进行磨削。
(1)强力磨削的机理:普通磨削的纵向进给速度通常为0.033—0.042m/s(2—2.5m /min),而强力磨削的纵向进给速度则为0.000166—0.005m/s(0.0l一0.3m/min)。
这样就使单个磨粒的切削厚度大为减小,因而作用在每个磨粒上的力也减小。
(2)强力磨削的特点:
①生产效率高:由于采用缓速纵向进给和大的径向进给,这样就可在铸、锻毛坯上直接磨出零件所要求的表面形状及尺寸。
同时,由于径向进给大,故砂轮与工件的接触弧长要比普通磨削时的接触孤长大得多。
这样,单位时间内同时参加磨削工作的磨粒数目随着径向进给量的增大而增加。
因此,能充分发挥机床和砂轮的潜力,使生产效率得以提高。
②扩大磨削工艺范围:由于径向进给量fr很大,对毛坯加工能一次成形,所以能有效地解决一些难加工材料(如燃气轮机的叶片)的成型表面的加工问题。
③不易损伤砂轮:强力磨削时,工件作缓慢的纵向进给,这样便减轻了磨粒与工件边缘的冲击。
同时也减少了机床的振动,已加工表面的波纹小。
④精度稳定:由于单个磨粒的切削厚度小,每个磨粒上所受的力也小,因而能在较长的时间内保持砂轮的轮廓形状,所以被磨削零件的精度比较稳定。
⑤磨削力和磨削热大:大的径向进给,使同时参加工作的磨粒数增加。
这样虽然大大地提高生产率,但也增大了切削力和切削热。
因此,进行强力磨削时必须充分供应切削液,以降低磨削温度,保证磨削表面质量。
采用强力磨削时,磨床须进行必要的改装。
砂轮的选择亦应适应上述特点;例如,宜用粗粒度和大气孔或琉松组织的砂轮,以利于排屑和散热等。
3.砂带磨削
砂带磨削是一种新的高效磨削方法,自60年代以来,它的发展极为迅速,应用范围也越来越广泛。
估计工业发达国家的磨削加工,目前,约有1/3左右由砂带取代砂轮。
而原联邦德国尤为突出,早在1963年,砂带磨削已占磨削加工量的50%—60%。
砂带磨削具有下列几个特点:
(1)设备简单:砂带磨削设备一般都比较简单,砂带安装在压轮(接触轮)和张紧轮上,由回转运动实现切削运动;工件自传送带送至支承板上方的磨削区,实现进给运动,经过砂带磨削区即完成加工任务。
(2)生产效率高:砂带磨削的生产效率很高,它比铣削的生产效率高10倍;如以切除同样金属余量的加工时间作比较,则铣削、拉削或砂轮磨削比砂带磨削要多4—10倍。
(3)加工质量好:砂带磨削的粗糙度,一般达到及Ra0.63—0.16μm(▽7—▽9),加工精度也比较高。
(4)能磨削复杂形面:砂带具有一定的柔曲性,能磨削复杂形面的工件。
导向板外形是和工件成形表面相适应的,改变导向板的外形,就可磨削所需的工件成形表面。
也可将压轮设计成相应的成形表面,用以加工回转体或平面的成形表面。
如果工件成形表面的截面变化较大,为避免砂带折裂和磨粒脱落,可采用分段成形磨削。
砂带成形磨削的应用比较广泛,如导弹头外形、航空喷气发动机叶片的复杂形面等精密加工。
由于砂带磨削的应用十分广泛,故有七十年代万能工具的称誉。
目前,强力砂带磨削和宽砂带(宽度达3m甚至更宽)应用,使生产率进一步得到提高;与此相应出现了高刚性、高强度的砂带磨床,有的磨床电动机功率高达
182.5KW(250HP)。
砂带磨削总的趋势是向着高生产率和砂带高使用寿命方向发展。
4.适应控制磨削
磨削的适应控制,是在变化着的工作条件(如工件毛坯余量、硬度和工件刚性等)变化较大、难以预知的情况下,利用适控系统,使有关的磨削用量与之相适应,从而使磨削过程始终处于或接近一个稳定的最佳状态,这样就能最大限度地合理利用机床和砂轮的切削能力,在保证工件质量的前提下提高加工效率,降低加工成本,防止设备和工具发生事故,使磨削过程实现最优化。
适应控制可分为约束适控和最佳适控。
约束适控是按照某个预定目标,根据给定的约束值或约束函数进行切削用量的调节。
最佳适控是能够在给定的约束条件范围内按照确定的评价函数(数学模型)来处理测量数据,并计算出相应的校正参数值,使加工系统达到预期的最佳目标。
与约束适控相比,它的特点是在磨削过程中能够按照预定的逻辑来确定用以作为适控根据的最佳条件,亦即可实现加工最优化。