大棚温度控制系统设计报告
蔬菜大棚温湿度控制系统设计

蔬菜大棚温湿度控制系统设计1. 引言蔬菜大棚是一种用于种植蔬菜的设施,其温湿度控制对于蔬菜的生长和产量具有重要影响。
为了提高蔬菜的质量和产量,设计一套高效可靠的温湿度控制系统是至关重要的。
本文将介绍一种基于现代控制理论和技术的蔬菜大棚温湿度控制系统设计。
2. 温湿度对蔬菜生长的影响温湿度是影响植物生长和发育的重要环境因素之一。
过高或过低的温湿度都会对植物生长产生负面影响。
在适宜范围内,适当调节温湿度可以促进光合作用、提高光能利用效率、增加养分吸收能力,并且有利于提高抗病虫害能力。
3. 温湿度控制系统设计原理3.1 温室环境参数测量为了实现精确可靠地温湿度控制,需要对环境参数进行实时测量。
可以使用传感器测量温度、湿度等参数,并将测量结果传输给控制系统。
3.2 控制算法设计控制算法是温湿度控制系统的核心部分。
常用的控制算法有比例-积分-微分(PID)控制、模糊逻辑控制、模型预测控制等。
根据实际情况选择合适的控制算法,并对其进行参数调整,以实现对温湿度的精确调节。
3.3 控制执行器设计根据温湿度的调节需求,选择合适的执行器进行操作。
常用的执行器有加热设备、通风设备、喷水设备等。
通过对执行器进行精确操作,可以实现对温湿度的有效调节。
4. 温湿度控制系统设计方案4.1 系统硬件设计蔬菜大棚温湿度控制系统需要包括传感器、执行器和处理单元(CPU)等硬件设备。
传感器用于测量环境参数,执行器用于实现环境参数调节,CPU负责接收传感器数据并根据预定算法进行处理和决策。
4.2 系统软件设计蔬菜大棚温湿度控制系统需要编写相应软件进行控制。
软件需要实现传感器数据的采集与处理、控制算法的实现、执行器的控制等功能。
同时,软件需要具备数据存储、报警处理、用户界面等功能,以提高系统的可靠性和易用性。
5. 系统性能评估与优化为了保证系统的稳定可靠运行,需要对系统进行性能评估与优化。
可以通过实际操作和数据采集来评估系统对温湿度变化的响应速度和稳定性,并根据评估结果对系统参数进行优化调整,以提高系统的控制精度和稳定性。
温度控制系统综合设计报告

温度控制系统综合设计报告引言随着科技的不断发展,温度控制系统在各个领域中起着至关重要的作用。
一个稳定的温度控制系统能够保证设备的正常运行,提高生产效率,并确保产品的质量。
本文将以温室的温度控制系统为例,介绍了其设计和实施过程,并总结了其结果与改进方向。
设计目标本次温度控制系统的设计目标如下:1. 实时监测温室内外的温度,并能够实时显示;2. 能够自动调整温室内的温度,使其保持在预设的范围内;3. 具备报警功能,当温室内温度超过预设范围时能够及时发出警报。
系统设计硬件部分为了实现上述设计目标,温度控制系统需要使用以下硬件设备:- 温度传感器:用于实时监测温室内外的温度。
- 控制器:负责接收温度传感器的数据,并根据设定的温度范围进行控制。
- 加热器/冷却器:根据控制器的指令,调节温室内的温度。
- 显示器:用于实时显示温室内外的温度。
软件部分温度控制系统的软件主要由以下几部分构成:- 数据采集模块:负责从温度传感器中获取温度数据,并进行存储和处理。
- 控制算法模块:根据设定的温度范围,进行传感器数据的实时处理,并生成相应的控制信号。
- 界面显示模块:将温室内外的温度数据实时显示在显示器上。
- 报警模块:当温度超过预设范围时,发出声音或灯光信号进行警示。
实施过程1. 硬件配置:根据设计需求,选取合适的温度传感器、控制器、加热器/冷却器以及显示器。
2. 硬件搭建:将选取的设备组合在一起,通过适当的接口与控制器进行连接,并确保其正常工作。
3. 软件编程:根据设计需求,编写相应的软件程序,实现数据采集、控制算法、界面显示和报警功能。
4. 软硬件调试:对整个系统进行测试和调试,确保其各项功能正常运行。
5. 系统优化:根据实际使用过程中的反馈和需求,在必要的情况下对系统进行优化和改进。
结果与改进方向经过一段时间的实际运行,温度控制系统取得了一定的成果和效果。
温室内的温度能够在预设范围内自动调节,并实时显示在显示器上。
蔬菜大棚温度控制系统设计

蔬菜大棚温度控制系统设计一、概述随着人们对健康饮食的关注不断加强,蔬菜的种植需求也在不断增加。
特别是在一些家庭农场和大型农业生产基地中,蔬菜大棚的种植已经成为了常见的生产模式。
在这种大棚环境下,蔬菜的种植需要稳定的温度环境,但是不同的蔬菜对温度的要求也不同,为了达到最佳种植效果,对大棚温度进行精确控制非常重要。
因此,本文主要针对蔬菜大棚的温度控制需求,设计了一种基于单片机的控制系统。
二、系统设计1. 硬件设计控制系统的硬件主要由传感器、执行器、控制模块等部分组成。
(1)传感器传感器用于监测大棚内部的温度。
在本系统中,采用数字温度传感器DS18B20来实现温度采集。
该传感器具有精确、稳定、抗干扰等特点。
(2)执行器执行器用于对大棚内部进行温度调节。
在本系统中,采用继电器作为执行器,通过控制电路开关,实现对温度设备的开关控制。
(3)控制模块控制模块是系统的核心部件,它负责数据的采集、处理和控制信号的输出。
在本系统中,采用STM32F103C8T6单片机作为控制模块。
该单片机运行速度快,集成了丰富的模块和接口,可以满足本系统的需求。
2. 软件设计系统的软件主要由采集程序和控制程序组成。
(1)采集程序采集程序主要用于读取传感器数据,并通过串口传输到控制程序中。
在采集过程中,设置一定的采样周期,来保证数据的准确性和稳定性。
(2)控制程序控制程序主要用于对采集的数据进行处理,并根据设定的温度值,控制继电器的开关状态,达到控制温度的目的。
在控制程序中,设置一定的控制算法和控制策略,来保证控制系统的性能和稳定性。
三、系统实现在硬件和软件设计完成之后,进行系统实现。
对于本系统,可以将传感器和执行器采用模块化设计,使得系统更加灵活和易于维护。
在系统实现过程中,需要进行测试和调试,来验证系统的性能和稳定性。
在测试和调试过程中,需要注意保证系统的安全性和可靠性,避免不必要的损失。
四、本文主要介绍了一种基于单片机的蔬菜大棚温度控制系统设计。
大棚智能温控实验报告

大棚智能温控实验报告大棚智能温控是一种利用传感器和控制系统实现对大棚内温度进行自动调控的技术,可以提高农作物的生长效率,减少能源消耗。
为了验证大棚智能温控的效果,我们进行了一次实验。
实验材料和仪器:1. 大棚:使用面积为10平方米的大棚,安装了透明的塑料薄膜。
2. 温控器:使用一款智能温控器作为控制系统,可以根据设定的温度范围自动控制大棚内的温度。
3. 传感器:在大棚内设置了温度传感器,可以实时监测大棚内的温度。
4. 加热设备:使用一台电热器作为加热设备,可以通过控制器开关来调节加热功率。
5. 计算机:用于与温控器和传感器进行连接和数据采集。
实验步骤:1. 设置温度范围:根据农作物的需求,我们将温度范围设置在18℃到30℃之间。
2. 开始记录数据:启动温控器和传感器,开始记录大棚内的温度数据。
3. 观察温度变化:通过计算机上的监控界面,实时观察大棚内的温度变化。
4. 调节加热功率:当大棚内温度低于设定的最低温度时,打开加热器并逐渐增加加热功率,直到温度达到设定范围为止。
当温度高于设定的最高温度时,关闭加热器。
5. 结束记录数据:记录实验过程中的温度变化数据。
6. 分析实验结果:利用记录的数据,分析大棚智能温控系统对温度的调控效果。
实验结果:通过实验数据的分析,我们发现大棚智能温控系统可以有效地维持大棚内的温度在设定范围内波动。
在实验过程中,大棚内的温度在18℃到30℃之间波动,温度波动幅度较小,并且温度变化与设定的目标温度基本一致。
实验结论:大棚智能温控系统可以有效地控制大棚内的温度,提高农作物的生长效率。
通过对温度的精确调控,可以减少能源的浪费,降低农业生产成本。
同时,智能温控系统的自动化调控还可以减少人工操作,提高工作效率。
进一步改进:在实际应用中,还可以进一步改进智能温控系统。
例如,可以增加湿度传感器,实现对大棚内湿度的自动调控;可以引入光照传感器,实现对大棚内光照强度的自动调控。
通过综合调控大棚内的温度、湿度和光照等因素,进一步提高农作物的生长效率。
温室大棚监控系统设计报告

温室大棚监控系统设计报告引言温室大棚是现代农业生产的重要设施之一,它能在温度、湿度、光照等方面对作物生长环境进行精确控制,提高生产效率和质量。
然而,温室大棚的管理和监控也变得越来越复杂,为了高效运营大棚的农业生产,设计一个可靠的温室大棚监控系统变得非常重要。
本报告将介绍一个基于物联网技术的温室大棚监控系统的设计方案。
设计目标- 实时监测温室大棚的温度、湿度和光照等环境参数;- 通过云平台实现对温室大棚的远程监控和控制;- 提供数据分析和报告功能,帮助农户进行决策和优化管理;- 高度可扩展和可靠的系统架构。
系统架构本监控系统基于物联网技术,由以下几个主要部分组成:1. 传感器节点:将温室大棚中的环境参数监测数据采集并通过无线传输发送到数据中心;2. 无线传输网络:使用低功耗广域网(LPWAN)技术,如LoRaWAN或NB-IoT,实现传感器节点数据的长距离传输;3. 数据中心:接收传感器节点采集的数据,并通过云平台进行处理和分析;4. 云平台:负责监控和控制温室大棚,提供实时数据展示、告警通知、数据分析和可视化报告等功能;5. 用户界面:通过Web或移动应用程序,农户可以远程监控温室大棚的状态,设置参数和查看报告。
硬件设计传感器节点传感器节点是系统中基础的部分,它们负责采集温室大棚的环境参数数据。
每个传感器节点包含以下组件:- 温度传感器:用于测量温室的温度;- 湿度传感器:用于测量温室的湿度;- 光照传感器:用于测量温室的光照强度;- 无线通信模块:负责将采集到的数据发送到数据中心。
传感器节点通过低功耗设计,可以长时间工作并使用电池供电。
数据中心数据中心接收传感器节点的数据,并对其进行处理和分析。
它主要包括以下组件:- 数据接收服务器:接收传感器节点发送的数据,并存储到数据库中;- 数据处理和分析模块:对接收到的数据进行处理和分析,例如计算均值、方差、趋势等指标;- 数据库:用于存储和管理监测数据;- 告警系统:根据预设的阈值和规则,通过短信、邮件或移动推送发送告警通知。
蔬菜大棚智能温度控制系统设计

蔬菜大棚智能温度控制系统设计摘要传统的农业生产模式已经不能很好地适应现代化的快速发展,现代化农业是中国农业发展的必经之路。
随着我国经济的快速增长,农业的研究和应用技术越来越受到重视,尤其是温室大棚已经成为高效农业的一个重要组成部分。
现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。
本文中研究的蔬菜大棚智能温度控制系统主要由AT89C51单片机、并行口扩展芯片8255、74LS244驱动器、A\D转换器0809、温度传感器DS1820、继电器、LED显示器和报警电路等构成,实现对蔬菜大棚温度的检测与控制,解决了温室大棚人工控制的温度误差,且费时费力、效率低的问题。
该系统运行可靠,成本低。
系统通过温室内的温度参量的采集,并根据获得参数实现对温度的自动调节,达到了温室大棚自动控制的目的。
从而有效地提高了蔬菜的产量并满足人们在不同季节对蔬菜的需求,带来很好的经济效益和社会效益。
关键词:AT89C51单片机、温度传感器、A\D转换器、LED数码管AbstractThe traditional agricultural production model have can not very well to adapt to the rapid development of modern, modern agriculture agricultural development in China is the only way. With China's rapid economic growth, agricultural research and application technology is more and more attention, especially greenhouse canopy has become the efficient agriculture is an important part. Modern agricultural production is an important part of agricultural production environment to some important parameters testing and control. In this paper the research vegetables canopy intelligent temperature control system mainly by the AT89C51 single-chip microcomputer, parallel port expansion chip 8255, 74 LS244 drive, A \ D converters 0809, the temperature sensor DS1820, relays, LED display and alarm circuit structure, to achieve the temperature of the awning vegetables detection and control, solve the trellis artificial control temperature of greenhouse error, and time-consuming, and the problem of low efficiency. The system run reliably, the cost is low. The system through the greenhouse temperature within the parameters of the collection, and according to get to the temperature parameters realize automatic adjustment, to shed the purpose of greenhouse automatic control. To improve the production of vegetables and satisfy people in different season for vegetable demand, bring good economic benefits and social benefit.Key words Single-chip microcomputer temperature transmitter A/D converter LED目录摘要 (I)Abstract (II)目录 ............................................................................................................................................ I II1 绪论 (1)2 蔬菜大棚的方案选择 (3)2.1 系统整体框图 (3)2.2 系统工作原理 (3)3 蔬菜大棚系统的硬件设计 (4)3.1 电路原理图 (4)3.2 工作原理 (4)3.3 各部分单元电路的设计及器件选择 (4)3.3.1温度传感器电路介绍 (5)3.3.2温度传感器的选择 (5)3.3.3 DS1820简介及性能特点 (6)3.3.4显示电路 (8)3.3.5系统报警电路 (8)3.3.6 时钟电路 (9)3.3.7 AT89C51的复位电路 (9)3.3.8键盘扫描 (10)4 系统软件设计 (11)4.1 系统主程序流程图 (11)4.1.1系统主程序 (12)4.2 系统主要部分子程序 (22)4.2.1 AT89C51和DS18B20制作的温度报警器内部程序 (22)5 protues仿真图 (27)6 总结 (31)参考文献 (31)致谢 (33)咸阳师范学院2012届本科毕业毕业论文(设计)1 绪论我国北方冬季寒冷而漫长,大力推广蔬菜大棚种植蔬菜能够更好地满足人民生活水平日益提高的需要。
蔬菜大棚温湿度控制系统设计

**************************************************** 本科毕业设计题目蔬菜大棚温湿度控制系统的设计姓名*******专业电子科学与技术学号********指导教师**********电气工程学院二○一四年五月毕业设计(论文)任务书题目蔬菜大棚温湿度控制系统的设计专业电子科学与技术学号姓名主要内容、基本要求、主要参考资料等一.主要内容:1.检测,选择温度和湿度环境参数进行监控。
2.硬件系统设计(1)温湿度采样系统;(2)单片机控制系统;(3)显示系统;(4)报警控制系统。
3. 软件系统设计(1)单片机系统初始化;(2)对传感器采集的数据信息进行分析,通过单片机控制温度和湿度;(3)显示模块以及报警控制模块。
二.基本要求:1 查阅相关书籍、资料,确定合理的方案。
2 详细叙述工作原理,以及各功能模块。
3 采用温湿度传感器测量大棚内温度以及湿度。
4 显示模块显示测量的温度和湿度数值。
三.主要参考资料:[1] 谭浩强.单片机课程设计[M].北京:清华大学出版社,1989[2] 张毅刚.单片机原理及接口技术[M].哈尔滨:哈尔滨工业大学出版社,1990[3] 郭天祥.新概念51单片机C语言教程[M].电子工业出版社,2009完成期限:指导教师签名:专业负责人签名:填表日期:毕业设计(论文)开题报告课题名称蔬菜大棚温湿度控制系统的设计课题来源教师拟定课题类型BY 指导教师学生姓名学号专业电子科学与技术开题报告内容:(调研资料的准备,设计的目的、要求、思路与预期成果;任务完成的阶段内容及时间安排;完成设计(论文)所具备的条件因素等。
)一、调研资料的准备1、了解选题背景:蔬菜的生长对于温湿度具有一定的要求,因此需要对环境的温度和湿度进行监测和控制。
随着科学技术的发展,也要求利用现代化仪器,更方便的测试蔬菜大棚内的温湿度以及控制系统,从而进一步提高蔬菜产量和数量。
大棚温度控制系统设计报告

课程设计主要任务基于AT89S52单片机的温度测量控制系统,数字温度传感器DS18B20通过单总线与单片机连接,实现温度测量控制,主要性能为:(1)通过该系统实现对大棚温度的采集和显示;(2)对大棚所需适宜温度进行设定;(3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风机进行升温控制;(4)通过显示装置实时监测大棚内温度变化,便于记录和研究;系统的设计指标(1)温度控制范围:0℃~+50℃;(2)温度测量精度:±2℃;(3)显示分辨率:0.1℃;(4)工作电压:220V/50Hz ±10%目录第一章序言 1 第二章总体设计及个人分工 2 第三章传感器设计及应用 4 第四章总结8第一章序言随着人口的增长,农业生产不得不采取新的方法和途径满足人们生活的需要,大棚技术的出现改善了农业生产的窘迫现状。
塑料大棚技术就是模拟生物生长的条件,创造人工的气象环境,消除温度对农作物生长的限制,使农作物在不适宜的季节也能满足市场的需求。
随着大棚技术的普及,对大棚温度的控制成为了一个重要课题。
早期的温度控制是简单的通过温度计测量,然后进行升温或降温的处理,进行的是人工测量,耗费大量的人力物力,温度控制成为一项复杂的程序。
大多数的蔬菜大棚以单个家庭作业为主,种植户为蔬菜大棚配备多参数的智能设备,经济成本很高,因此将温度控制由复杂的人为控制转化为自动化的机械控制成为必然。
目前现代化的温度控制已经发展的很完备了,通过传感器检测基本上可以实现对各个执行机构的自动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。
近年来电子技术和信息技术的飞速发展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化,产业化。
温度计算机控制及管理技术便函先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进,开发出适合自己的系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,
从而使温室种植业实现真正意义上的现代化, 产业化。温度计算机控
制及管理技术便函先在发达国家得到广泛应用, 后来各发展中国家也
都纷纷引进, 开发出适合自己的系统。 这在给各国带来了巨大的经济
效益的同时,也极大地推动了各国农业的现代化进程。本系Fra bibliotek以目录
第一章 序言
1
第二章 总体设计及个人分工
2
第三章 传感器设计及应用
4
第四章 总结
8
第一章 序言
随着人口的增长, 农业生产不得不采取新的方法和途径满足人们
生活的需要, 大棚技术的出现改善了农业生产的窘迫现状。 塑料大棚
技术就是模拟生物生长的条件, 创造人工的气象环境, 消除温度对农
作物生长的限制, 使农作物在不适宜的季节也能满足市场的需求。 随
本温度控制系统由 AT89C52 单片机及其外围电路共同完成,独 立键盘作为人机接口, 通过单片机 I/O 口输入, 从而实现手动控制与 人工调节, DS18B20 将检测到的温度值转换为数字量输入到单片机 中,通过单片机处理实现相应的温度控制功能, 强电控制与驱动电路 来控制热风机与通风机的启停, 报警电路在温度超过设定范围时发出 报警声,显示模块由液晶显示器实现, 使人们比较直观的进行温度设 置,了解受控温度温度信息。
P1 口
P1 口是一个具有内部上拉电阻的 8 位双向 I/O 口,p1 输出缓 冲器能驱动 4 个 TTL 逻辑电平。
此外, P1.0 和 P1.1 分别作定时器 / 计数器 2 的外部计数输入 (P1.0/T2 )和定时器 / 计数器 2 的触发输入(P1.1/T2EX )。 在 flash 编程和校验时, P1 口接收低 8 位地址字节。
引脚号第二功能:
P1.0 T2 (定时器 / 计数器 T2 的外部计数输入),时钟输出 P1.1 T2EX(定时器 / 计数器 T2 的捕捉 / 重载触发信号和方向控制)
P1.5 MOSI (在系统编程用)
P1.6 MISO (在系统编程用)
P1.7 SCK(在系统编程用) P2 口
P2 口是一个具有内部上拉电阻的 8 位双向 I/O 口,P2 输出缓 冲器能驱动 4 个 TTL 逻辑电平。对 P2 端口写 “ 1时”,内部上拉电阻 把端口拉高,此时可以作为输入 口使用。作为输入使用时,被外部 拉低的引脚由于内部电阻的原因,将输出电流( IIL )。 在访问外部 程序存储器或用 16 位地址读取外部数据 存储器(例如执行 MOVX @DPTR) 时,P2 口送出高八位地址。在这种应用中, P2 口使用很
课程设计主要任务 基于 AT89S52 单片机的温度测量控制系统, 数字温度传感器 DS18B20 通过单总线与单片机 连接,实现温度测量控制,主要性能为: (1)通过该系统实现对大棚温度的采集和显示; (2)对大棚所需适宜温度进行设定; (3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风 机进行升温控制; (4)通过显示装置实时监测大棚内温度变化,便于记录和研究; 系统的设计指标 (1)温度控制范围: 0℃ ~+50℃; (2)温度测量精度:± 2℃; (3)显示分辨率: 0.1℃; (4)工作电压: 220V/50Hz ± 10%
系统主程序首先对系统进行初始化,定义端口, DS18B20 初始 化,LCD 初始化,显示开机画面,键盘处理等,键盘处理程序中调用 子程序完成温度的检测和调控, 键盘处理循环执行, 系统不断显示新 的温度信息。
2.6 个人分工 吴灵智(组长):单片机的选择及编程 赵美玲:传感器的选择及应用 汪栋翔:温度测量及控制的编程 王江涛:发热制冷装置及电路设计 张博文: LCD 选择及编程
三.个人任务
单片机篇
1. 单片机型号选择
由于 s52 单片机的价位与 c51 单片机价位相差不大, 且与 c51 完全兼容, 比 c51 功能更加强大, 所以这次设计中我选择的单片机型 号为 AT89S52 单片机。
2. 引脚说明
AT89S52 是一种低功耗、高性能 CMOS8 位微控制器,具有 8K 在系统可编程 Flash 存储器。使用 Atmel 公司高密度非易失性存储器 技术制造,与工业 80C51 产品指令和引脚完 全兼容。片上 Flash 允 许程序存储器在系统可编程,亦适于 常规编程器。在单芯片上,拥 有灵巧的 8 位 CPU 和在系统 可编程 Flash,使得 AT89S52 为众多 嵌入式控制应用系统提 供高灵活、超有效的解决方案。 AT89S52 具有以下标准功能: 8k 字节 Flash,256 字节 RAM, 32 位 I/O 口 线,看门狗定时器, 2 个数据指针,三个 16 位 定时器 / 计数器,一 个 6 向量 2 级中断结构,全双工串行口, 片内晶振及时钟电路。另 外, AT89S52 可降至 0Hz 静态逻 辑操作,支持 2 种软件可选择节 电模式。空闲模式下, CPU 停止工作,允许 RAM、定时器 / 计数 AT89S52 引脚图 DIP 封装 器、串口、中断继续工 作。掉电保护方 式下, RAM 内容被保存,振荡器被冻结,单片机一切工作停止,直 到下一个中断或硬件复位为止。
设计基于 AT89C52 单片机的蔬菜大棚温度控制系统, 用于自动调节 大棚内部的温度。大棚内部温度始终控制在 10℃-30℃之间。 2.3 系统基本方案
根据任务要求,该系统模块可以划分为以下几个部分: 键盘模块, 温度测量模块,显示电路模块,报警模块。根据各个模块不同的功能 特点,分别做了几种不同的设计方案并且进行了相关方面的论证。 2.3.1 各模块电路的方案选择及论证
Flash 允许程序存储器在系统可编程,在单芯片上拥有灵巧的八位 CPU和系统可编程 Flash,使得 AT89S52 成为众多嵌入式控制应用系 统提供高灵活的有效解决方案。 2.4.2 温度采集模块
我们的大棚控制系统所采用的温度传感器为 DS18B20,在温度
测量系统中, 采用抗干扰能力强的新型数字温度传感器是解决这些问 题的最有效方案,新型数字温度传感器 DS18B20 具有体积更小、精 度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用 中取得了良好的测温效果。 DS18B20 可以程序设定 9~12 位的分辨 率,精度为± 0.5 °C。可选更小的封装方式,更宽的电压适用范围。分 辨率设定,及用户设定的报警温度存储在 EEPROM 中,掉电后依然 保存。 DS18B20 的性能是新一代产品中最好的因此选用 DS18B20 传 感器。 2.4.3 电源模块
制转化为自动化的机械控制成为必然。 目前现代化的温度控制已经发
展的很完备了, 通过传感器检测基本上可以实现对各个执行机构的自
动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,
是农业现代化的重要标志之一。 近年来电子技术和信息技术的飞速发
展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领
2.3.2 系统的设计指标 (1) 温度控制范围: 0℃~+50 ℃; (2) 温度测量精度:± 2℃; (3) 显示分辨率: 0.1 ℃; (4) 工作电压: 220V/50Hz ±10%; 2.4 系统各模块的硬件设计
电路系统框图
2.4.1 单片机模块 单片机选用 AT89S52,是一种低功耗高性能的微控制器,片上
AT89S52 单片机为控制核心,主要是为了对蔬菜大棚内的温度进行
检测与控制而设计的。该测控仪具有检测精度高、使用简单、成本较 低和工作稳定可靠等特点,所以具有一定的应用前景。
第二章总体设计及个人分工 2.1 设计任务
设计出一个蔬菜大棚温度控制系统。 该系统的温度上下限报警值 可以通过人工设定, 并能够在外界温度高于设置温度上限时实现排风 扇自动运转通风降温, 在外界温度低于设置温度下限时实现热风机自 动加热升温, 以保持大棚内部的温度始终处于适合蔬菜生长的温度范 围内。 2.2 任务要求
此外, P3 口还接收一些用于 FLASH闪存 编程和程序校验的控 制信号。
RST
复位输入。 当振荡器工作时, RST 引脚出现两个机器周期以上高 电平将是单片机复位。
ALE/PROG
当访问外部程序存储器或数据存储器时, ALE(地址锁存允许) 输出脉冲用于锁存地址的低 8 位字节。 一般情况下, ALE 仍以时钟振 荡频率的 1/6 输出固定的脉冲信号, 因此它可对外输出时钟或用于定 时目的。要注意的是:每当访问外部数据存储器时将跳过一个 ALE 脉冲。对 FLASH 存储器 编程期间,该引脚还用于输入编程脉冲 (PROG)。如有必要,可通过对特殊功能寄存器( SFR)区中的 8EH 单元的 D0 位置位,可禁止 ALE 操作。该位置位后,只有一条 MOVX 和 MOVC 指令才能将 ALE 激活。此外,该引脚会被微弱拉高,单片 机执行外部程序时,应设置 ALE 禁止位无效。
端口引脚第二功能: P3.0 RXD(串行输入口 ) P3.1 TXD( 串行输出口 ) P3.2 INTO( 外中断 0) P3.3 INT1( 外中断 1) P3.4 TO( 定时 / 计数器 0) P3.5 T1( 定时 / 计数器 1) P3.6 WR( 外部数据 存储器写选通 ) P3.7 RD(外部数据 存储器读选通 )
强的内部上拉发送 1。在使用 8 位地址(如 MOVX @RI)访问外部 数据存储器时,P2 口输出 P2 锁存器的内容。 在 flash 编程和校验时, P2 口也接收高 8 位地址字节和一些控制信号。