数字地震检波器设计

合集下载

地震检波器原理与结构

地震检波器原理与结构
检波器的微分方程: d 2 x dxt m m c kxt 0 2 dt dt
其中: x0为振动物体的绝对位移、xm为振动物体的绝对位移、Xt=xm-x0为质量 块与振动体(即检波器壳体)之间的相对位移
检波器原理 –速度型检波器结构
速度型检波器:由线架、悬浮弹簧、磁钢、磁靴及弹簧
片组成。它可以看作是由质量体 m 、弹簧 k 、和阻尼 c 构成的 二阶惯性振动系统(工作在线性区)。
检波器原理 –速度型检波器 速度型检波器(常规检波器)
■它是一种基于电磁感应原理的机电变换。这种传感器能够 实现机械能与电能的相互转换。 当导体以速度 V垂直磁场方向运动时,导体上两端产生感 生电动势u。根据棂次定律,
u=BLV(其方向由右手定则确定)。
当导体上有电流时,导体将受到磁场的电磁力 fi 的作用。 根据安培定律,不计导体本身电阻抗时:
(常规或模拟输出检波器)数据采集示意图

言 引言
地震检波器作为野外数据采集过程中最为关键的采
集前端装备,其性能及所采集的数据质量直接关系到地 质效果而倍受关注。随着高分辨率勘探的深入,对地震 数据采集质量提出了新的要求。特别是 宽频、高保真、 高信噪比的低成本采集要求越来越迫切。 为了满足低成本以及数据采集的高质量要求,仪器 的道数、种类也在不断的增加:有线地震仪、无线地震 仪、节点地震仪、无缆地震仪、光纤地震仪等等。道数 也是从“多道”上升到了几万道、几十万道,并且期望 百万道。
检波器原理—参数描述3
失真度(畸变) :作为一个信号通路,对通过的信号所产生的失 真程度。定义为输出中谐波分量的总有效值与基波分量有效值之比的 百分比。失真决定了检波器的动态分辨率。
☺低失真增加了动态分辨率,有助于记录到淹没在低频强噪声 ( 如地

地震勘探系统设计方案

地震勘探系统设计方案

地震勘探系统设计方案1、数据传输部分根据数据传输量,最大采样时间长度为6秒,最大采样频率为2000Hz,采用24位AD采样,获得每个采样点3个字节数据,按照最大矩阵8000个地质检波器计算,起爆一次记录数据的位数为:6×2000×24×8000=2.304Gbits,要求一分钟之内数据传输完成,其传输有效波特率为:2.304Gbits/60s=38.4Mbps/s。

按照最高传输效率0.8计算,实际传输波特率至少为48Mbpd/s。

如此高的速率的高速传输,不能采用CAN,232,485等低速总线。

必须采用高效率的调制来传送数据。

数字调制有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)三种基础形式。

当然也可由这三种基本形式组合成联合键控,例如mQAM调制就是幅度和相位的联合键控。

此外,还有编码正交频分复用(COFDM)。

mQAM监控利用幅度和相位联合建控,充分利用了波形空间,若采用64QAM,相比来说,一次可以传送6个位的数据,相当于提高6倍。

而对于256QAM则一次可以传送8个位的数据,只需6M的带宽即可传送48Mbps的数据。

故而,高速数据传输采用QAM调制方式传输。

此外,在检波器的电源管理上,通过485总线进行低速通讯,控制处理器管理检波器的工作与否,这样就可以避免高速通讯带来的大功耗。

2、系统整体规划因为整个地震测量系统中,需要连接很多检波器,其排列范围可达到10km,有线通讯很难再10km的长度上达到8M的带宽,所以在整个系统中需要多个“中继站”来传递数传信号,两个中继站之间的连线不超过100m,这样可以保证高速通讯。

当然,QAM调制需要电路将为复杂,并且成本也较高,在几十个至上百个检波器的数据采集,可以采用一个小网络来采集数据,采用其他速度较低的编码类型,电路简单可靠。

将一个小网络的数据汇总,再通过高速通讯,传给车载总控制器。

在整个系统中,系统的供电时最大的问题,检波器阵列较为庞大,如果采用集中供电,总电流将很大,所以得分开采用蓄电池供电。

第二章 地震检波器

第二章  地震检波器

第二章地震检波器地震检波器是把传输到地面或水中的地震波转换成电信号的机电转换装置,它是野外地震数据采集的关键部件。

第一节电动式地震检波器工作原理:当地震波到达地面引起机械振动时,线圈对磁铁作相对运动而切割磁力线,根据电磁感应原理,线圈中产生感生电动势,且感生电动势的大小与线圈和磁铁的相对运动速度成正比。

图2-1(a)电动式检波器基本结构图2-1(b)电动式检波器外形图2-2 检波器内各部分的运动关系图2-2 检波器内各部分的运动关系12一、运动方程的建立运动方程反应的是检波器线圈运动与地面运动的关系。

规定:z ——地面产生的向上位移y ——线圈框架(惯性体)的向上位移x ——线圈相对磁铁的向下位移(x <0),并且:y z x =+1.弹簧克服惯性体重力后的拉力K FK F kx =- (2-1)2. 线圈受到的电磁阻尼力根据法拉第电磁感应定律,线圈两端输出的电动势为dtdxs dt dx dx d n dt d ne ⋅=⋅==φφ dxd ns φ=称为机电转换系数,也叫空载灵敏度。

线圈中的感应电流为:c o e ei R R R==+式中c R 是线圈内阻,o R 是线圈负载电阻。

感应电流受到的电磁力L F :dtdx R s R e s i dx d n F L ⋅-=⋅-=⋅-=2φ (2-2) 3. 铝制线圈框架受到的电磁阻尼力当圆筒形铝制线圈框架在磁场中运动时,线圈框架内将产生涡电流。

涡电流产生涡旋磁场,此涡旋磁场与永久磁场相互作用的结果也是阻止线圈框架的运3动,这种电磁阻尼力与线圈框架相对磁铁的运动速度成正比:dtdxF T μ-= (2-3) 根据牛顿第二定律,将式(2-1)、(2-2)和(2-3)相加:2222222()k L T s dxF F F k x R dtd yd z d x M M dt dtdt μ++=-⋅-+⋅⎛⎫=⋅=⋅+ ⎪⎝⎭ 即 222221dtzd x M k dt dx R s M dt x d -=+⋅⎪⎪⎭⎫ ⎝⎛+⋅+μ (2-4) 一般式 2220222dtz d x dt dx h dt x d -=++ω (2-5)MRs h 2/2+=μ——衰减系数,M K /0=ω——自然频率 。

地震检波器原理与结构

地震检波器原理与结构

地震检波器原理与结构
感应器是地震检波器的核心部分,主要用来感知地面振动。

感应器通
常由一个质量较大的物体和一个灵敏度较高的传感器组成。

当地面发生振
动时,传感器会感受到振动,并将其转化为电信号。

感应器的灵敏度相当
重要,因为它能够决定地震波的最小记录幅度。

记录器主要用来记录地震波传播过程中的振动情况。

记录器一般由一
个电子振动传感器和一个数据存储设备组成。

传感器会将传感器接收到的
振动信号转化为电信号,并将其传输给数据存储设备。

数据存储设备一般
是一个数字式或模拟式的存储器,可以记录地震波传播过程中的振动参数,如振幅、速度和周期等。

记录器还可以通过无线通信技术将记录的数据传
输给地震观测中心。

除了上述的基本结构,地震检波器还可以有许多其他的组成部分,如
防护外壳、天线、无线通信设备等。

防护外壳主要用来保护地震检波器免
受外界环境的影响,如风雨、灰尘和温度等。

天线用来接收或发送无线信号,以便地震检波器可以与其他设备进行通信。

无线通信设备可以使地震
检波器能够远程传输数据,方便地震观测人员对地震波的监测和分析。

综上所述,地震检波器是一种用于监测地震活动的仪器。

它的原理基
于地震波传播和能量传输的物理特性。

地震检波器主要由感应器、记录器
和电源构成,通过感知地面的振动并记录振动情况,来获取地震活动的相
关信息。

地震检波器的结构可以根据需要进行适当的调整和扩展,以满足
实际的观测需求。

数字检波器地震资料高保真宽频带处理技术

数字检波器地震资料高保真宽频带处理技术

数字检波器地震资料高保真宽频带处理技术陈志德;关昕;李玲;张晶【摘要】与模拟检波器接收地震资料相比,数字检波器地震资料具有频带宽、振幅保真度高、噪声大的特点。

本文基于喇嘛甸工区数字检波器接收的三维三分量地震数据,应用纵波资料开展针对高含水开发后期精细砂体描述的高分辨率处理技术研究,主要研发了4项关键技术,即不同处理阶段的噪声逐次压制技术、数据驱动振幅校正技术、反褶积之前的Q值相位校正与振幅补偿技术、地表一致性脉冲反褶积技术。

通过井震结合精细砂体识别与描述,结果证实数字检波器数据的处理成果能够清晰刻画砂体边界。

【期刊名称】《石油地球物理勘探》【年(卷),期】2012(047)001【总页数】10页(P46-55)【关键词】数字检波器;高保真;频带宽度;噪声压制;振幅补偿;脉冲反褶积;岩性识别【作者】陈志德;关昕;李玲;张晶【作者单位】大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712;大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712;大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712;大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712【正文语种】中文【中图分类】P631相对于模拟检波器,数字检波器采用MEMS技术,具有动态范围大、信号畸变小、没有相位延迟的优势[1~4],理论上可以在高噪声背景下真实记录地下弱小反射信号,是一种有望进一步提高地震分辨率的技术手段。

在相关文献报道中,从理论上阐述了数字检波器的技术优势,并与不同地区实际数据进行对比[5~7],均说明数字检波器是解决地震分辨率问题的有效技术之一。

笔者对喇嘛甸与齐家北两个工区相同测线位置获得的数字检波器及模拟检波器接收的单炮资料,采用相同的流程进行处理,对比两种检波器接收资料的处理结果,证实数字检波器资料在岩性识别中具有明显优势,体现在记录频带宽(相同振幅级别的高频端要比模拟检波器资料宽20Hz),层间信息丰富、纵横向振幅关系保持好,但资料的信噪比低。

谈数字高密度三维地震勘探设计优化

谈数字高密度三维地震勘探设计优化

谈数字高密度三维地震勘探设计优化摘要:全数字高密度三维地震勘探是地震勘探的发展趋势,由此设计优化得到的数据资料采集脚印小、方位角和接收频带宽、覆盖次数多、地质信息丰富,真正实现了“三高”要求,为后续处理和解释工作打下坚实的基础。

关键词:全数字高密度;地震勘探;采集脚印;三高随着矿方对地震勘探精度要求的持续提高,加上地表变化剧烈、深部域构造逐步复杂、勘探深度越来越深,常规三维地震已无法满足当前地质任务的需求,全数字高密度三维地震勘探技术应运而生[1]。

从施工前设计开始,根据地质任务设定采集、处理和解释三个阶段完成目标的底线,利用物探软件进行观测系统设计、质量评价和量化监控,通过优化设计从而取得最佳效果。

全数字高密度三维地震勘探利用提高空间采样率,降低面元尺度,提高覆盖次数,数字检波器全频接收,全面提升了数据采集的原始质量[2]。

1勘探区概况为探明淮北矿地质构造,进一步查明煤层赋存状况,决定采用全数字高密度三维地震勘探技术进行勘探。

本矿位于淮北煤田南部,属于华北地层区鲁西地层分区徐宿小区,本区地层为第四系冲、洪积层覆盖[3]。

区域内对煤层成因有影响的主要地层由老到新层序为奥陶系(O)、石炭系(C)、二叠系(P)、新近系(N)和第四系(Q)。

区内地表无基岩出露,均被厚层松散层所覆盖,本矿含煤地层是石炭系、二叠系。

石炭系所含煤层特别薄且发育不稳定,为不可采煤层[4]。

二叠系含煤地层自下而上为山西组、下石盒子组、上石盒子组[5]。

浅部地层走向近南北,深部受断层切割影响,走向变化较大,地层整体表现为东倾;矿井内地层倾角变化较大,在5°~25°,次一级褶曲和断裂构造较发育[6]。

可采煤层7层,32、82、10煤层是较稳定煤层,且为矿井主要可采煤层,31、51、72、81煤为不稳定煤层。

10煤是稳定主要可采煤层,赋存于山西组中部,上距铝质泥岩约55m,下距太原组一灰顶界面约60m。

煤厚0~7.97m,平均2.74m,可采性指数0.84,变异系数38%(图1)。

地震检波器

地震检波器
具有压电效应的物质很多,如天然石英晶体、人工制造的压电陶瓷锆酸铅等。由于人工制造的经过极化处理 的压电陶瓷具有非常高的压电系数,为石英晶体的几百倍,所以海上用地震检波器普遍采用压电陶瓷作为敏感元 件。
涡流式
涡流式地震检波器是美国OYO公司1984年研制成的一种检波器。它是利用惯性部件和固定在机壳里的永久磁 场的相对运动产生涡流,涡流又使固定在机壳里的线圈感应出电压和电流的原理而制成的。一个固定的圆柱形磁 铁沿中央轴安装在机壳内,线圈固定地绕在永久磁铁的外面,非磁性可运动的铜环由弹簧悬挂在磁铁和线圈之间 构成惯性部件。当机壳被地面振动驱动时,固定在机壳内的永久磁铁和铜环之间的相对运动在铜环中形成涡流, 涡流的变化引起次生的变化磁场,变化的磁场在固定的线圈中产生电动势。铜环内涡流的大小与检波器外壳的运 动有关,它本质上是一种对外壳位移加速的传感器。它的结构特点是活动的惯性体,与输出端没有电连接,这就 大大提高了检波器的可靠性,并且其感应电动势随频率的增加按6dB/oct斜率上升(dB为分贝,oct为倍频程),这 种特性可以部分补偿地震信号因大地吸收衰减而造成的高频损失。因此,用这种检波器可以提高地震勘探检波器(MEMS)是微机电机械传感器(Micro—Machined Electro Mechanical Sen—sor)的简称。 它是一种微米级的类似于集成电路的装置和工具,现已应用于工业、汽车、国防、生命科学和日常生活。MEMS技 术是从早期的汽车轮胎压力传感器到为开发气囊而进行的汽车撞毁试验以及航空电子等大冲击量检测设备而逐渐 发展而来的。
地震检波器
水中的地震波转换成电信号的机电转换装置
01 电动式
03 涡流式
目录
02 压电式 04 数字MEMS
地震检波器是把传输到地面或水中的地震波转换成电信号的机电转换装置,它是地震仪野外数据采集的关键 部件。陆上地震勘探普遍使用电动式检波器,海上地震勘探普遍采用压电式检波器。涡流检波器是20世纪80年代 发展起来的一种新型检波器,(2016年)受到与重视的是基于微机电机械传感技术(MEMS技术)的数字地震检波 器。

基于STM32的便携式地震检波器测试仪的设计

基于STM32的便携式地震检波器测试仪的设计

基于STM32的便携式地震检波器测试仪的设计李科;陈紫强;谢跃雷【摘要】针对地震检波器测试仪不易携带、功耗大、工作不稳定、抗干扰能力弱、存储容量小等问题,设计一种基于STM32单片机的便携式地震检波器测试仪.该检波器测试仪以STM32单片机为主控核心,从高精度的24位AD采集芯片采集检波器响应数据,经数字滤波后存储到16 GB的TF卡中,并根据检波器参数计算公式测试检波器的灵敏度、自然频率、阻尼系数,判断检波器是否正常工作.实验测试结果表明,设计的检波器测试仪能在有机械振动干扰环境下准确无误地对地震检波器进行测试,具有便于携带、工作稳定、功耗小、存储容量大、抗干扰能力强等特点.%The geophone tester is not easy to carry,the power consumption is big,the work is not stable,the anti-jamming ability is weak and the storage capacity is small,a portable geophone tester based on STM32 single chip is designed.The de-vice uses the STM32 microcontroller as the master core,collects the response data of the geophone from the high-precision24 bit AD acquisition chip,stores the data to the 16 GB TF card after digital filtering,and tests the sensitivity,natural fre-quency and damping coefficient of the geophone according to the geophone parameter calculation,so as to determine whether the geophone is working properly.The experimental results show that the tester isportable,stable,low power consump-tion,large storage capacity,stronganti-interference ability,and can test the geophone accurately in the environment with mechanical vibration interference.【期刊名称】《桂林电子科技大学学报》【年(卷),期】2017(037)004【总页数】6页(P270-275)【关键词】STM32单片机;地震检波器;测试仪;干扰分析【作者】李科;陈紫强;谢跃雷【作者单位】桂林电子科技大学认知无线电与信息处理省部共建教育部重点实验室,广西桂林 541004;桂林电子科技大学认知无线电与信息处理省部共建教育部重点实验室,广西桂林 541004;桂林电子科技大学认知无线电与信息处理省部共建教育部重点实验室,广西桂林 541004【正文语种】中文【中图分类】TN763.1地震检波器是地质勘探中最重要的地震波传感器[1](以下简称检波器)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东大学
硕士学位论文
数字地震检波器设计
姓名:祁见忠
申请学位级别:硕士
专业:控制理论与控制工程指导教师:曹立军
20110522
数字地震检波器设计
作者:祁见忠
学位授予单位:山东大学
9.林曙光联通A市分公司绩效管理的问题与对策研究[学位论文]2011
10.崔川面向数字化变电站的线路电流纵差保护研究[学位论文]2011
引用本文格式:祁见忠数字地震检波器设计[学位论文]硕士 2011
5.李敏高炉烧结矿料流建模和配比优化[学位论文]2011
6.徐前基于FCS的公路隧道监控系统的研究[学位论文]2011
7.李国栋.汉泽西.刘勃妮.Li Guodong.Han Zexi.Liu Boni地震检波器使用中应注意的几个问题[期刊论文]-石油工业技术监督2009,25(12)
8.汉泽西.李彪.邵媛.郭正虹地震检波器发展初探[期刊论文]-石油仪器2006,20(6)
1.唐姗姗用于地震检波的高精度源自/D转换器设计[学位论文]2010
2.刘丽娟基于MEMS的地震检波器研究与设计[学位论文]2010
3.宗赤.Zong Chi基于加速度传感器的地震检波器设计[期刊论文]-单片机与嵌入式系统应用2011,11(1)
4.张明明DMF回收智能控制系统的设计与应用[学位论文]2011
相关文档
最新文档