超临界二氧化碳循环分析

合集下载

超临界二氧化碳布雷顿发电系统热力循环分析

超临界二氧化碳布雷顿发电系统热力循环分析

ZHAO Decai1,2, QIN Zheng1,2, LIU Huimin1,2
(1. Shanghai Marine Diesel Engine Research Institute, Shanghai 201203, China; 2. Shanghai MicroPowers Co., Ltd., Shanghai 201203, China)
2018 年第 6 期 (总第 153 期)
201热力循环分析
赵德材 1,2,秦 政 1,2,刘惠民 1,2
(1. 上海船用柴油机研究所,上海 201203;2. 上海齐耀动力技术有限公司,上海 201203)
摘 要: 首先介绍了超临界二氧化碳 (S-CO2) 布雷顿简单回热循环系统,在此基础上引入了系统效率更高的S-CO2布 雷顿再压缩循环系统。针对S-CO2布雷顿再压缩循环系统,在相关假设条件的基础上,建立了S-CO2布雷顿再压缩循环热 力计算模型,并给出了进行热力参数分析时系统主要设备性能参数及状态点工况参数,然后详细研究了S-CO2布雷顿再 压缩循环系统初始状态参数、循环最高参数、叶轮机械效率及回热度、换热器设备压降、分流系数等参数对系统效率的
0 引言
超临界 CO2 (S-CO2) 布雷顿循环发电技术作为近 年来快速发展的一项前沿技术,得到了国内外学者的 广泛研究。相较于传统的蒸汽朗肯循环发电系统,在 同样的透平入口工质温度条件下,S-CO2 布雷顿发电系 统具有更高的循环效率[1];采用 S-CO2 作为闭式循环工 质,由于 S-CO2 密度大、传热性能优异,可在保证循 环效率的同时大幅提高发电系统的能量密度[2];闭式循 环可减小对环境的影响、水源的需求;可采用化石燃 料、核能、光热、余热等多种热源形式,因此 S-CO2 布雷顿循环系统具有十分重要的战略意义。采用再压 缩布置的 S-CO2 布雷顿循环与采用简单回热布置的布 雷顿循环相比,可明显提高系统效率,

超临界二氧化碳再压缩布雷顿循环变工况特性分析

超临界二氧化碳再压缩布雷顿循环变工况特性分析

超临界二氧化碳再压缩布雷顿循环变工况特性分析杨映麟;张尧立;赵英汝;郭奇勋【摘要】超临界二氧化碳再压缩布雷顿循环是高效紧凑的能量转换方式.目前许多研究在分析循环的特性时,常假设压缩机和透平的效率为恒定,该假设与实际情况差别很大.本文使用MODELICA作为工具,建立了超临界二氧化碳再压缩布雷顿循环模型.对于压缩机和透平,加入了真实压缩机和透平的特性曲线模型.通过模拟计算发现,循环输入功率和循环流量的改变将对循环(火用)效率和各组件的(火用)损产生影响.循环偏离设计工况时,适当控制输入功率和循环流量可调节循环输出功率和(火用)效率.【期刊名称】《原子能科学技术》【年(卷),期】2018(052)009【总页数】10页(P1625-1634)【关键词】超临界二氧化碳;再压缩;特性曲线;(火用)效率;偏离设计工况【作者】杨映麟;张尧立;赵英汝;郭奇勋【作者单位】厦门大学能源学院,福建厦门 361102;厦门大学能源学院,福建厦门361102;厦门大学能源学院,福建厦门 361102;厦门大学能源学院,福建厦门361102【正文语种】中文【中图分类】TL343超临界二氧化碳布雷顿循环(SBC)在20世纪40年代就已被提出[1-2],而由于循环所需各器件制造技术的不完善,对其的研究工作一度中止。

作为第4代核能论坛推荐的动力循环系统,近年来,由于技术的进步,其在核电以及太阳能、火电等方面的应用得到了国内外研究机构的广泛关注[3-9]。

美国桑迪亚国家实验室(Sandia National Laboratories,SNL)搭建了小型超临界二氧化碳布雷顿循环系统并进行了相关数值模拟分析[10];美国阿贡国家实验室(Argonne National Laboratory, ANL)研究了超临界二氧化碳布雷顿循环于铅冷快堆、钠冷快堆中的应用[11]。

超临界二氧化碳布雷顿循环可采用多种布置形式,其中,闭式再压缩布雷顿循环(SRBC)不仅具备系统设备小、结构紧凑的优点,还进一步提升了循环的发电效率[12],并解决了回热器的“夹点”问题[13]。

超临界二氧化碳布雷顿循环

超临界二氧化碳布雷顿循环

超临界二氧化碳布雷顿循环
超临界二氧化碳布雷顿循环是一种新型的低温二氧化碳发电系统。

它采用了超临界二氧化碳来代替传统的水蒸气发电系统中的水,从而提高了发电系统的效率。

在超临界二氧化碳布雷顿循环中,二氧化碳在超临界状态下被加热。

超临界状态是指二氧化碳被加热至其临界点以上的高温高压状态。

在这种状态下,二氧化碳具有非常高的密度和高度压缩性,因此可以在非常小的管道内流动。

在此循环中,加热器将超临界二氧化碳加热至高温,使其变成高压蒸汽。

接下来,高压蒸汽通过涡轮机驱动发电机,产生电能。

之后,二氧化碳蒸汽被冷却并压缩,然后再次进入加热器,循环往复。

超临界二氧化碳布雷顿循环相比传统的水蒸气发电系统具有明显的优点。

首先,它可以在较低的温度下工作,降低了设备的运营成本。

其次,由于二氧化碳的密度和压缩性很高,因此可以使用较小的管道和设备。

最后,该系统使用的材料具有良好的耐久性,因此可以更长时间地运营。

总之,超临界二氧化碳布雷顿循环是一种具有潜力的新型发电系统,可以提高能源利用效率并降低运营成本。

超临界二氧化碳布雷顿循环的研究进展及应用前景

超临界二氧化碳布雷顿循环的研究进展及应用前景

超临界二氧化碳布雷顿循环的研究进展及应用前景摘要:超临界二氧化碳(S-CO2)应用布雷顿循环能够使系统结构紧凑、效率高具有良好的工程应用前景。

本文首先介绍了超临界二氧化碳工质的特点及布雷顿循环的优势,总结了近年来国内外针对超临界二氧化碳布雷顿循环系统及其关键部件的研究进展和相应成果,最后对超临界二氧化碳布雷顿循环在能源领域的潜在应用前景进行了说明。

关键词:超临界二氧化碳;布雷顿循环;关键部件引言当二氧化碳达到临界条件时(温度31.1℃,压力7.38MPa),处于超临界状态。

将超临界二氧化碳用于布雷顿循环,具有以下优势:S-CO2工质黏性小,S-CO2布雷顿循环比其他常用的循环在较高的运行温度下具有相对更高的效率优势;S-CO2工质密度大,S-CO2布雷顿循环的系统结构紧凑,循环设备占用空间小;CO2极易获取,设备体积相对较小,且运行时损耗小,保证了设备的使用寿命,使得S-CO2布雷顿循环的成本相对较小。

1 S-CO2布雷顿循环研究进展1.1国外研究美国、日本、韩国、捷克等国家均开展了超临界二氧化碳布雷顿循环的系统设计及实验研究。

美国具有多家研究机构较长时间的研究基础,其在超临界二氧化碳布雷顿循环的研究上处于世界领先地位。

美国桑迪亚国家实验室是最早开展S-CO2布雷顿循环的机构之一,其搭建了发电功率为124KW的简单布雷顿循环系统。

美国桑迪亚国家实验室正致力于研发兆瓦级超临界二氧化碳布雷顿循环,进一步增大循环效率并增强实用性。

美国西南研究院(SWRI)进行了1MW 级的超临界二氧化碳布雷顿循环设计研究,采用天然气燃烧作为热源,完成了实验系统的制造运行。

近年来,美国能源部资助科研项目的投入不断加大、加快,并在2016 年投入巨资建设10 MW试验装置,表明美国整体技术成熟度水平已达到较高级别,距离商业化为期不远。

韩国能源研究所(KIER)自2103年起,先后搭建了两种不同的S-CO2布雷顿循环实验平台,并进行了相关研究。

超临界二氧化碳循环分析4

超临界二氧化碳循环分析4

(1)S-CO2布雷顿循环基本原理
S-CO2工质用于核反应堆一般采用布雷顿热力循环模式。

布雷顿循环一般包括绝热压缩、定压加热、绝热膨胀、定压放热 4 个基本过程,其基本循环温熵图如图2- 1 所示。

对于核反应堆内的S-CO2布雷顿循环,其最简单、最基本的系统流程如图2-2 所示,主要由压缩机、回热器、气轮机、冷却器和热源构成。

直接循环条件下的热源是堆芯,间接循环下的热源是反应堆一、二回路之间的换热器。

低温低压的气体经压缩机升压,再经回热器高温侧流体预热后进入热源,吸收热量后直接进入气轮机做功,做功后的乏气经回热器低温侧流体冷却后,再由冷却器冷却至所需的压缩机入口温度,进入压缩机形成闭式循环。

由于这种循环可以将压缩机入口温度控制在流体的拟临界温度附近,使流体密度增大,流体压缩性较好,从而降低了压缩功耗,提高了热力系统净效率。

图2-1 基本布雷顿循环温熵图
图2-2 最简布雷顿循环流程图
现有研究表明,在图2-2 所示的S-CO2热力循环方案中,回热器高、低温侧工质比热容不同引起回热器存在“夹点”的问题将对循环效率造成较大影响;为提高效率,可加入中间冷却、分流、再压缩等热力过程;S-CO2布雷顿循环用于核反应堆的堆芯最佳出口温度在450~650℃之间,最佳堆芯进、出口温差在150~200℃之间;S-CO2布雷顿循环设备简化、体积小,有利于降低投入成本和实现模块化建造技术。

二氧化碳跨临界循环的理论分析与研究

二氧化碳跨临界循环的理论分析与研究

二氧化碳跨临界循环的理论分析与研究乔丽李树林西安建筑科技大学710055摘要:本文主要对自然工质二氧化碳的替代进行研究。

对其热力性质、循环特性进行分析研究,以求进一步完善R744循环。

关键词:自然工质跨临界循环热泵气体冷却器Theoretical Studies and analysis on Transcritical CO2 CyclesAbstract: This paper studies the CO2which one of natural refrigerant, analyzes its thermal properties, the character of CO2 cycle, to make transcritical CO2 cycle more perfectly.Keywords: natural refrigerant, transcritical system, heat pump, gas cooler1前言当前环境问题已成为一个重要的全球问题,其中臭氧层破坏和温室效应问题直接关系到人类的健康和生存,引起了人们的高度重视。

在制冷及热泵装置中广泛使用的CFCs、HCFCs工质是引起臭氧层破坏的主要原因,而且,这些工质为温室气体,已列入逐步被淘汰之列。

制冷空调行业为了适应CFCs和HCFCs制冷工质的淘汰,纷纷转轨使用HFCs,人们一直认为HFCs 是CFCs制冷工质的长期替代物。

现在《京都议定书》又将HFCs列入了温室气体清单中,要对它们的排放加以控制。

国内外制冷空调行业均在探索如何总结历史经验,寻求正确、科学地解决由于环保要求提出的制冷工质替代问题,力争少走弯路。

为了应对环保要求的挑战,在寻找、开发替代制冷工质的过程中,逐渐形成了两种替代路线:即以美国、日本为首的国家仍主张使用HFCs[1],包括开发纯组分的新一代制冷工质或二元、三元共沸和非共沸混合物;德国、瑞士等欧洲国家主张使用自然工质,包括HCs、CO2、NH3等。

二氧化碳超临界布雷顿循环发电 循环

二氧化碳超临界布雷顿循环发电 循环

二氧化碳超临界布雷顿循环发电循环布雷顿循环是一种经典的热力循环,常用于传统火力发电站中的蒸汽循环系统。

但是,布雷顿循环在传统火力发电中有较低的发电效率,且会产生大量的二氧化碳排放,对环境造成不良影响。

为了解决这一问题,科学家们提出了二氧化碳超临界布雷顿循环发电技术。

二氧化碳超临界布雷顿循环发电是利用二氧化碳在超临界状态(高压、高温)下的独特性质,将其作为工质来替代传统蒸汽循环中的水蒸汽。

具体的循环流程如下:1. 压缩: 二氧化碳从环境中吸入循环系统,经过压缩机进行高压压缩,使其达到超临界状态。

2. 加热: 经过高压泵将高压的二氧化碳送入加热系统,通过燃烧燃料(如煤、天然气等)产生的热能将二氧化碳加热至高温高压状态。

3. 膨胀: 加热后的超临界二氧化碳进入膨胀机,通过二氧化碳的膨胀来驱动涡轮发电机产生电能。

4. 冷却: 膨胀后的二氧化碳进入冷却系统,通过散热器将其冷却至合适温度,以便重新进入压缩机进行循环。

与传统的蒸汽循环相比,二氧化碳超临界布雷顿循环发电具有以下优势:1. 高效率: 二氧化碳超临界态具有更高的热传导性能和扩散性能,从而可以提高循环系统的热效率和发电效率。

2. 低碳排放: 二氧化碳超临界布雷顿循环发电中,将二氧化碳作为工质,可实现零排放或低排放,对环境影响较小。

3. 较小体积: 二氧化碳在超临界状态时密度较大,相比于水蒸汽,需要较小的回路体积,节省了布局空间。

4. 兼容性: 二氧化碳超临界布雷顿循环发电可以与现有的火力发电站烟气净化系统结合,对现有设备进行改造升级,降低了技术实施难度。

因此,二氧化碳超临界布雷顿循环发电技术被认为是一种可持续发展的高效、低碳的发电技术,对于减少二氧化碳排放、应对气候变化具有重要意义。

但其仍需要进一步的研发和实践验证,以提高其商业化应用的可行性和经济性。

超临界二氧化碳循环分析

超临界二氧化碳循环分析

超临界二氧化碳循环特性作为第四代核能系统的候选堆型,超高温气冷堆和气冷快堆具有高安全性、高效率、用途广等特点,且均拟采用氦气作为反应堆直接循环工质。

由于氦气具有稳定、无毒、无感生放射性、热容大等特点,因此,目前世界上的气冷堆广泛使用氦气作为直接闭式Brayton循环的工质及反应堆的冷却剂。

但氦气循环需较高的循环最高温度(堆芯出口温度)才能达到满意的效率,因此,对反应堆的结构材料、燃料元件材料等提出了较高的要求,同时由于氦气密度低、可压缩系数小等缺点,氦气循环叶轮机械的制造也产生了一定困难。

与氦气相比,CO2因其密度大,且易于压缩,CO2的临界温度为304.19K,比环境温度略高,临界压力为7.3773MPa,在运行工况下,可利用其实际气体的性质减少压缩功等,采用CO2作为工质的循环所需的温度不需太高即可与氦气循环具有相当的效率,因此,使用CO2作为气冷堆循环的工质具有广阔的潜力。

同时,CO2循环也被推荐使用于第4代核能系统中的钠冷快堆(SFR)和铅冷快堆(LFR)。

1. 二氧化碳动力循环(1)简单超临界Brayton循环与理想气体的Brayton循环类似,CO2的简单超临界Brayton循环如图1-1所示,分为以下几个部分:1至2为CO2在压缩机中被压缩至循环最高压力的过程;2至3为CO2在回热器中的吸热过程;3至4为CO2在中间换热器从反应堆堆芯或热源的吸热过程;4至5为CO2在透平中的膨胀做功过程;5至6为CO2回热器中的回热过程;6至1为CO2的预冷过程。

其中,2至3及5至6的回热器的回热过程是Brayton循环的关键。

回热器的存在使得Brayton循环的热量得以最大限度地利用,从而提高了循环的效率。

图1-1简单超临界Brayton循环受堆芯出口温度限制以及CO2工况下比热容变化较大的影响,CO2简单超临界Brayton循环的效率与氦气循环相比并不高。

由于CO2相对氦气较为活泼,高温下可与燃料元件和金属构件发生化学腐蚀,因此,在使用CO2作为冷却剂的气冷堆中存在工程约束条件,即CO2的工作温度不能超过670℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界二氧化碳动力循环与氦动力循环的比较目前,世界上正在建设和研究的高温气冷堆都是使用He作为工质,这是因为He具有很好的稳定性、化学相容性及热传导性。

但是,He作为工质存在一些不足,例如动力循环需要较高的温度、难于压缩等,给反应堆和换热部件的结构材料、叶轮机械的设计带来很多困难。

出于降低反应堆结构材料要求、减少技术难度、提高反应堆的安全性与经济性等各方面的考虑,有学者进行了选取CO2作为循环工质的研究。

CO2虽然在稳定性、热传导性方面比He稍差,但CO2具有合适的临界参数,不需要很高的循环温度就可以达到满意的效率,且具有压缩性好、储量丰富等优点。

采用CO2作为循环工质可以降低循环温度和压缩功,从而提高反应堆的安全性,同时降低反应堆造价。

超临界CO2的闭式布雷顿循环被推荐在铅冷快堆及钠冷快堆中使用。

1. 二氧化碳布雷顿循环分析(1)二氧化碳布雷顿循环CO2与He在动力循环中最大的不同点就是气体性质随压力、温度的变化差别很大(表1-1)。

高压(7.5 MPa)环境中,CO2的导热系数λ、定压比热容c p 和压缩因子z均与低压(0.1 MPa)下的参数有很大差异;在循环工况下,He循环可以视为理想气体循环,除密度外,其余参数变化不大。

动力循环的工况,CO2的工作参数在其临界点(7.377 MPa,31℃)附近;因此,CO2动力循环除与He 循环有相同的决定因素外,还取决于动力循环的不同实际工况,即超临界压力、跨临界压力及亚临界压力3种循环工况(图1-1)。

超临界循环:循环压力及温度均在临界参数以上;跨临界循环:循环高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力循环:循环压力均低于临界压力,工作于气相区。

表1-1 CO2和He热物性比较(35℃)工质P/MPa ρ/kg·m-3 λ/W·(m·K)-1 C P/kJ·(kg·K)-1zCO2 7.5 277.6 0.03532 5.9306 0.4630.1 1.95 0.01497 0.828 0.879He 7.5 11.32 0.1604 5.198 1.0330.1 0.156 0.1571 5.198 0.999(2)CO2简单循环与He循环的对比分析以英国改进型气冷堆(AGR)为例。

英国改进型气冷堆(AGR)实际运行时CO2温度高于670℃。

考虑到CO2高温下与不锈钢材料化学不相容,因此循环最高温度保守取为650℃,若要采用更高的循环温度,需要采用其他金属材料。

CO2和He 动力循环在给定条件下计算的最优参数见表1- 2,温熵图见图1-1。

其中He 循环的温熵图略有不同,采用2 个压缩机分级压缩。

图1-1 CO2循环及He循环温熵图表1-2 CO2简单循环与He循环比较参数名CO2He超临界跨临界亚临界压力工况1 工况2初参数P min=7.5MPat min=35℃t max=650℃P min=5.267t min=15℃t max=650℃P max=7.0Pat min=35℃t max=650℃t min=35℃t max=650℃t min=35℃t max=800℃限制条件P max≤20MPaP max≤20MPaε>(P cri /P min)t1c,out≤ t cri—P max=7.0Pa P max=7.0Pa压力比ε 2.667 3.8 3.1 1.8 1.95循环效率40.1 40.49 40.85 42.53 48.6η/%q/kJ·kg-1 258.78 405.26 203.28 10006.74 1302.31 从表1-2 可看出,CO2循环计算所需初参数比He 循环多出压力项。

如前文所述,He 在循环工况下取决于温度,只需给定循环的温度范围便可计算出不同压力比(ε)下循环效率(η),而CO2的c p还取决于压力。

给定超临界和跨临界压力CO2循环的最高压力(P max)是由于现有技术条件的限制,保守取为20 MPa。

表2 中的所列的最高η 是P max达到限定值的效率,并未达到实际计算的最大η。

He 循环的P max为现有模块化高温气冷堆He 循环最高压力(7MPa)。

图1-2 分别给出了表2 中所列初参数下η与ε关系。

在所计算ε下,亚临界压力CO2循环与He循环相似,η随ε先增大到一个极大值点再缓慢下降。

而超临界和跨临界循环,同样受到P max的限制,在计算ε下并未达到极大值。

3 种CO2循环在相应限制条件下达到的最高η与温度条件几乎相同情形下的He 循环相近。

但是,这 3 种循环均低于He 在t max=800℃下的η,且相同温度条件下,CO2循环达到最高η的ε要大于He 循环达到最高η的ε。

图1-2 CO2简单循环与He循环效率在气体汽轮机循环中,氦气透平带动压缩机,因此压缩机耗功也是关注的问题。

定义压缩功与膨胀功之比w c /w t为氦气透平做功返回率。

从图1-3中可看出,CO2循环的w c /w t小;这是因为CO2的z <1,易于压缩,而He的z ≈1,较难压缩的缘故。

He 循环t max提高至800℃后,各压力比下的w c /w t均有所降低,但仍然高于t max=650℃下的CO2各循环。

在CO2的3种循环中,超临界及跨临界压力循环的w c /w t显著变小;这是因为压缩过程在临界点附近进行,而在临界点附近,c p显著减小,导致z 减小,更易于压缩;尤其是跨临界压力循环的w c /w t,比相同温度下He 循环几乎小了一个量级。

图1-3 CO2简单循环与He循环氦气透平做功返回率从表1-2 还可看出,CO2循环单位质量的工质换热量均比He 循环要少,这意味着相同换热功率下CO2循环的质量流量m 较大(图1-4)。

这是由于CO2的c p较He 小,相同功率,工质温升差别不大的情况下,CO2循环需要更大的m。

图1-4 热功率310MW时,质量流量与压力比关系但是,这并不意味CO2循环没有优势。

流体体积决定了做功和换热部件的尺寸大小,单位体积的做功量或换热量越大,相同功率下的做功换热部件体积越小,成本越低。

CO2气体密度较大,因此各部件气体体积流量(V)较小(图1-5)。

图1-5 热功率310MW时,氦气透平出口体积流量与压力比关系以堆芯换热功率310 MW为例,对表1-1中的2种循环进行计算,结果见表1-3。

表1-3 CO2简单循环与He循环比较循环类别超临界CO2跨临界CO2亚临界压力CO2He(t max=650℃)He(t max=800℃)m/kg·s-1 1197.93 764.95 1534.98 307.92 238.04氦气透平P/MW 168.36 142.15 239.37 278.36 281.4V in/m3·s-1 10.99 7.01 38.95 86.37 77.50V out/m3·s-123.82 20.26 97.24 127.12 120.39压缩机P/MW 44.01 16.63 112.74 高压73.21 67.96低压73.21 67.96 V in/m3·s-1 4.31 0.928 34.99 高压35.09 28.23低压47.69 39.95 V out/m3·s-1 2.59 0.861 14.77 高压33.24 26.14低压45.16 36.98从表1-3可以看出,相同热功率,在几乎相同的温度条件下,CO2循环所消耗的压缩功远小于He 循环所需的压缩功。

3种CO2循环所需要的V均小于同等温度条件下和较优工况下He循环的工质体积流量;这表明3种CO2循环中单位体积流量的CO2气体做功能力均优于2种条件下He循环单位体积He的换热做功能力。

特别是对于CO2的超临界循环和跨临界循环,其工质的V几乎与He循环相差一个量级,大大减小了做功部件的体积。

从表1-3还可以看出,CO2流经叶轮机械前后的V变化远比He流经叶轮机械的V变化大;因此,CO2循环的叶轮机械进出口叶高变化比He循环的大。

这些都是由于循环工况下CO2的密度比He大很多,因此虽然m大,但是V却远远小于He循环。

2. 超临界CO2循环改进—超临界CO2再压缩布雷顿循环二氧化碳超临界循环需采用多个回热器(若只采用1个回热器,由于回热器低压侧流体比热较小,换热时高压侧流体温升不够,会导致换热器出现夹点),使热量得以更好利用。

二氧化碳再压缩循环示意图如图2-1所示,循环温熵图如图2-2所示。

图2-1 二氧化碳再压缩示意图图2-2 二氧化碳再压缩循环温熵图透平出口的二氧化碳流体先进入高温回热器进行放热(5至5'),后进入低温回热器(5'至6),而后,一部分流体直接通往高温压缩机被压缩(6至2'),另一部分流体先冷却后(6至1)再进入压缩机压缩(1至2)。

然后,通过低温回热器回热(2至2')到与直接被高温压缩机压缩的流体相同的温度,混合后一起再流经高温回热器(2'至3)、换热器(3至4),最后流入透平做功(4至5)。

(1)循环数学模型定义Brayton 循环压比ε=P max / P min 、温比τ=t max / t min 。

其中,P 为压力,t 为温度。

假设经过预冷器的分流量为x (0≤x≤1),低温回热器的回热度αlrec 可表示为: max min 65max min 22lrec )()()(''t mc h h t mc h h x p p ∆-=∆-=α (2-1)其中:max t ∆为高压侧或低压侧出入口温差最大值;h 为比焓,J/kg ;m 为质量流量,kg/s ;c p 为比定压热容,kJ/(kg·K)。

高温回热器的回热度αhrec 表示为:),(),(''''''2555525523t p h h h h t p h h h h hrec --=--=α (2-2)αhrec 与αlrec 的计算方法差异是由分流引起的。

其中,回热器高压侧的出口温度须分别满足条件t 2 +△t ≤ t 6 ≤ t 5' 以及t 2' +△t ' ≤ t 5' ≤ t 5,△t 与△t ' 分别为避免回热器内传热恶化而设置的工程上所允许的最小温差,通常取为8℃。

整个循环的效率η可表示为:3416)(x 1h h h h ---=η (2-3) 式(2-3)是从能量损失角度来计算循环效率,可看出,采用分流设计,Brayton 循环释放到环境中未被利用的热量减少,热源吸收的热量也减少,因此,循环效率大幅提高。

相关文档
最新文档