调制解调电路设计实例.ppt

合集下载

调制解调原理及应用实例 PPT

调制解调原理及应用实例 PPT

t
1 2
[F
(
)
F
(
)]
故系统的响应为
1
Sa(t)
G2
(
)
y(t) 1 Sa(t)cos1000t
2
求 f (t) 1 Sa(t) cos1000t 的信号通过图(a)的系统
后的输出。系统中的理想带通滤波器的传输特性如
图(b)所示,其相位特性 () 0 。
H ( j)
f (t)
理想低通
y(t)
调制信号的 频谱
A
s (t) cos0t
S( j)
0
0
0
0
0
0
已调信号的频 谱
载波信号的频谱
cos 0 t
大家学习辛苦了,还是要坚持
继续保持安静
G( j)
G(
j)
1 2
F
(
j)
1 4
{F[
j(
20
)]
F[
j(
20
)]}
20
0
20
g(t) f (t) cos2 0t
解调后信号的频谱
信号1 信号2
t 图4-35 时分复用示意图
SSB AM信号的产生
F( j)
f (t)
0
y1 (t )
B 0B
cos 0t
j sgn()
Hilbert变换器
y2 (t)
sin0t
0
Y1( j)
0
0
Y ( j)
y(t)
0
0
0
Y2 ( j)
0 0
G( j)
20
B 0B
20
解调后信号的频谱

信号调制解调电路教学课件PPT

信号调制解调电路教学课件PPT

• 脉冲调宽信号的波形
其中T为脉冲的周期,即载波频率的倒数。
• 二、调制方法 • 1、传感器调制 • 2、电路调制 • (1)参量调宽
• (2)电压调宽
u

u0 R4 R3 R4

ux R3 R3 R4
• 三、脉冲调制信号的解调
• 脉冲调宽信号的解调主要有两种方 式:一种是将脉宽信Uo送入一个低通 滤波器,滤波后的输出uo 与脉宽B成 正比;另一种方法是Uo用作门控信号, 只有当Uo为高电平时,时钟脉冲Cp才 能通过门电路进入计数器。这样进入 计数器的脉冲数N与脉宽B 成正比。两 种方法均具有线性特性。
• 2、微分鉴频电路
(二)、斜率鉴频---失谐回路鉴频
§3-4 调相式测量电路
• 一、调相原理 • 调相就是用调制信号x去控制高频载波
信号的相位。常用的是线性调相,即让调 相信号的相位按调制信号x的线性函数进行 变化。
调相信号us的一般表达式可写为:
us =Umcos(ct +mx)
(a)调制信号 (b)载波信号 (c)调相信号 当x<0时,us滞后于uc;当x>0时,us超前于uc
• 常用的鉴频电路有微分鉴频电路、斜率 鉴频电路和相位鉴频电路。
• (一)、微分鉴频电路
• 1、鉴频原理
• 将等幅的调频信号经过微分电路变成幅值也随 频率成比例变化的调频—调幅波。然后通过包络 检波或相敏检波电路恢复出原调制信号x。
(a)调频信号 (b)调频调幅信号
(c)调制信号x(t) 微分鉴频的过程
51Ω
0.1μF 3.3kΩ 1kΩ
us uc 0.1μF
82 3 6 10 12
0.1μF 910Ω

《调制解调》课件

《调制解调》课件
《调制解调》PPT课件
本《调制解调》PPT课件将介绍调制解调的基本概念、信号传输、调制技术、 解调技术、以及调制解调技术在通信系统中的应用和发展趋势。
前言
调制解调是现代通信中关键的技术之一。本课程将着重介绍调制解调的基本 概念,以及课程的主要内容和目标。
信号传输
传输信号有两种基本类型:模拟信号和数字信号。了解噪声和失真的影响以 及信息传输中的信道对信号的影响。
调制技术
模拟调制技术
AM、FM、PM等模拟调制技术的原理和应用。
数字调制技术
了解脉冲调制、QAM、OSK、OFDM等数字调制 技术的基本原理。
解调技术
模拟解调技术
检波器、直接解调、抑制载波解调、同步解调等模拟解调技术。
数字解调技术
了解直接解调、差分解调、时钟恢复、解码和译码等数字解调技术。
应用和发展
调制解调技术在通信系统中的应用
了解调制解调技术在移动通信、宽带通信等领 域的广泛应用。
调制解调技术的发展趋势展望未来调制解ຫໍສະໝຸດ 技术的发展方向和应用前景。结语
总结本课程的重点和难点,同时展望调制解调技术在未来的应用前景和发展方向。

实验七调频与解调实验PPT课件

实验七调频与解调实验PPT课件

要点二
解调(Demodulation)
利用调制信号控制载波的频率变化,使信号的频率随调制 信号的幅度变化而变化。
将已调频信号还原成原始调制信号的过程,通过解调电路 实现。
实验步骤
调制信号源
使用信号发生器产生调制信号, 如正弦波、方波等。
解调操作
将已调频信号输入解调电路, 观察解调后输出信号的波形和 幅度。
实验七调频与解调实 验ppt课件
目 录
• 实验简介 • 调频技术 • 解调技术 • 实验操作 • 实验总结
01
实验简介
实验目的
掌握调频与解调的基 本原理。
学会使用调频和解调 实验设备进行实验操 作。
熟悉调频和解调电路 的实现方法。
实验原理
要点一
调频(Frequency Modulation)
步骤三
启动实验,观察示波 器上的信号波形,记 录频谱分析仪的测量 结果。
步骤四
调整信号发生器的频 率和幅度,观察示波 器和频谱分析仪的变 化,记录实验数据。
步骤五
将调频收音机置于接 收状态,观察解调后 的音频信号,记录实 验结果。
实验结果分析
分析实验数据,比较不同波形、 频率和幅度下的信号特性。
观察解调后的音频信号,分析 调频解调的效果和性能。
调频实现方法
直接调频法
直接调频法是将调制信号直接作用于载波的振荡器,使载波的频率随调制信号的 变化而变化。这种方法实现简单,但稳定性较差。
间接调频法
间接调频法是将调制信号先对一个辅助振荡器进行调制,得到调相波,然后再将 调相波对载波进行调相,得到调频波。这种方法稳定性较好,但实现较为复杂。
03
解调技术
调频信号的优点

测控技术与仪器信号调制解调电路.ppt

测控技术与仪器信号调制解调电路.ppt

4、在测控系统中常用的调制方法有哪几种? 在信号调制中常以一个高频正弦信号作为载波 信号。一个正弦信号有幅值、频率、相位三个 参数,可以对这三个参数进行调制,分别称为 调幅、调频和调相。也可以用脉冲信号作载波 信号。可以对脉冲信号的不同特征参数作调制, 最常用的是对脉冲的宽度进行调制,称为脉冲 调宽。 调频和调相都会使得高频载波信号的相位角受 到调变,电子学中常称其为“角度调制”或 “调角”。 调制、解调电路——频率变换电
1、基本电路
T + us _ VD + uo _ ic + RL C2 uo _
C1
i
RL C2
T+ us _
V Ec
非线性 低通 滤波器 器件
非线性 低通 器件 滤波器 b) 晶体管检波电路
a) 二极管检波电路
峰值检波
平均值检波
(二)精密检波电路

为什么要采用精密检波电路? 二极管VD和晶体管V都有一定死区电压, 即二极管的正向压降、晶体管的发射结 电压超过一定值时才导通,它们的特性 也是一根曲线。二极管VD和晶体管V的 特性偏离理想特性会给检波带来误差。 为了提高检波精度,常需采用精密检波 电路,它又称为线性检波电路。
' ' u K u A d s
R 1 R 1 R R 1 1 1 1 u 1 ) u ( 1 ) u u ( s A A R K R K R R 2 d 2 2 2 d
2、全波精密检波电路
us R2 R΄2 + us – R1 ∞ R4 i VD1 VD2 R’3 C ∞ uA t t O t
其数学表达式为:us=UxmcosΩt cosωct
双边带调幅信号的形成及波形

频率调制与解调教学课件PPT

频率调制与解调教学课件PPT
第7章 频率调制与解调
7.2 调频器与调频方法
7.2.1 调频器 • 实现调频的电路或部件称为调频器(频率调制器)或调
频电路。 • 对调频器的要求有调制性能和载波性能: (1)调制特性线性要好。 (2)调制灵敏度要高。 (3)载波性能要好。 (4)最大频偏要满足要求,并且在保证线性度的条件
下要尽可能地大一些,以提高线性范围。
c
A2 2
m2c
A1mc
cos t
A2 2
m2c
cos 2t
式中
c
1
L(C1
C2CQ C2 CQ
)
A1 2 p
A2
3 8
2
p2
1 4
( 1)
p
பைடு நூலகம்
2
2p
1 1 p1
p (1 p1)(1 p1 p2 p2 )
第7章 频率调制与解调
p1
CQ C2
p2
C1 CQ
瞬时频移:f
(t)
mfc
制,即
τ=kduΩ(t)
则输出信号为 u=Ucosωc(t-τ)=Ucos[ωct-kdωcuΩ(t)]
输出信号已变成调相信号了。
第7章 频率调制与解调
3.扩大调频器线性频偏的方法
• 对于直接调频电路,调制特性的非线性随最大相对 频偏Δfm/fc的增大而增大。
• 当最大相对频偏Δfm/fc限定时,对于特定的fc, Δfm也 就被限定了,其值与调制频率的大小无关。
uo
(a) f
o C
(b) f
uo
t (c)
t
t
t
图7―14 变容管线性调频原理
第7章 频率调制与解调
二次谐波失真系数可用下式求出:

《调制解调》PPT课件

《调制解调》PPT课件
26频移键控调制频移键控调制fskfsk基本原理基本原理27数字键控法实现二进制移频键控信号的原理图振荡器1选通开关反相器基带信选通开关振荡器2频移键控调制频移键控调制fskfsk基本原理基本原理28二进制移频键控信号的时间波形频移键控调制频移键控调制fskfsk基本原理基本原理29的矩形脉冲频移键控调制频移键控调制fskfsk频谱特性频谱特性30取1和1的概率相等则st的功率谱表达式为频移键控调制频移键控调制fskfsk频谱特性频谱特性31频移键控调制频移键控调制fskfsk频谱特性频谱特性32频移键控调制频移键控调制fskfsk解调解调包络检波法
33
频移键控调制(FSK)——解调
相干解调法
输入
带通 y1(t) 滤波器
相乘器
ω1 cos(ω1t+φ1)
带通 y2(t) 滤波器
相乘器
ω2 cos(ω2t+φ 2)
低通 滤波器
x1(t)
定时脉冲 比较判决 输出
低通 滤波器
x2(t)
34
频移键控调制(FSK)——性能分析
设两个带通滤波器的输出分别为y1(t)和y2(t)。它们包括
有用信号分量和噪声分量。设噪声分量为加性窄带高斯噪 声,可分别表示为
ω1支路: n c 1 ( t) co 1 t s 1 ) ( n s 1 ( t) si1 tn 1 ) ( ω2支路:n c 2 ( t) co 2 t s 2 ) ( n s 2 ( t) si2 tn 2 ) (
24
频移键控调制(FSK)——基本原理
设 输 入 到 调 制 器 的 比 特 流 为 { an } , an=±1, n=∞~+∞。FSK的输出信号形式(第n个比特区间)为
cos( 1t1) s(t) cos( 2t2)

第3章调制和解调ppt课件

第3章调制和解调ppt课件
3. 角度调制
调频信号带宽公式(卡森公式)
BFM=2(mf+1)fm=2(△f+fm) △f=mffm fm是基带信号的调制频率,△f是最大频偏,mf是调频指数
。Mf<<1,窄带调频(NBFM)BFM≈2fm;宽带调频(WBFM )非线性
与幅度调制相比,频率调制最突出的优势是具有较高 的抗噪声性能,但代价是占用比幅度调制更宽的带宽 。
2. DSB信号带宽与AM相同BDSB=BAM=2fH 3. 调制效率高 4. 应用场合少,调频立体声广播中的差信号调制,彩色电
视系统色差信号调制。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2. 幅度调制
单边带调制(SSB)
滤波法(理想高通,滤掉下边带,输出上边带;理想低通 ,滤掉上连带,输出下边带);相移法
特点与应用:
1. 对频谱资源有效利用 2. 节省功率
BSSB12BDSB,fH短波通信,频分复用系统
3. 带宽节省以增加复杂性为代价
4. 不能采用包络检波,采用相干解调。
传输。
设备的复杂度
非相干方式比相干方式简单 目前常用的是2DPSK方式和2FSK方式
相干2DPSK主要用于中速数据传输 非相干2FSK主要用于中、低速数据传输,尤其适用于随参信道。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1 克服了DSB信号占用频带宽的问题,以解决了SSB信号实现上的 难题。
2 fH<BVSB<2fH,调制效率100% 3 VSB比SSB所需求的带宽仅有很小的增加,但却换来了电路实现
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LT5503采用TSSOP-20封装,可用于IEEE 802.11DSSS 和FHSS、高速无线局域网(WLAN)、无线本地回路 (WLL)、PCS无线数据、MMDS等领域。
图4.4.4 LT5503内部结构方框图
LT5503在1.9~2.4GHz的应用电路如图4.4.5所示,其应用电 路元器件参数见表4.4.2,应用电路测试连接图如图4.4.6所 示。
图4.4.2 STQ2016在1700~2500MHz的应用电路原理图、元器件布局与印制板图和芯片焊盘尺寸
图4.4.3 直接正交调制器的参数测试电路
4.4.3 基于LT5503的1.2~2.7GHz直接正 交调制器电路
LT5503是一个发射机前端芯片,芯片中集成有可变增 益放大器(VGA)、高频率正交调制器、平衡混频器。 调制器包含一个精确的90°移相器,可以将基带I和Q 信号直接调制成RF信号,内部结构方框图如图4.4.4所 示。
⑤ IC通过封装的底层上的裸露焊盘连接到地。在这种 方式下,可以得到完全RF抑制,这个裸露焊盘必须焊 接到印制板上。

பைடு நூலகம்
⑥ 利用一个或更多个通孔直接连接到接地板上,以获 得低阻抗的RF接地。
⑦止其VC不C线稳必定须性使。用低阻抗的、宽频带的电容去耦,以防
⑧ 必须使用独立的电源电压线,以隔离调制输入信号 和调制输出信号。如果可以的话,要使用电源印制板 面。
LT5503的RF载波输入频率范围为1.2~2.7GHz,基带 输入带宽为0~120MHz,混频器第二本机振荡输入频 率范围为0~1000MHz,混频器第一本机振荡输入频率 范围为1~2400MHz,调制RF载波的输出功率有 3dBm,VGA输出功率通过数字控制。LT5503采用 1.8~5.25V的单电源供电,电流消耗38mA。
⑨ 如果可以的话,要避免使用长的印制线。长的印制 线会导致信号辐射,降低隔离能力,增加损耗。
4.4.4 基于ATR0797的65~300MHz的I/Q
解调器电路
ATR0797是一种增益可控的I/Q解调器芯片,内部结构 如图4.4.7所示,它由可调增益放大器和混频器等电路 组成,主要用于典型的超外差式结构的接收器中频部 分(正交解调和直接解调中频电路)。ATR0797中频 输入(I/Q基带混合)频率范围为65~300MHz,在 65~300MHz频率范围内可以进行增益控制。ATR0797 具有很低的I/Q振幅和相位误差,并且具有很高的输入
运算放大器转换单端I和Q信号为差分形式。运算放大器具有 一定的电压增益,因此对于相同的RF输出功率,基带输入峰 值电压应该除以2。运算放大器可接收差分平衡信号。通过 连接板上的4个通孔(V1,V2,V3,V4),可以旁路运算放 大器,直接与调制器的差分输入端连接。
图4.4.5 LT5503在1.9~2.4GHz的应用电路
4.4.2 基于STQ 2016的700~2500MHz直 接正交调制器电路
STQ2016是一个直接正交调制器芯片,芯片中集成了一 对平衡混频器、移相器、功率放大器等电路,频率范围 为700~2500MHz,基频带宽为0~500MHz,典型输出 功率为12dBm,并具有大于50dB的IM3抑制。具有极好 的载波和边带抑制。STQ2016具有宽带噪声低、功耗低、 LO驱动要求低、相位精确度高、幅度平衡好、无须外部 IF滤波器等特性。在5V电压下正常工作,电流消耗82mA。
图4.4.6 LT5503应用电路测试连接图
布线考虑:
① 使用50阻抗传输线连接到匹配网络,必须使用接 地板。
② 匹配网络与引脚间的连线尽可能短。
③ 建议使用尺寸为0402(或者更小)的元件,以使寄 生电感和电容最小。
④ 通过在印制板的底层上设置LO2传输线,隔离LO2 输入端与MODOUT引脚。
LT5503在1.9~2.4GHz的应用电路中,MODRFOUT和 MIXRFOUT端口在2.45GHz下与50阻抗匹配,LO1端口在 2.1GHz下与50阻抗匹配,LO2端口内部匹配。使用390 电阻来降低调制输出的品质因数,使输出功率下降3dBm。 如果希望得到更低的功率输出,可以使用更低阻值的电阻。 例如:如果使用200的阻抗,输出功率将低于3dBm。
1dB压缩(P1dB)。电源电压为5V,电流消耗为
195mA。ATR0797采用TSSOP16封装,可广泛应用于 数字通信系统、GSM/无线电收发机、ISM波段无线电 收发机及3G无线通信系统中。
STQ2016采用TSSOP-16封装,可广泛应用在各种通信系 统中,例如,蜂窝电话/PCS/ CDMA2000/UMTS收发器、 900 & 2400 MHz ISM频带收发器、GMSK、QPSK、QAM、 SSB调制器。
STQ2016在1700~2500MHz的典型应用电路原理图、元 器件布局与印制板图和芯片焊盘尺寸如图4.4.2所示,元 件参数见表4.4.1。
U2790内部包含放大器、混频器、加法器、移相器、占 空比再生器(Duty cycle regenerator)、倍频器 (Frequency doubler)和控制环路器(Control loop)等 电路。
U2790的基带输入采用交流耦合形式,应用电路如图 4.4.1所示。
图4.4.1 U2790的应用电路
4.4 调制解调电路设计实例
4.4.1 基于U2790的1000MHz正交调制器 电路
U2790是一个1000MHz的正交调制器,基带输入频率为 0~50MHz,本机振荡器输入频率为100~1000MHz,具 有50的单端本机振荡器和RF端口。输出电平和寄生电 平可以调整,连接Atmel公司的U2795B混频器,可以上 变频到2GHz。U2790电源电压为5V,电流消耗30mA, 具有低功耗模式(电流消耗1A),工作温度范围为 40℃~+85℃。U2790采用SO-16封装形式,适用GSM、 ADC、JDC 和WLAN等数字无线通信系统应用。
相关文档
最新文档