802.11 调制解调技术

合集下载

80211无线网络标准详解

80211无线网络标准详解

802.11无线网络标准详解1990年,早期的无线网络产品Wireless LAN在美国出现,1997年IEEE802.11无线网络标准颁布,对无线网络技术的发展和无线网络的应用起到了重要的推动作用,促进了不同厂家的无线网络产品的互通互联。

1999年无线网络国际标准的更新及完善,进一步规范了不同频点的产品及更高网络速度产品的开发和应用。

一、1997年版无线网络标准1997年版IEEE802.11无线网络标准规定了三种物理层介质性能。

其中两种物理层介质工作在2400——2483.5 GHz无线射频频段(根据各国当地法规规定),另一种光波段作为其物理层,也就是利用红外线光波传输数据流。

而直序列扩频技术(DSSS)则可提供1Mb/S及2Mb/S工作速率,而跳频扩频(FHSS)技术及红外线技术的无线网络则可提供1Mb/S传输速率(2Mb/S作为可选速率,未作必须要求),受包括这一因素在内的多种因素影响,多数FHSS技术厂家仅能提供1Mb/S的产品,而符合IEEE802.11无线网络标准并使用DSSS直序列扩频技术厂家的产品则全部可以提供2Mb/S的速率,因此DSSS技术在无线网络产品中得到了广泛应用。

1.介质接入控制层功能无线网络(WLAN)可以无缝连接标准的以太网络。

标准的无线网络使用的是(CSMA/CA)介质控制信息而有线网络则使用载体监听访问/冲突检测(CSMA/CA),使用两种不同的方法均是为了避免通信信号冲突。

2.漫游功能IEEE802.11无线网络标准允许无线网络用户可以在不同的无线网桥网段中使用相同的信道,或在不同的信道之间互相漫游,如Lucent的WavePOINT II 无线网桥每隔100 ms发射一个烽火信号,烽火信号包括同步时钟、网络传输拓扑结构图、传输速度指示及其他参数值,漫游用户利用该烽火信号来衡量网络信道信号质量,如果质量不好,该用户会自动试图连接到其他新的网络接入点。

3.自动速率选择功能IEEE802.11无线网络标准能使移动用户(Mobile Client)设置在自动速率选择(ARS)模式下,ARS功能会根据信号的质量及与网桥接入点的距离自动为每个传输路径选择最佳的传输速率,该功能还可以根据用户的不同应用环境设置成不同的固定应用速率。

什么是802.11?

什么是802.11?

IEEE 802.11协议详细介绍作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。

这些协议包括了802.3 Ethernet协议、802.5 Token Ring 协议、802.3z 100BASE-T快速以太网协议。

在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。

在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps 和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。

802.11a高速WLAN协议,使用5G赫兹频段。

最高速率54Mbps,实际使用速率约为22-26Mbps与802.11b不兼容,是其最大的缺点。

也许会因此而被802.11g淘汰。

802.11b目前最流行的WLAN协议,使用2.4G赫兹频段。

最高速率11Mbps,实际使用速率根据距离和信号强度可变(150米内1-2Mbps,50米内可达到11Mbps).802.11b 的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。

另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。

兼容性促进了竞争和用户接受程度。

802.11e基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。

也就是说,802.11e是通过无线数据网实现语音通话功能的协议。

该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。

802.11g802.11g是802.11b在同一频段上的扩展。

支持达到54Mbps的最高速率。

兼容802.11b。

该标准已经战胜了802.11a成为下一步无线数据网的标准。

802.11n无线网络技术全面解析

802.11n无线网络技术全面解析

802.11n无线网络技术全面解析【大】【中】【小】2009-03-12 09:50:03 来源:互联网作者:互联网责任编辑:麦孔802.11n的核心----MIMO-OFDMOFDM调制技术是将高速率的数据流调制成多个较低速率的子数据流,再通过已划分为多个子载体的物理信道进行通讯,从而减少ISI(码间干扰)机会。

MIMO(多入多出)技术是在链路的发送端和接收端都采用多副天线,将多径传播变为有利因素,从而在不增加信道带宽的情况下,成倍地提高通信系统的容量和频谱利用率,以达到WLAN系统速率的提升。

将MIMO与OFDM技术相结合,就产生了MIMOOFDM技术,它通过在OFDM 传输系统中采用阵列天线实现空间分集,提高了信号质量,并增加了多径的容限,使无线网络的有效传输速率有质的提升。

双频带(20-MHz和40-MHz带宽)IEEE802.11n通过将两个相邻的20MHz带宽捆绑在一起组成一个40MHz 通讯带宽,在实际工作时可以作为两个20MHz的带宽使用(一个为主带宽,一个为次带宽,收发数据时既可以40MHz的带宽工作,也可以单个20MHz带宽工作),这样可将速率提高一倍。

同时,对于 IEEE802.11a/b/g,为了防止相邻信道干扰,20MHz带宽的信道在其两侧预留了一小部分的带宽边界。

而通过频带绑定技术,这些预留的带宽也可以用来通讯,从而进一步提高了吞吐量。

ShortGI(GuardInterval)是802.11n针对802.11a/g所做的改进。

射频芯片在使用OFDM调制方式发送数据时,整个帧是被划分成不同的数据块进行发送的,为了数据传输的可靠性,数据块之间会有GI,用以保证接收侧能够正确的解析出各个数据块。

无线信号在空间传输会因多径等因素在接收侧形成时延,如果后续数据块发送过快,会和前一个数据块形成干扰,而GI就是用来规避这个干扰的。

11a/g的GI时长为800us,而 ShortGI时长为400us,在使用ShortGI的情况下,可提高10%的速率。

ieee802.11系列标准的主要技术

ieee802.11系列标准的主要技术

ieee802.11系列标准的主要技术
IEEE 802.11系列标准主要使用以下技术:
1. 红外线技术:这种技术用于传输数据,具有抗干扰能力强、传输速度快、安全性高等优点。

2. 跳频扩频技术:通过在多个频率上跳变传输数据,以增加数据传输的可靠性并减少干扰。

3. 直接序列扩频技术:将数据转换为低功率的宽带信号进行传输,以增加数据传输的可靠性并减少干扰。

此外,802.11ax标准还使用了以下技术:
1. OFDMA频分复用技术:通过时间段区分多个用户,单个时间段内,只有一个用户。

OFDMA通过引入时频资源块RU,也就是同一时间段内,将低、中、高频段划分为多组RU,分给多个不同的用户。

单个用户通过多个时间段的组合,来获取完整数据包。

2. UL MU-MIMO技术:支持多用户通过使用不同的空间流来提高吞吐量。

802.11ax新引入的是UL MU-MIMO。

802.11ax支持UL MUMIMO后,借助UL OFDMA技术(上行),可同时进行MU-MIMO传输和分配不同RU进行多用户多址传输,提升多用户并发场景效率,大大降低了应用时延。

以上信息仅供参考,建议查阅专业书籍或者咨询专业人士。

无线的调制解调技术(无线篇)

无线的调制解调技术(无线篇)

随着无线局域网技术的应用日渐广泛,用户对数据传输速率的要求越来越高。

但是在室内,这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其他干扰源的存在使的实现无线信道中的高速数据传输比有线信道中困难,WLAN需要采用合适的调制技术。

IEEE802.11无线局域网络是一种能支持较高数据传输速率(1-54Mbit/s),采用微蜂窝,微微蜂窝结构的自主管理的计算机局域网络。

其关键技术大致有三种:DSSS、CCK技术,和 PBCC,和OFDM。

每种技术皆有其特点,目前,扩频调制技术正成为主流,而OFDM技术由于其优越的传输性能成为人们关注的新焦点。

直序列扩频调制技术(DSSS:Direct Sequence Spread Spectrum)及补码键控(CCK:Complementary Code Keying)技术、包二进制卷积(PBCC:Packet Binary Convolutional Code)和正交频分复用技术OFDM:Orthogonal Frequency Division Mustiplexing。

2.1 DSSS调制技术基于DSSS的调制技术有三种。

最初IEEE802.11标准制定在1Mbps数据速率下采用DBPSK。

如提供2Mbps的数据速率,要采用DQPSK,这种方法每次处理两个比特码元,成为双比特。

第三种是基于CCK的QPSK,是11b标准采用的基本数据调制方式。

它采用了补码序列与直序列扩频技术,是一种单载波调制技术,通过PSK方式传输数据,传输速率分为1,2,5.5和11Mbps。

CCK通过与接收端的Rake接收机配合使用,能够在高效率的传输数据的同时有效的克服多径效应。

IEEE802.11b使用了CCK调制技术来提高数据传输速率,最高可达11Mbps。

但是传输速率超过11Mbps,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。

因此,802.11工作组,为了推动无线局域网的发展,又引入新的调制技术。

WLAN 802.11b中的调制技术--CCK

WLAN 802.11b中的调制技术--CCK

WLAN 802.11b中的调制技术--CCK
付卫红;曾兴雯
【期刊名称】《电子科技》
【年(卷),期】2003(000)013
【摘要】介绍无线局域网IEEE802.11标准中物理层采用的调制技术--CCK(补码键控),详细介绍了CCK的基本原理和系统框图,并分析它们的性能.
【总页数】2页(P47-48)
【作者】付卫红;曾兴雯
【作者单位】西安电子科技大学通信工程学院,710071;西安电子科技大学通信工程学院,710071
【正文语种】中文
【相关文献】
1.基于80
2.11b的补码监控调制技术 [J], 亢丽霞;王克家;丁淑娟
2.WLAN(802.11b)在自动控制中的应用 [J], 李晓燕;李娜
3.802.11b物理层CCK扩频技术探讨 [J], 董宁;石明卫
4.DSP完成WLAN中CCK调制解调的快速算法 [J], 王俊;洪慧勇;杨晨阳
5.WLAN基带处理中CCK方式的实现技术 [J], 康兴;王新安;肖高发;张国新;陈惠明
因版权原因,仅展示原文概要,查看原文内容请购买。

IEEE 802.11a中QPSK解调的FPGA设计与实现

IEEE 802.11a中QPSK解调的FPGA设计与实现

维普资讯
24 1 信号 的叠加 .
烟 台大 学学报 (自然科 学 与工程版 )
第2 1卷
CS 和 s wt 行 调 制 , 加 后 即 得 到 M S O(t i 进 O n 相 PK 信 号. S MP K的解 调是调 制过 程 的 逆 过程 , 即对 接 收的 M S P K信 号经 两 路 分 别 进 行 相 干 接 收 , 后 最 通 过并 一串 变换 恢 复 出 二 进 制信 息 , 调过 程 见 解
解 调 的新方 案.
关键 词 :解调 ; 映射 ; 译码 中图分 类号 : N 1 . T 9 13 文献标 识码 :A
随着 无 线 通 信 技 术 和 计 算 机 网 络 技 术 的 发 展, 无线 局域 网迅 速 地 应 用 于需 要 在 移 动 中联 网
制后 的传输信号的时域表达式为
和在网间漫游的场合. IE 0 、 1 协议采用 而 E E82 1a
O D 调制 方 式 , 以在 整 个覆 盖范 围 内提 供 高 FM 可 达 5 p 的速率 , 4Mb s 比任何 其 他 无 线 局 域 网的 解 决方 案更 快 、 另外 ,0 、 1 82 1a工作 在 5G z 带 , H 频
图1 所示 .
根据 以上 MP K 信 号 的 表 述 , S 的 调 制 S MP K 可 以看成 是将输 入 的 串行 二进 制 信息 序列经 串 一 并 变换后 变成 两路 相 同速 率 的序 列 , 电平 发 生 器 分别 产生 双极 性二 电平 信号 ,t和 Q()然 后 对 () t,
. c ∑o ) × s ) …( … c s
rc( 一n ) e t£
ect
s ( )× i n n

802.11a扰码原理

802.11a扰码原理

802.11a是一种无线局域网标准,使用OFDM(正交频分复用)技术进行数据传输。

在OFDM中,数据被分成多个子载波,每个子载波都被调制成不同的频率和相位。

为了提高数据传输的安全性,802.11a使用扰码技术对数据进行加密。

扰码是一种将明文数据转换为密文数据的技术,它通过对数据进行特定的操作,使得密文数据与明文数据之间没有明显的关系。

在802.11a中,扰码是通过将数据与伪随机序列进行异或操作来实现的。

伪随机序列是一种看起来像随机数列的序列,但实际上是通过特定的算法生成的。

在802.11a中,伪随机序列是通过使用一个称为“长线性反馈移位寄存器”(LFSR)的算法生成的。

LFSR是一种能够生成伪随机序列的电子电路,它由一组寄存器和一组异或门组成。

在802.11a中,扰码器使用一个48位的伪随机序列对数据进行扰码。

具体地说,扰码器将48位的伪随机序列与48位的数据进行异或操作,得到扰码后的数据。

这个扰码后的数据被送入OFDM调制器进行调制,然后通过天线进行无线传输。

在接收端,接收到的数据被送入OFDM解调器进行解调。

解调器将接收到的信号分成多个子载波,并将每个子载波的频率和相位解调出来。

然后,解调器将解调出来的数据送入解扰器进行解扰。

解扰器使用与发送端相同的伪随机序列对接收到的数据进行异或操作,得到原始的数据。

最后,原始的数据被送入接收端进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
802.11 调制解调技术
802.11 调制解调技术
802.11技术基础
802.11调制技术 802.11展频技术
802.11技术基础
802.11常用的标准有802.11 a, b, g, n
802.11a: 载波5GHz, 物理层 OFDM. 802.11b: 载波2.4GHz, 物理层 采用补码键控CCK/DSSS.
调频扩频技术在802.11中基本不再使用.
802.11展频技术
直接序列传输
直接序列传输是一种不同的展频技术,可以通过较宽的频段传送信 号。直接序列技术的基本运作方式,是通过精确的控制将RF 能量分散至 某个宽频频段。当无线电载波的变动被分散至较宽的频段时,接收器可 以通过相关处理(corelation process)找出变动何在。下图以比较抽 象的观点说明了直接序列的基本运作方式。
双比特码元 a 0 0 1 1 b 0 1 1 0
o
载波相位 ( j k )
A 方式
01
0 o 90 o 180 o 270
B 方式 o 45 o 135 o 225 o 315
01 00 11
45
00802.11调制技术
QPSK调制星座图
01
00
11
10
802.11调制技术
OFDM(Orthogonal Frequency Division Multiplexing)正交频分
复用
将信道分成若干正交子信道,将高速数据信号转换成并行的低速子 数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端 采用相关技术来分开,这样可以减少子信道之间的相互干扰(ISI) 。每个 子信道上的信号带宽小于信道的相关带宽,因此每个子信道上可以看成 平坦性衰落,从而可以消除码间串扰,而且由于每个子信道的带宽仅仅 是原信道带宽的一小部分,信道均衡变得相对容易。
继续靠近,间隔频率互相正交,因此频谱虽然有重叠,但是 仍然是没有互相干扰的。
802.11展频技术
对限制在[0,2π]内的sin(t)信号,相当于无限长的sin(t)信号乘以一个 [0,2π]的矩形脉冲,其频谱为两者频谱的卷积。sin(t)的频谱为冲激, 门信号的频谱为sinc信号(即sin(x)/x信号)。冲激信号卷积sinc信号 ,相当于对sinc信号的搬移。所以分析到这里,可以得出OFDM的时 域波形其对应的频谱如下:
802.11展频技术

OFDM,多载波调制的一种,主要思想为:将经过BPASK, QPSK,16QAM或者64QAM调制的高速串行数据转换成并行的多路较低 速的子数据流。然后调制到相互正交的子载波上,并行发射出去,这些 子载波相互正交,频带可以有所重叠,不同于传统的频分复用技术。
802.11展频技术
限定在[0,2π]内的b· sin(2t)信号的频谱,即以sin(2t)为载波的调制信号的频谱
802.11展频技术
将sin(t)和sin(2t)所传信号的频谱叠加在一起,如下:
a· sin(t)+b· sin(2t)信号的频谱
可以看出, 在sin(t)频谱峰值处, sin(2t)的频谱功率为零,反之亦然. 所以两个信号的频谱是正交的. 依此类推, 所有sin(Xt)函数的频谱相互之间都是正交的. (X为整数)
导频和训练符号
导频和训练符号的作用都是为了得到准确符号同步和频偏纠正.
导频
导频是在一个固定的频率上一直发已知的信号,在频谱上看 多了一条线,是频域上的处理. 20MHz 带宽调制导频为BPSK的调制方式. 40MHz 带宽调制导频为QPSK的调制方式.
训练符号
训练序列就是在发送的数据帧前面含有一部分已知道的码元 , 用于接受端的同步和信道估计,它是在时域上的处理.
802.11调制技术
BPSK调试波形
0变1不变
1变0不变
802.11调制技术
BPSK调制星座图
QPSK调制原理
802.11调制技术
四进制码元又称为双比特码元。它的前一信息用 a 代表 ,后一信息比特称用b代表,双比特码元中两个信息比特ab 提出按照格雷码(即反射码)排列的。它与载波相位的关系 如下表示。矢量图如下。
802.11展频技术
因此在信道中传送的信号为a×sin(t)+b×sin(2t)。其中sin(t)和sin(2t) 为载波,a、b为所要发射的信号,在接收端,分别对接收到的信号作 关于sin(t)和sin(2t)的积分检测,就可以得到a和b了。
发送在无线空间的叠加信号 a×sin(t)+b×sin(2t)
限定在[0,2π]内的a· sin(t)信号的频谱,即以sin(t)为载波的调制信号的频谱
802.11展频技术
sin(2t)的频谱分析基本相同。需要注意的是,由于正交区间为[0,2π],因此 sin(2t)在相同的时间内发送了两个完整波形。相同的门函数保证了两个函数 的频谱形状相同,只是频谱被搬移的位置变了:
以16QAM为例,这里Amc和Ams为±1,±3.
QAM调制图解
802.11调制技术
QAM调制器中I和Q信号来自一个信号源,幅度和频率都 相同,唯一不同的是Q信号的相位与I信号相差90°
64 QAM 调制图解
802.11调制技术
正常64QAM星座图
802.11调制技术
增益压制时64QAM星座图
802.11g: 载波2.4GHz, 物理层 CCK/DSSS, OFDM. 兼容802.11b.
802.11n: 载波2.4GHz 和 5GHz, 物理层 OFDM+MIMO.
802.11调制技术
BPSK调制原理
差分相移键控( BPSK)是利用相邻二个码元的载波信号 初始相位的相对变化来表示所传输的码元。 例如,在二进制中传输“ 1” 码时,则与此码元所对应的 载波信号初始相位相对于前一码所对应的载波信号初始相位 有 π 弧度的变化 ;,传输 “ 0” 码时,与此码元所对应的载波信 号的初始相位相对于前一码元所对应的载波信号初始相位无 变化(“1变0不变” );当然反过来也是可以的。
802.11展频技术
三角函数系中任何不同的两个函数的乘积在区间[-π,π]上的积分等于 0. 如三角函数系{1,sinx,sin2x,sin3x,sin4x… …},如 1*SinX或者 SinX*Sin2X在[-π,π]上的积分都为0. 若载波1发送的数据为A, 调制在SinX上, 载波2发的数据为B,调制 在Sin2X上,他们是同时发送的,基站收到的数据就是 ASinX+ BSin2X. 那么我们如何解出载波1发了什么呢? 基站会对收到的数据乘以他调 制的载波频率积分,(Asin(X) + BSin(2X))*SINX ,则由于信号是线性 的,根据1,结果中就含有B 的分量约掉了,我们就能解出A。
802.11展频技术
跳频传输
跳频,是以一种预设的准随机样式(predeterminded, pseudorandom pattern)快速变换传输频率.
如图所示。图中的纵轴将可用频率划分为几个频槽(frequency slot)。同样地,时间轴也被划分为一系列时槽(time slot)
802.11展频技术
跳频传输
调频可以避免设备干扰某个频段(frequency band 简称 band)的 主要用户.
跳频用户对主要用户只会造成瞬间干扰,因为跳频健将能量分散至 较宽的频段。同样地,主要用户只会影响展频设备的某个频槽,就像是 瞬间的噪声一般。
802.11展频技术
跳频传输
如果两个跳频系统需要共用相同频段,可以指定不同的跳频顺序, 如此便不会互相干扰。
802.11展频技术
导频和训练符号
20MHz带宽数据帧中导频与数据的分布.
0~8 uS: 10个相同的短时训练符, 由12个子载波组成.
用于信号检测, 自动增益控制, 符号定时, 粗频率偏差 估算. 8~16 uS: 一个长时训练符号, 由两个3.2 uS 的OFDM 长度, 两 个0.8 uS的保护间隔组成. 用于精确的偏离偏差估算和信道估算.
802.11展频技术
保护间隔与循环前缀
OFDM符号长度
OFDM符号长度由两部分组成: 保护间隔与FFT积分长度. FFT积分长度为一个带有编码信号符号的长度,一般为64或 128.
保护间隔的意义
避免多径传输导致的符号间干扰.
802.11展频技术
保护间隔与循环前缀
插入循环前缀后, 当多径效应造成的延迟小于循环前缀长度时. 可看到各个子载波在FFT积分时间内都是整数个. FFT积分是连续的,不 会有子载波编码间的串扰.
802.11展频技术
多个子载波相加后的时域波形:
移动叠加后的波形一个时间长度, 对不同子载波的相位改变是不同的.
假如A1’相位延迟为π/8,则A2’的相位延迟为π/4 …… AK’的相位延迟则为π/8*k. 所以Montecarlo的项目中,我们不能简单的移动叠加波形使得所以子载波产生一个相同的 相移动. 而是先使子载波做相同的相位平移,再合成叠加波形.
802.11展频技术
保护间隔与循环前缀
多径效应对各个子载波产生相位影响. 当以低频子载波的180°相位出开始做该FFT积分时, 在FFT积分 区域内带有时延的高频子载波的个数为非整数个, 形成了该子载波 FFT积分的非连续性. 多径效应产生的高频子载波的时延信号对低频 子载波造成了干扰.
802.11展频技术
802.11展频技术
接收信号乘sin(t),积分解码出a信号。
802.11展频技术
接收信号乘sin(2t),积分解码出b信号
802.11展频技术
流程图
802.11展频技术
频域上的OFDM
在时域中主要讨论了O(正交)是如何发挥作用的,下面主要讨论FDM 常规FDM的系统图:
相关文档
最新文档