矿产储量计算方法
矿产资源储量计算表 平行断面法适用

平均值s
h
15025.5
10
6724
25
块段体积(m3)
v
150255.00 168100.00
662664.46
溶洞率(%) f
0 0
原始数据
318355.00 计算结果
原始数据
实际矿体体积(万立 方米) V 15.29 1.31 46.10 134.10
矿石体重(吨/ 立方米) d 2.6 2.6 2.6 2.6
16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
原始数据
剖面法-斜楔形尖灭块段体积、矿石量计算式
尖灭端边长(米) 有矿端边长(米)
h1 197.40 315.80
h2 150.17 296.63
矿产资源储量计算

实例二:某煤矿储量计算
煤层厚度与面积测量
通过地质勘探和地球物理勘探等方法,测量煤层的厚度和面积。
煤质分析与发热量测定
采集煤样进行工业分析和元素分析,测定煤的发热量等指标。
储量计算与评估
根据煤层厚度、面积和煤质数据,计算煤矿的储量,并进行分类和 评估。
实例三:某铜矿储量计算
铜矿床地质特征研究
收集铜矿床的地质资料,研究其成矿地质背景、矿体形态、矿石 类型等特征。
矿产资源储量计 算
目录
• 矿产资源储量概述 • 矿产资源勘查与评估 • 矿产资源储量计算方法 • 矿产资源储量计算实例分析 • 矿产资源储量计算中的误差分析 • 矿产资源储量计算的发展趋势与
展望
01
矿产资源储量概述
定义与分类
定义
矿产资源储量是指在地壳内或地表富 集的、具有经济意义的、能够被开采 利用的固体、液体或气体矿产的数量 。
引入新的数学模型和算法
随着计算机技术的发展,越来越多的复杂数学模型和算法 被引入到矿产资源储量计算中,如神经网络、支持向量机 等,提高了计算的准确性和效率。
综合利用多源信息
通过综合利用地质、地球物理、地球化学等多源信息,可 以更加准确地刻画矿体的形态、规模和品位分布,进而提 高矿产资源储量计算的精度。
可行性原则
储量计算应考虑矿产资源的开采技术条件 和环境保护要求,确保储量的可开采性和 可持续性。
02
矿产资源勘查与评估
勘查方法与程序
地质填图法
通过地质填图了解矿区的地层、 构造、岩浆岩等地质条件,为进 一步的矿产勘查提供基础资料。
物探法
利用物理方法探测矿体或矿化带的 分布范围、形态、产状等,常用的 物探方法有重力、磁法、电法等。
储量计算方法

金属、非金属矿产储量计算方法邓善德(国土资源部储量司)一、储量计算方法的选择矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似的用规则的几何体来描述或代替真实的矿体,求出矿体的体积。
由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法在。
比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法),断面法(包括垂直剖面法和水平断面法)及等值线法等,其中以算术平均法、地质块段法、开采块段法和断面法最为常见。
现将几种常用的方法简要说明如下。
1.算术平均法是一种最简单的储量计算方法,其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。
算术平均法应用简便,适用于矿体厚度变化小,工程分布比较均匀,矿产质量及开采条件比较简单的矿床。
2.地质块段法它是在算术平均法的基础上加以改进的储量计算方法,此方法原理是将一个矿休投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板状体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。
各部分储量的总和,即为整个矿体的储量。
地质块段法应用简便,可按实际需要计算矿体的不同部分的储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。
地质块段法按其投影方向的不同垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。
垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁琐,所以一般不常应用。
矿产资源储量的计算方法

矿产资源储量的计算方法
矿产资源储量的计算方法有多种,常用的包括断面法、算术平均法、地质块段法、开采块段法、三角形法及最近地区法等。
在计算过程中,首先需要根据矿床地质特点和所用勘探方法,选择合理的储量计算方法。
然后在各种综合图上根据工业指标圈定矿体边界,划分矿体块段,计算各块段的平均厚度、平均品位、矿石密度、矿体面积以及含矿系数等参数。
最后按公式计算块段金属储量,累计块段金属储量为矿体(或矿床)金属储量。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询地质专家。
金属、非金属矿产储量计算的方法共164页

(五)其它方法
1、最近地区法
又称多角形法。其实质是将形状不规则的矿体,人为 地简化为便于计算体积的多角形柱体。即在矿产资源储 量计算平面图所圈定的矿体范围内以每个勘探工程为中 心,按其与各相邻工程的二分之一距离为顶点,将矿体划 分为一系列紧密连接的多边形地区。再依据每个多角形 地区中心的工程资料分别计算其矿产资源储量。这种矿 产资源储量计算法不仅不能反映矿体的真实特点,而且 计算过程繁琐,在实际工作中很少应用。只有在工程分 布不均、工程揭露的矿体其厚度、品位相差悬殊、矿体 形状极不规则的情况下,为了考虑各工程所影响的权数 才采用此方法。多角形顶点的选择,有时也采用内插法 以便使计算结果更准确一些。但总的来说,这种方法应 用并不广泛。
(一)算术平均法
是一种最简单的矿产资源储量计算方法。其 实质是将整个形状不规则的矿体变为一个厚度和 质量一致的板状体。即把勘探地段内全部勘探工 程查明的矿体厚度、品位、矿石体重等数值,用 算术平均的方法加以平均,分别求出其算术平均 厚度、平均品位和平均体重,然后按圈定的矿体 面积,算出整个矿体的体积和矿石的资源储量。
断面法的特点是借助勘探剖面表现矿体不同 部分的产状、形态、构造以及不同质量,不同研 究程度和矿产资源储量的分布情况。按勘探剖面 的空间方位和相互关系,断面法又分为水平断面 法、垂直平行断面法和不平行断面法。而在垂直 断面法中又可分为两种:一种是按勘探线为划分 块段边界的,这是最常用的一种;而另一种则是 以勘探线间的平分线为划分块段边界的,又称之 为“线矿产资源储量法”。即每一勘探剖面至相 邻两剖面之间二分之一距离的地段,即为该剖面 控制的地段,分别计算各块段的矿产资源储量,然 后累加即为矿体或矿床的矿产资源储量。线矿产 资源储量法主要用于砂矿床的矿产资源储量计算。
矿产资源储量计算方法的教案

矿产资源储量计算方法的教案一、教学目标1. 让学生了解矿产资源储量的概念及其重要性。
2. 培养学生掌握矿产资源储量计算的基本方法和步骤。
3. 提高学生对矿产资源合理开发与保护的认识。
二、教学内容1. 矿产资源储量的概念与分类2. 矿产资源储量计算的基本方法3. 矿产资源储量计算的步骤4. 矿产资源储量计算实例分析5. 矿产资源合理开发与保护三、教学重点与难点1. 教学重点:矿产资源储量的概念、分类及计算方法。
2. 教学难点:矿产资源储量计算的步骤及实际应用。
四、教学方法1. 采用案例分析法,以实际矿产资源储量计算案例为例,引导学生掌握计算方法。
2. 采用讨论法,让学生分组讨论,提高学生对矿产资源合理开发与保护的认识。
3. 采用提问法,激发学生思考,巩固所学知识。
五、教学准备1. 准备相关PPT课件,展示矿产资源储量计算的方法与步骤。
2. 准备实际矿产资源储量计算案例,用于课堂分析和讨论。
3. 准备矿产资源开发与保护的相关资料,用于课堂讨论。
【导学】1. 引入矿产资源储量的概念,让学生了解其重要性。
2. 引导学生思考矿产资源储量计算的意义和作用。
【课堂讲解】1. 讲解矿产资源储量的概念与分类。
2. 讲解矿产资源储量计算的基本方法。
3. 讲解矿产资源储量计算的步骤。
【案例分析】1. 分析实际矿产资源储量计算案例,让学生掌握计算方法。
2. 引导学生通过案例思考矿产资源合理开发与保护的问题。
【课堂讨论】1. 让学生分组讨论,分享各自对矿产资源合理开发与保护的认识。
2. 邀请学生代表进行汇报,总结讨论成果。
【知识巩固】1. 提问学生,检查对矿产资源储量计算方法的掌握情况。
2. 布置课后作业,让学生巩固所学知识。
【课后作业】1. 复习课堂内容,整理学习笔记。
2. 完成课后练习,加深对矿产资源储量计算方法的理解。
3. 思考矿产资源合理开发与保护的实际问题,提出解决方案。
六、教学内容1. 矿产资源储量计算的参数和公式2. 矿产资源储量计算的准确性分析3. 矿产资源储量计算的软件与应用4. 矿产资源储量计算实例分析5. 矿产资源储量计算的注意事项七、教学重点与难点1. 教学重点:矿产资源储量计算的参数和公式,以及软件与应用。
矿产资源储量计算表(平行断面法适用)

16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
块段体积(立方米)
V 292025.0000 192759.0000 128770.6500 1879601.2500
溶洞裂隙率 (%) f 0.0000 5.0000 5.0000 5.0000
始数据
2493155.9000 计算结果
法-锥体(点状尖灭)块段体积、矿石量计算式
块段体积(立方 米)
溶洞裂隙率(%)
合 计
原始数据
断面相对面积误差≥40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积乘积平方根值
S2
√S1×S2
11192.00
14883.6573
1981.00
1214.8436
固体矿产资源、储量计算方法介绍(PPT59张)

8
(3)控制的:是指对矿区的一定范围依照详查的精 度基本查明了矿床的主要地质特征、矿体的形态、 产状、规模、矿石质量、品位及开采技术条件,矿 体的连续性基本确定,矿产资源数量所依据的数据 较多,可信度较高。
该阶段提交的332资源量必须在30%以上。
6
(4)勘探:是对已知具有工业价值的矿床或经详 查圈出的勘探区,通过加密各种采样工程,其间 距足以肯定矿体(层)的连续性,详细查明矿床 地质特征,确定矿体的形态、产状、大小、空间 位置和矿石质量特征,详细查明矿体开采技术条 件,对矿产的加工选冶性能进行实验室流程试验 或实验室扩大连续试验,必要时应进行办工业试 验,为可行性研究或矿山建设设计提供依据。
5
(3)详查:是对普查圈出的详查区通过大比例尺 地质填图及各种勘查方法和手段,比普查阶段 密的系统取样,基本查明地质、构造、主要矿 体形态、产状、大小和矿石量质量,基本确定 矿体的连续性,基本查明矿床开采技术条件, 对矿石的加工选冶性能进行类比或实验室流程 试验研究,做出是否具有工业价值的评价。必 要时,圈出勘探范围,并可供预可行性研究、 矿山总体规划和矿山项目建议书使用。对直接 提供开发利用的矿区,其加工选冶性能实验程 度,应达到可供矿山建设设计的要求。
10
(2)预可行性研究:是指对矿床开发经济意义的初 步评价。其结果可以为该矿床是否进行勘探或可行性 研究提供决策依据。进行这类研究,通常应有详细或 勘探后采用参考工业指标求得的矿产资源/储量数, 实验室规模的加工选冶试验资料,以及通过价目表或 类似矿山开采对比所获数据估算的成本。预可行性研 究内容与可行性研究相同,但详细程度次之。当投资 者为选择拟建项目而进行预可行性研究时,应选择适 合当时市场价格的指标及各项参数,且论证会项目尽 可能齐全。