地层压力测井及井壁取芯技术简介
测井的原理和应用

测井的原理和应用1. 测井的概述测井是石油工程中的一项重要技术,通过下井仪器的测量,以获得井内地层的物性参数,从而评估石油和天然气储层的含油气性质和储量。
测井技术在石油勘探、开发和生产中起到了至关重要的作用。
2. 测井的原理测井的原理是基于下井仪器通过测量井壁周围的物理量,利用物理和地质的关联关系来推断井内地层性质的一种技术。
下面将介绍几种常用的测井技术及其原理。
2.1 电测井电测井是一种通过测量井壁周围的电性参数来推断地层性质的技术。
它利用地层的电导率差异,通过测量电阻率来判断地层的类型和特征。
2.2 声波测井声波测井是一种通过测量地层对声波的传播速度来推断地层性质的技术。
它利用地层的声波传播速度差异,通过测量声波传播时间来判断地层的类型和充实度。
2.3 核磁共振测井核磁共振测井是一种通过测量地层中核磁共振信号来推断地层性质的技术。
它利用地层中的核磁共振信号,通过测量共振频率和幅度来反演地层的物性参数。
3. 测井的应用测井技术在石油勘探、开发和生产中有着广泛的应用。
下面将介绍几个常见的应用领域。
3.1 储层评价测井技术可以提供储层的物性参数,如孔隙度、渗透率、饱和度等,从而评价储层的质量和产能。
3.2 油气井完井设计测井技术可以提供地层的性质参数,帮助优化油气井的完井设计,提高油气井的产能。
3.3 水驱和聚驱监测测井技术可以提供油层和水层的界面位置和分布,帮助监测水驱和聚驱过程中的流体移动和驱替效果。
3.4 储层模型建立测井技术可以提供地层的性质参数,用于建立储层模型,从而进行油气资源评估和储量计算。
3.5 井眼修复和沉积环境研究测井技术可以提供井眼的形态和修复情况,帮助判断沉积环境和地层演化过程。
4. 测井的发展趋势随着科技的不断进步,测井技术也在不断发展。
以下是测井技术的一些发展趋势。
4.1 多物性测井技术随着对复杂储层的勘探和开发需求增加,多物性测井技术被广泛关注。
通过融合多种测井技术,可以获得更加全面准确的地层信息。
第3章 地层压力检测

第三章地层压力检测大量的勘探实践表明,异常高压地层的存在具有普遍性,而且钻遇到高压地层比低压地层更为常见。
这些广泛分布的异常高压地层首先影响钻井的安全,钻井中,如果未能预测到可能钻遇到的异常高压地层,使用的钻井液液柱压力小于地层压力,可能会导致严重的井喷甚至井喷失控。
因此,在石油钻井中,对地层压力的评价是非常重要的,对保护油气层,保证井控安全具有重要意义。
一压力检测的目的及意义1 压力检测和定量求值指导和决定着油气勘探、钻井和采油的设计与施工。
2 对钻井来说,它关系到高速、安全、低成本的作业甚至钻井的成败。
3 只有掌握地层压力,地层破裂压力等地层参数,才能正确合理的选择钻井液密度,设计合理的井身结构。
4 更有效地开发、保护和利用油气资源。
二异常地层压力的形成机理1压实作用:随着埋藏深度的增加和温度的增加,孔隙水膨胀,而孔隙空间随地静载荷的增加而缩小。
因此,只有足够的渗透通道才能使地层水迅速排出,保持正常的地层压力。
如果水的通道被堵塞或严重受阻,增加的上覆岩层压力将引起孔隙压力增加至高于水静压力,孔隙度亦将大于一定深度时的正常值。
2 构造运动构造运动是地层自身的运动。
它引起各地层之间相对位置的变化。
由于构造运动,圈闭有地层流体的地层被断层、横向滑动、褶皱或侵入所挤压。
促使其体积变小,如果此流体无出路,则意味着同样多的流体要占据较小的体积。
因此,压力变高。
3 粘土成岩作用成岩指岩石矿物在地质作用下的化学变化。
页岩和灰岩经受结晶结构的变化,可以产生异常高的压力。
例如在压实期间蒙脱石向伊利石转化。
有异常压力,必有上覆压力密封层。
如石膏(CaSO4·2H2O)将放出水化水而变成无水石膏(CaSO4),它是一种特别不渗透的蒸发岩,从而引起其下部异常高压沉积。
4 密度差的作用当存在于非水平构造中的孔隙流体的密度比本地区正常孔隙流体密度小时,则在构造斜上部,可能会形成异常高压。
这种情况在钻大斜度气层时常见到。
测井知识介绍范文

测井知识介绍范文测井是石油勘探开发中的一项重要技术,它通过对井筒内的地层进行物理、化学及其他相关参数的测量,来获得有关地层构成、岩性、孔隙度、渗透率、流体类型和含量等的信息。
测井的主要目的是评价油田的储量、有效性和可开发性,为油气田的勘探和开发提供重要依据,并在决策过程中发挥关键作用。
测井技术包括测井仪器、测井方法和测井解释三个方面。
测井仪器主要包括导电仪器、放射仪器和声波仪器等。
导电仪器利用岩石的电导率差异,测量岩石电导率和孔隙度等参数,常用的导电仪器有电阻率测井仪、自感电阻率测井仪等;放射仪器则利用放射性元素的辐射特性,来间接推断地层的物理和化学参数,如放射性密度测井仪、核磁共振测井仪等;声波仪器则利用声波在地层中传播的特性,通过记录声波反射、折射、散射和传播时间等信息,推断地层的布居和物理性质,常用的声波仪器有声波电阻率测井仪和声波压力测井仪。
测井方法主要包括电测井、自然伽马测井、声波测井、测井岩石学、测井生产地质学等。
电测井是通过测量地层中的电导率来推断地层的物性参数,如导电率、孔隙度、渗透率等;自然伽马测井主要用于识别和描述地层的放射性特征,从而推测岩石类型、含矿性质和层序地层等信息;声波测井则通过测量声波在地层中传播的速度和衰减等参数,来推断地层的构成和性质;测井岩石学是通过解释测井曲线和相关地质参数之间的关系,来推测地层的岩石类型、孔隙度、渗透率等信息;测井生产地质学则是将测井资料与生产资料相结合,分析与评价油藏的动态性质和储量有效性。
测井解释是测井技术的核心内容,它通过解读测井曲线和分析测井参数之间的关系,来推断地层的物性参数和岩石性质。
测井解释主要包括基本解释、定性解释和定量解释。
基本解释是对测井资料进行初步处理和解读,提取出地层中的主要特征和异常,并进行简单确认;定性解释则是在基本解释的基础上,通过对测井曲线和地质参数的对比,推测地层的岩性、孔隙度、渗透率等;定量解释则是在定性解释的基础上,运用岩石物理模型、统计方法和电子计算机等工具,对测井资料进行定量计算和分析,得出更为精确的地层参数。
石油测井技术介绍

来确定地层电阻率的变化。利用具有不同径向探测深度
的横向测井技术,可以识别岩性、划分储层、确定地层 有效厚度、进行地层剖面对比、确定地层真电阻率及定 性判断油气水层等。目前还保留了 2.5米、4米梯度和微 电极(微电位和微梯度组合)等普通电阻率测井方法。
第二代:数字测井(60年代开始)
第三代:数控测井(70年代后期) 第四代:成像测井(90年代初期)
翁文波先生于1939年在四川隆昌的井中测出了我国第一条电测曲线 (点测)开创了我国测井技术的发展历程。我国测井技术在50年代以横向 测井为代表,60年代发展了声波与聚焦电测井(感应测井、侧向测井), 均为模拟记录。到70年代中期,开始应用密度与中子测井,地层倾角测井 与电缆式地层测试器,并采用数字磁带记录。80年代中期数控测井投入运 用,从地层倾角测井到高分辨率地层倾角测井,到后期发展为微电阻扫描 成像测井,地层测试器发展为重复式多点压力测量,密度测井发展为岩性 密度测井,碳氧比测井、自然伽马能谱测井等也相继应用。进入90年代, 成像测井系统逐步投入应用,包括核磁共振测井、井壁微电阻扫描成像 (发展为六个、八个极板)、井壁声波成像、偶极子阵列声波、井旁声波 测井、阵列感应、三相量感应、方位侧向等测井,以及模块式地层测试器
随着技术的进步,近年来各种针对非均质各向异性地层 的侧向电阻率测井技术产品己投入使用,如高分辨率侧向测 井仪,方位电阻率侧向测井仪、阵列侧向测井仪等。 侧向测井可以用来定量计算钻井液冲冼带、侵入带半径、 地层真电阻率和含油饱和度等储层参数。
SL6233 强聚焦数控双侧向测井仪
SL6233强聚焦数控双侧向测井仪采用多层屏蔽及多反馈控制等新技术,提高了测井仪器的电阻率测量范围及测量精度。
常规地层测试技术及测试工具简介

通过地层测试,可以达到下列目的: 1 及时验证地层中是否产油气及产油气 的能力。 2探明油气藏边界、油水边界、气水边 界及油藏类型。 3提供计算油气地质储量的所必须的部 份参数。 4了解固井质量,探测套管损坏及管外 窜槽情况。
二、地层测试与常规试油相比具有较大的 优势主要表现在: 1)录取地层资料比常规试油准确而且全 面。其中某些地层测试录取的资料是常 规试油无法得到的。 2)能够很好地保护地层。由于地层测试 一般是将常规试油的多道工序合成一道 工序来作,大大缩短了空井的时间,减 轻了钻井液对地层的浸泡和污染,
4)下放测试管柱,换位槽下行,J形销 移至“D”位置,无自由下落显示,测试 阀关闭。 5)慢慢上提管柱,换位槽上行,J形销 移至换位槽底部“A”的位置,测试阀关 闭。 这样反复上提下放管柱,便可以进行多次 井下开关井。
维护95mmMFE测试器的换位机构 1.将换位外筒夹在虎钳上,卸掉上接头。 2.松开虎钳,把换位外筒部分往前窜,虎 钳夹于延时外筒楞角部分,拧紧,卸 掉花键外筒。 3.从花键套上卸下换位销。 4.清洗上接头,花键外筒,花键芯轴,花 键套和止推垫圈。 5.检查花键槽有无损伤,换位销有无变形, 止推垫圈有无变形,发现问题及时修 理或更换零部件。
6.取出上接头内的两只13304号“O”型圈 和花键外筒上部的13249号“O”型圈。 7.将两只13304号“O”型圈装入上接头, 将1 只13249号“O”型圈装入花键外筒, 把换位销装在花键套上。 8.沿花键槽滑动花键套,观察花键套滑动 是否顺畅,灵活。 9.给花键芯轴和花键套涂满黄油,摆正六 个止推垫圈。 10.把花键外筒套在花键芯轴上,拧紧与 延时外筒间的连接螺纹。 11.把上接头装在花键芯轴上并拧紧连接
MFE地层测试器的组成: MFE地层测试器是一套完善的测试工具 系统,包括多流测试器、锁紧接头和PT封隔器等。95mmMFE多流测试器与 127mmMFE测试器的结构和原理大致相 同,多流测试器是工具的关键部件,由 换位机构、延时机构和取样器三部分组 成。
测井原理及方法

离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。
随钻地层压力测试技术

20 世纪 30 年代早期 ,Dalla s 地球物理公司的 J . C.K araher 用一段长 4~5 f t*的绝缘线将钻头与钻柱绝缘 ,在每根 钻杆内嵌入绝缘棒 ,用一根导线在绝缘棒中间穿过 ,通向地面 ,通 过这根导线传输井下信号 ,用这种方法得到了令人鼓舞的结果 ,测 量到连续的电阻率曲线。 1938年采集到第1条LWD电阻率曲线,这是 用电连接方式传输数据的第1条LWD曲线。
实用文档
1 随钻地层测试技术的概述
实用文档
2 随钻地层测试技术原理
相对于 电缆地层测试器 ,随钻地层测试 器的结构比较简 单仪器主要由探 针、密封胶垫、 测压仓、平衡阀 、压力传感器和 流体管线等组成 。
随钻地 层测试仪器的结 构原理图1:
实用文档
2 随钻地层测试技术原理
当进行预测试时,按照预定程 序启动液压系统 ,执行推靠动作, 推靠探头伸出 ,封隔器推靠井壁并 保持,执行预测试动作,由地层通往 仪器预测试室的通道 ,仪器选择某 种预测试控制模式 ,然后开启预测 试室 ,抽取一定体积的地层流体样 品 ,从而引起地层压力降 ,这一压 力降以近似于球面形式向外传播。 压降结束后 ,地层流体中未被扰动 的部分又向低压区流动,直至压力 恢复到原始地层压力。在这一过程 中,仪器中设置的压力计(CQG)将全 程记录地层压力和时间的函数曲线。
实用文档
1 随钻地层测试技术的概述
地层压力检测

地层压力检测钻进时,井内压力的掌握是使井眼压力处在地层孔隙压力和地层裂开压力之间。
既不发生井喷,又不压破地层,钻井的整个过程中要随时测试地层孔隙压力、井内液柱压力和地层裂开压力的平衡状况。
一、压力完整性测试1、dc 指数法dc 指数法是通过分析钻进动态数据来检测地层压力的一种方法。
其原理是钻进速度在钻头类型;钻头直径;水眼尺寸;钻头磨损;钻压;转速;钻井液类型;钻井液密度;钻井液粘度;固相含量、颗粒大小及在钻井液中的分布;泵压;泵速相对不变的条件下和地层压力、地层岩性有关。
正常状况下,随井深的增加岩石的强度增大,钻速下降,但进入特别压力过渡带,正常趋势发生变化。
这是由于地层的欠压实作用,地层的空隙度大硬度小,所以利用随井深钻速的变化能检测特别高压层的到来。
依据钻速模式:R=aN(W/D)d式中:R-钻速,ft/h;a-可钻性系数,对于大段页岩,视为1;N-转数,r/min;W-钻压,klbf; D-钻头直径,in;d-指数,无因次。
由钻速方程,可得出 d 指数的表达式为:d 指数可用来检测从正常到特别压力的过渡带。
但没有考虑钻井液密度的影响现场上用修正 d 指数,式中:ρn-地层水密度〔从当地地层水含盐量中查出〕g/cm3Ρm-所用密度g/cm3d 用下式表达式中:R-钻速m/h; N -转速r/min;W-钻压t;D-钻头直径mm;L-进尺m;T-钻时min 。
假设W的单位用KN( 千牛),则由于0.0547R N 一般小于1,所以在 d 中,R增大,则 d 减小,故 d 反映地层的压实状况与P。
压实差、孔隙多,地层压力大,P减小,钻速可增加。
运用d c指数求地层压力可按下述方法进展:(1)、列表,预备记录和计算表的内容包括:井深H,进尺L,钻时T,钻速R,转速N,井径D,钻压W,地层水密度ρ0,钻井液密度ρm 大,dc 地层压力PP 。
(2)、取点记录, 计算dc, 填入表内.在钻速慢的地层每1m-3m 取1 点,在钻速快的地层,可5、10 、15 、30m 取1 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储量计算的部分参数
地层压力 油气水分布特征 地层渗透率 流体性质及高压物性 油井产油能力
地层测试器模块化设计
标准地层测试器 电源模块 液压源模
块
单探针模 块
取样室
选择模块
义
为了克服管柱式分层测试技术的不足。我们引进
了电缆泵吸式地层分层压力测试取样器。该设备不仅
大大节约测试成本,缩短占井时间,而且井下封隔效
果好,资料符合率高。
套管井电缆泵抽式地层分层压力测试取样器 (CFT)
CFT
管
柱
管柱测试
测
试
与 测试成本高;
占井时间长;
测
试 的
井下封隔效果差,资料符合率低
电
液
上取 下
子
压
分 隔
样
分 隔
节
节
器筒 器
CFT的应用
直接获得的参数
地层压力 地层温度 井下流体分析 流体样品 流体电阻率
储量计算的部分参数
地层压力 油气水分布特征 地层渗透率 流体性质Hale Waihona Puke 高压物性 油井产油能力地质应用
1、中低孔隙探井测试。随着石油勘探的难度尽一步加大,一些中低孔隙地层也将列入开发行 列,这些层的特点是井下单层多,管控测试困难,应用该项技术将节约成本50%以上,时间 将节约80%以上。
推广应用
适应辽河油田勘探开发对取芯的要求,我公司于2010年购买了一 套钻进式井壁取芯器,首先在开发处首选了8口井。5月1日,我公司 在马古6-2进行了首次取芯,该井取芯深度4191米-4359米,层位 岩性为安山岩、玄武岩、杂色角砾岩,设计录取岩芯18颗,实取岩芯 18颗,取芯成功率100%。6月12日,我公司又在马古1-1进行了第 二井次取芯,该井取芯深度4690米-4850米,层位岩性为花岗岩, 设计录取岩芯20颗,实取岩芯20颗,取芯成功率100%。这两口井, 有12颗岩芯均取在了裂缝发育位置,岩芯裂缝处油性显示明显。此外 的其它岩芯,都非常完整,岩芯长度及直径均符合要求。随后我们又 分别在兴古7-19、兴古7-20、兴古9-5等3口井共设计取芯70颗, 实际完成取芯70颗,取芯成功率100%。取芯深度均在4000米5000米之间。截止目前,公司共在辽河油田取心47井次,取心7百 多颗。
RFT井下仪器技术指标
耐压:40Mpa;
耐温:175℃;
收拢仪器外径:φ75mm;
仪器总长:11.59米;
打开外径:φ112mm-405 mm; 仪器重量:160Kg;
推靠压力:25MPa;
泵抽压力:6MPa;
泵抽冲程:316.5毫升;
用电:380V
泵的流量:2.2升 / 分钟(双泵); 适用井眼:80-380mm;
技术的先进性和安全性
FCT(Formation Coring Tool)钻进式井壁取芯器由地面控制台和 井下取芯器两部分构成,井下采用单片机控制,信号传输和控制指令采 用载波技术,控制稳定可靠。数字显示各种工作参数,在地面就可以监 测井下岩芯的录取效果,做到了精确、直观。
岩芯颗粒大,呈圆柱体,可直观进行岩性、含油性分析。可直接送 岩电实验室进行岩性、电性、物性和含油性分析化验,求取饱和度、孔 隙度、渗透率以及M、N、A、B、F等参数。
比 较
不适合中低孔隙度地层。
CFT测试
测试成本低,每井次测试成本 在10万元左右。
占井时间短,每井次仅需要1020个小时;
井下封隔效果好,资料符合率 高;
不受地层孔隙度影响。
技术指标及结构
1、外径 102mm;2、耐温150℃ ; 3、耐压50MP; 4、纵向分辨率0.5 米;5、最大分层16米; 6、压力精度0.1%;7、含水率0~100%
三推靠臂技术,推靠力大,取芯器推靠井壁牢稳,防粘卡。并设计有 多种防粘卡、解卡的自救安全技术措施,确保取芯器在井下安全作业。
技术指标
电源
380VAC50Hz
耐温
200ºC
耐压
70Mpa
长度
7.5m
重量
198kg
仪器最大直径
127mm
适合井眼尺寸为
Φ150~Φ380mm
岩芯直径
25mm
岩芯长度
50mm
主要应用
1、建立地层压力剖面 ,计算压力梯度和地层流体密度,确定油气界面 或油水界面
压力梯度分析
现场分析
精细分析
建立地层压力剖面
测试产量 **万方/天
实例分析
地层压力(PSI) 深 度 (m)
y = 0.3935x + 5656.2 流体密度=0.277g/cm3
实例分析
气水界面 5830.78m
y = 1.502x - 807.22 流体密度=1.056g/cm3
**井测井解释图及RFT地层压力剖面图
某油田多井RFT综合油气藏评价
主要应用
2、利用压力测试数据获取储层的渗透性参数
球形流
半球形流
径向流
无因次压力导数
无因次时间
压力恢复法
球型流
(k/u) = 1856 (Q/m1)2/3 (φC0)1/3
钻进式井壁取芯器(FCT)
钻进式井壁取芯器(FCT)是为石油勘探开发
领域油气井制造的以测井电缆下放的新型地层钻
进式井壁取芯器,该仪器所钻取岩芯最大长度达
开
50mm,岩心直径25mm,取出的岩芯实时进行仪 器仓内密闭保存,岩芯岩性、流体几乎不受影响。
题
该技术对井壁任一岩层均可进行取芯,并能够对
意
取芯器井下工作状态的进行实时监控,取芯成功 率高,具有良好的推广应用价值。
校深垂直分辨率
0.2m
最大一次下井取颗数
25
四、核磁共振岩芯分析仪
为了迅速直观地给用户提供满意答案我们还配 备有核磁共振岩样分析仪,它可以迅速对取芯 样本的孔隙度、渗透率、饱和度和流体可动性 等参数进行分析,还能对T2截止值、弛豫时间 等核磁测井参数进行刻度 。
核磁共振与岩石物性的关系
1. 核磁信号的大小与岩芯孔隙度有关 2. 核磁信号的弛豫时间与岩石结构有密切关系
义
FCT (Formation Coring Tool)钻进式井 壁取芯器是采用机械液压驱动技术,将金刚石钻
头垂直井壁钻取岩心的工具,其技术性能达到国 外同类仪器先进水平。
钻进式井壁取芯器(FCT)
钻井取芯
取芯成本高
开 占井周期长 题 盲取 意 深度不准 义 取芯成功率高
岩芯质量好
钻壁取芯
地层测试器=压力传感器+泵抽+识别流体的传感器 由自然伽马确定深度; 通过封隔器将地层和泥浆封隔,利用泵抽抽取地层液体; 同时利用流体密度、含水等传感器判断流体的性质; 储样缸存储地层液体,一次下井可取两个不同层位的地 层原状液体; 在井下就能够确认取得的样品的性质,一但取得的样品 并非真实地层的样品,可以泵出重取,反复验证,直到取得 真实的地层样品为止。
二、套管井电缆泵抽式地层分层压力测试取样器 (CFT)
由于RFT仪器是用于裸眼井测试,对于完井以后
地层分层压力、温度、含油性能等参数的了解, 当
地 质
前的测试技术主要为管柱式分层测试技术(试油技 术)。该项技术存在以下几个缺点:1、每测试一层 均要起下管柱多次,耗时长,耗资大。 2、井下分隔
意 器密封成功率低。
1、取芯成功率低。致密岩层(如花岗岩),取芯器常常打不进井壁,取不出 岩芯;松软岩层,由于取芯容器裸露在仪器外部,仪器在上提过程中岩芯常常脱 落,很难得到岩芯。
2岩芯利用价值低。爆破取芯在取芯的过程中受爆破力的影响,破坏了岩芯原 来的物性结构,取出的岩芯通常是破碎的岩屑,因此,根据该岩芯分析的岩 性与地层实际岩层性质都存在一定差异。同时,由于取出的岩芯很薄,通常 在3-5mm,取芯容器裸露在仪器外部,仪器在上提过程中岩芯受井筒泥浆侵 入,岩芯中的原有流体很容易被井筒流体替代,在进行岩芯分析时,需要对 岩芯中的流体进行清洗替换,然后再模拟地层原始流体进行分析,其结果与 地层流体实际差异较大。
地层测试器的应用
原始油藏(勘探阶段)
确定流体界面 确定地下流体性质 地层对比及连通性 储层参数计算 分析油藏生产动态 钻井时优化泥浆密度
已开发油藏(开发阶段)
纵横向封隔特征 评估垂直渗透率 探测潜在的遗漏层 确定井间连通性 判断流体界面的移动情况
地层测试器的应用
获得的参数
地层压力测试及取芯技术介绍
盘锦辽河油田科技实业有限公司 二0一一年七月
目录
一、重复式电缆地层测试器(RFT) 二、套管井电缆泵抽式地层压力测试取样器
(CFT) 三、钻进式井壁取芯器(FCT) 四、核磁共振岩芯分析仪
一、重复式电缆地层测试器(RFT)
重复式电缆地层测试器是在裸眼井获取地层压力、地层 流体和流体性质的一种电缆测井仪器
取芯成本低 占井周期短 针对油层有目的地取芯 深度准确 取芯成功率高 岩芯质量好
钻进式井壁取芯器(FCT)
火工取芯
取芯成本低
开 占井周期短 题 针对油层有目的地取芯 意 深度准确 义 取芯成功率低
岩芯质量差
钻壁取芯
取芯成本低 占井周期短 针对油层有目的地取芯 深度准确 取芯成功率高 岩芯质量好
径 向 流
实例分析
(kh/u) = 88.1562 (Q/m2)
推广应用
适应辽河油田勘探开发特别是小井眼 井、侧钻井开发的需要,我公司特委托研 制了这套小井眼测试器,近年来,我公司 利用该项技术共为辽河油田测井228井次, 测压3778个层位,取样466桶。为辽河 油田的勘探开发提供了宝贵的地质数据。
。
技术特点