详解 开关电源保护电路实例

合集下载

UC3843开关电源经典讲解

UC3843开关电源经典讲解

开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器〔EMI〕、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路:1、AC输入整流滤波电路原理:防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进展保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,假设电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1〔热敏电阻〕就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小〔RT1是负温系数元件〕,这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯洁的直流电压。

假设C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解一、 开关电源的电路组成[/b]::开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、 输入电路的原理及常见电路[/b]::1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

24V开关电源的几种保护电路

24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

开关电源环路设计及实例详解

开关电源环路设计及实例详解

开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。

开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。

二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。

2. 整流桥:将输入交流电转换为直流电信号。

3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。

4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。

5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。

三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。

2. 选择合适的变压器。

3. 设计整流桥和直流滤波器。

4. 设计开关变换器,包括选择合适的开关管和控制电路。

5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。

6. 进行整个电路的仿真和优化。

7. 进行实际电路的搭建和调试。

四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。

1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。

2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。

通过计算得到变压比为1:2。

3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。

4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。

控制信号通过脉冲宽度调制(PWM)技术进行控制。

同时,在输入端加入输入滤波器进行滤波处理。

5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。

同时,加入输出滤波电容进行滤波处理。

6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。

最新ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解整理

最新ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解整理

用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1?控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定?{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号?本例为此种工作方式,故将{13}脚与{14}脚相连接?比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端?比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平?494内的比较放大器有四个,为叙述方便,在图1中用小写字母a?b?c?d来表示?其中a是死区时间比较器?因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路?两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候?因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路?为防止这样的事情发生,494设置了死区时间比较器a?从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚?A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路?死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了?494内部还有3个二输入端与门(用1?2?3表示)?两个二输入端与非门?反相器?T触发器等电路?与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平?反相器的作用是把输入信号隔离放大后反相输出?与非门则相当于一个与门和一个反相器的组合?T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次?如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平?比较器?与门?反相器?T触发器以及锯齿波振荡器及{8}脚?{11}脚输出的波形见图2?339是四比较器集成电路?按管脚的顺序把内部四个比较器设为A?B ?C ?D 比较器?494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能?过流保护过压保护一?产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约+5V),主机在获得此信号后才开始工作?接通电源时,要求PW-OK信号比±5V?±12V?+3.3V电源延迟数百毫秒才产生,关机时PW-OK信号应比直流电源先消失数百毫秒,以便主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘?ATX电源接通市电后,辅助电源立即工作?一方面输出+5VSB电源,同时向494的{12}脚提供十几伏到二十多伏的直流电源?494从{14}脚输出+5V基准电源,锯齿波振荡器也开始起振工作?若主机未开机,PS-ON信号为高电平,经R37使339的B比较器{6}脚亦为高电平,因电阻R37小于R44,{6}脚电平高于{7}脚电平,B比较器输出端{1}脚输出低电平,经D36的钳位作用,A比较器的反相端{4}脚亦为低电平,其电平低于同相端{5}脚的电平,输出端{2}脚呈高电平,经R41使494的{4}脚为高电平,故494内部的死区时间比较器a输出低电平,与门1也因此输出低电平并进而使与门2和与门3输出低电平,封锁了振荡器的输出,{8}脚?{11}脚无脉冲输出,ATX电源无±5V?±12V?+3.3V电源输出,主机处于待机状态?因+5V?+12V电源输出为零,经电阻R15?R16使494的{1}脚电平亦为零,494的c比较器的输出端{3}脚输出亦为零,经R48使339的{9}脚亦为零电平,故339的C比较器的输出端{14}脚为零电平?另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平?因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作?开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35?D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定?正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定?PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}?{11}脚输出脉冲信号,ATX电源向主机输出±5V ?±12V?+3.3V电源?此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响?494的{1}脚从+5V?+12V 经取样电阻R15?R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作?关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平?在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态?上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要?此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平?二?稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15?R16与+5V?+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高?当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升?由于494内的放大器增益很高,故稳压精度很好?从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法?如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大?要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69?R35来降低输出电压?三?过流保护过流保护的原理是基于负载愈大,Q3?Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54?R55并联电阻与R51?R56?R58等组成的分压电路送到494的{16}脚?随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小?另外,从R56?R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V?±12V?+3.3V电源的输出,达到过流及短路保护的目的?需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V?±12V?+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V?+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机?四?过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚?若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V?±12V? +3.3V电源的输出,达到过电压保护的目的?正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五?欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚?若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护?二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度?六?电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的?正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)?若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出?因此ATX电源出了故障,若电源的整流?滤波?逆变以及辅助电源均完好,则要检查339的{4}?{5}脚的电平?若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态?下一步则找出是什么原因使电源进入了保护状态?可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路?另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上?再沿着这条支路往下查,很快就可以把故障排除?下面通过两个实例来加以说明?1.一台SLPS-250ATXC电源的输出电压偏低?空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降?电源是采用TL494及LM339集成电路的典型ATX电路?检查494的{4}脚电压为+2.6V?电路似乎处于保护状态?但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解?试着把494的第{4}脚接地,电源立即输出正常?{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路?用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了?甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作?这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V?但电源要用“天线”才能工作,说明还有故障未找到?再检查339的{4}脚与{5}脚的电压,{5}脚电压为 2.4V,{4}脚的电压为 1.2V,输出端{2}脚的电压为 2.9V?(这部分电路见图3)?但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试?在断开c支路以后,电源就正常了?沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了?再检查+3.3V电源原来的滤波电容,发现已经失效?更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决?为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态?从+20V电源经R3?D1 ?R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是 2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是 2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在 2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是 2.6V了?在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约 1.8V的电压输出?解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了?经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了?而R2电阻的改动,也不会影响电源的过载保护性能?至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC 电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)?为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡?{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了?同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了?此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出?2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载?检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因?在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为 1.5V,约是+5VSB挡线圈电压的 1.7倍?电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示?由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了?由此说明T3脉冲变压器线圈4的匝数少了?拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝?重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变?绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除?从故障现象看,可能是工厂生产时将变压器装错了?。

开关电源的各种过压保护电路

开关电源的各种过压保护电路

开关电源的各种过压保护电路开关电源输出过压保护电路,有通过控制自身电源来调节的,也有防止外部电压过高带来的电源损伤,自身调节一般是指,过压电路是在反馈环路出现问题的时候,控制输出电压不至于太高,或者是关闭开关电源控制,来避免输出电解电容与后级的用电设备损坏。

那我们就要知道当过压时,是限制电压不要超过一个电压还是要求关闭电源。

只有知道了要求后就根据要求来设计电路。

图1是输出保护电路的一种,这种电路应用非常多,他是用TL431与光耦的搭配,靠光耦的导通来控制原边的控制芯片停机,实现过于保护,的他的好处是过压保护电压精度高,一般应用到后级需要严格控制电源的电源。

他的成本是比较高的。

图2也是一种输出保护电路,这种电路就是在上一个电路的基础上进行了变动,原理是本来利用TL431来检测输出电压的电路改成了一个稳压管,稳压管的精度是没有TL431高的,但是价格比TL431便宜,这也就是他的优势,缺点是他的精度不高,对于这种电路一般应用在没有要求具体多少电压过压的电源,就是在出现过压的时候起到一个保护电解电容的作用,不至于电解电容坏。

上面的两种方法,我们一直看到有一个光耦的存在,这是应为我们的电源是隔离的原因,但是光耦的价格也是不便宜的。

如果不需要过压精度很高,那么我们是不是可以想办法吧光耦去除,而且是能检测输出电压的办法,是不是最好了,那有什么好的办法了,隔离不用光耦,我们是不是就想到用互感器等磁芯器件,但是这又违背了价格便宜的问题,最好是在不增加其他器件的基础上就能实现过压保护功能。

隔离电源我们都会有一个隔离变压器,这是每一个开关电源都有的,那么我们是不是可以利用这一个开关变压器来实现,我们知道电源是有VCC绕组,我们能不能用VCC绕组来实现过压保护了,肯定是可以的,只是精度与一致性不好,但是价格便宜,如果在你的接受范围内的话,是不是很好。

那么就有了下面的电路图,下面Latch脚是芯片检测过压的脚。

上面的三种电路都是对于电源自身反馈环路有问题的时才有作用,那要是输出电压被外电压强制提高怎么办了,很多的时候就想到了,看下面的图,是不是增加了一个TVS,这一个TVS 只能够钳位过压非常短的时间,要是长时间的,可能会坏,但是他的价格便宜。

开关电源安全保护电路原理图解

开关电源安全保护电路原理图解对于开关电源而言, 安全、可靠性历来被视为重要的性能之一. 开关电源在电气技术指标满足电子设备正常使用要求的条件下, 还要满足外界或自身电路或负载电路出现故障的情况下也能安全可靠地工作. 为此, 须有多种保护措施. 对保护电路的特点分析, 对存在不足期待克服, 希望设计出更安全、更可靠的保护电路。

1 浪涌电流电路剖析浪涌电流是由于电压突变所引起. 如电子设备在第一次加电压时, 由于大容量电源电容器充电引起的涌入初始电流开机浪涌电流; 又如直击雷、感应雷沿着电源线进入开关电源的突变电压所产生瞬态电流雷浪涌电流. 浪涌电流上升时间非常快, 持续时间非常短, 破坏作用非常大. 为防止或减轻浪涌电流的破坏, 设置抑制浪涌电流或将浪涌电流转移到地线等方式来保护开关电源避免浪涌电流的损害。

1. 1 启动限流保护开关电源的初级整流电路有大容量滤波电容,开机瞬间整流管向这些大电容充电, 使整流管瞬时电流超过额定值. 为减小开机启动限流( 浪涌电流) ,开关电源通常都设有抗冲击电路. 如图1 电路, 在开机瞬间, 开关电源变压器的3、4 绕组电压为0V, VD5截止, 晶闸管VD6 的G、K 极间电压为0V, VD6 截止.充电电流路径: AC220V→VD1- 4 正极→大电容C1→地→R2→VD1- 4 负极. 由于R2 有阻碍大电流作用( 一般设为3. 3Ω) , 因此能有效限制开机浪涌电流。

开关电源正常工作后, 开关电源变压器的1、2绕组上产生感应电压, 对C2 充电( 充电时间常数约等于R3×C2) , 使VD6 导通, 整流电流不再经R2, 而是经VD6 的A、K 极返回整流桥VD1- 4 的负极. 也就是说, 在正常工作状态, VD6 将R2 短路, 防止R2产生功耗.R2 仅在开机瞬间起作用。

用晶闸管作启动限流保护安全可靠, 但电路比较复杂些, 从电路成本和电路简捷等角度来说用温控电阻作启动限流保护, 它既经济又简单更安全可靠, 如图3。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器〔EMI〕、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进展保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,假设电流过大,F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1〔热敏电阻〕就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小〔RT1是负温系数元件〕,这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯洁的直流电压。

假设C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源,输出端限流保护,输出过压保护电路的原理

开关电源,输出端限流保护,输出过压保护电路的原理输出端限流保护上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS(锰铜丝)两端电压上升,U1③脚电压高于②脚基准电压,U1①脚输出高电压,Q1导通,光耦发生光电效应,UC3842①脚电压降低,输出电压降低,从而达到输出过载限流的目的。

二、输出过压保护电路的原理输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。

当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。

应用最为普遍的过压保护电路有如下几种:1、可控硅触发保护电路如上图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。

Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。

当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。

2、光电耦合保护电路如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。

Q1基极得电导通,3842的③脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始。

3、输出限压保护电路输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低,稳压管不导通,UC3842③电压降低,输出电压升高。

周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。

4、输出过压锁死电路图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc 电压经R1、Q1、R2使Q2始终导通,UC3842③脚始终是高电平而停止工作。

在图B中,UO升高U1③脚电压升高,①脚输出高电平,由于D1、R1的存在,U1①脚始终输出高电平Q1始终导通,UC3842①脚始终是低电平而停止工作。

史上最全解析:开关电源各功能电路

史上最全解析:开关电源各功能电路应用最为普遍的过压保护电路有如下几种:1、可控硅触发保护电路如上图所示,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。

Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。

当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。

2、光电耦合保护电路如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。

Q1基极得电导通, 3842的③脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始。

3、输出限压保护电路输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低,稳压管不导通,UC3842③电压降低,输出电压升高。

周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。

4、输出过压锁死电路图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc 电压经R1、Q1、R2使Q2始终导通,UC3842③脚始终是高电平而停止工作。

在图B中,UO升高U1③脚电压升高,①脚输出高电平,由于D1、R1的存在,U1①脚始终输出高电平Q1始终导通,UC3842①脚始终是低电平而停止工作。

正反馈?九、功率因数校正电路(PFC)1、原理示意图2、工作原理输入电压经L1、L2、L3等组成的EMI滤波器,BRG1整流一路送PFC电感,另一路经R1、R2分压后送入PFC控制器作为输入电压的取样,用以调整控制信号的占空比,即改变Q1的导通和关断时间,稳定PFC输出电压。

L4是PFC电感,它在Q1导通时储存能量,在Q1关断时施放能量。

D1是启动二极管。

D2是PFC整流二极管,C6、C7滤波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详解 开关电源保护电路实例
程伟 李定宣
电源网讯
摘要:为使开关电源在恶劣环境及突发故障状况下安全可靠,
提出了几种实用的保护电路,并对电路的工作原理进行了详尽
分析。

关键词:开关电源;保护电路;可靠性
1 引言
评价开关电源的质量指标应该是以安全性、可靠性为第一原
则。在电气技术指标满足正常使用要求的条件下,为使电源在
恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保
护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、
短路、缺相等保护电路。

2 开关电源常用的几种保护电路
2.1 防浪涌软启动电路
开关电源的输入电路大都采用电容滤波型整流电路,在进线电
源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间
会形成很大的浪涌电流,特别是大功率开关电源,采用容量较
大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间
如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开
关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上
闸。上述现象均会造成开关电源无法正常工作,为此几乎所有
的开关电源都设置了防止流涌电流的软启动电路,以保证电源
正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。
在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻
R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%
额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸
管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源
处于正常运行状态。

图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。
电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对
滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电
源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,
当C2上的电压达到继电器K1的动作电压时,K1动作,其触
点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限
流的延迟时间取决于时间常数(R2C2),通常选取为0.3~
0.5s。为了提高延迟时间的准确性及防止继电器动作抖动。

2.2 过压、欠压及过热保护电路
进线电源过压及欠压对开关电源造成的危害,主要表现在器件
因承受的电压及电流应力超出正常使用的范围而损坏,同时因
电气性能指标被破坏而不能满足要求。因此对输入电源的上限
和下限要有所限制,为此采用过压、欠压保护以提高电源的可
靠性和安全性。温度是影响电源设备可靠性的最重要因素。根
据有关资料分析表明,电子元器件温度每升高2℃,可靠性下
降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为
了避免功率器件过热造成损坏,在开关电源中亦需要设置过热
保护电路。

图4 过压、欠压、过热保护电路
图4是仅用一个4比较器LM339及几个分立元器件构成的过
压、欠压、过热保护电路。取样电压可以直接从辅助控制电源
整流滤波后取得,它反映输入电源电压的变化,比较器共用一
个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整
R1可以调节过、欠压的动作阈值。N1.3为过热比较器,RT为
负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开
关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7
的阻值,使N1.3在设定的温度阈值动作。N1.4用于外部故障
应急关机,当其正向端输入低电平时,比较器输出低电平封锁
PWM驱动信号。由于4个比较器的输出端是并联的,无论是过
压、欠压、过热任何一种故障发生,比较器输出低电平,封锁
驱动信号使电源停止工作,实现保护。如将电路稍加变动,亦
可使比较器输出高电平封锁驱动信号。

2.3 缺相保护电路
由于电网自身原因或电源输入接线不可靠,开关电源有时会出
现缺相运行的情况,且掉相运行不易被及时发现。当电源处于
缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成
损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。
检测电网缺相通常采用电流互感器或电子缺相检测电路。由于
电流互感器检测成本高、体积大,故开关电源中一般采用电子
缺相保护电路。图5是一个简单的电子缺相保护电路。三相平
衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。
当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比
较,输出低电平,封锁驱动信号。比较器的基准可调,以便调
节缺相动作阈值。该缺相保护适用于三相四线制,而不适用于
三相三线制。电路稍加变动,亦可用高电平封锁PWM信号。

图5 三相四线制的缺相保护电路
图6是一种用于三相三线制电源缺相保护电路,A、B、C缺任
何一相,光耦器输出电平低于比较器的反相输入端的基准电
压,比较器输出低电平,封锁PWM驱动信号,关闭电源。比较
器输入极性稍加变动,亦可用高电平封锁PWM信号。这种缺相
保护电路采用光耦隔离强电,安全可靠,RP1、RP2用于调节
缺相保护动作阈值。
图6 三相三线制的缺相保护电路
2.4 短路保护
开关电源同其它电子装置一样,短路是最严重的故障,短路保
护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘
栅双极型晶体管)兼有场效应晶体管输入阻抗高、驱动功率小
和双极型晶体管电压、电流容量大及管压降低的特点,是目前
中、大功率开关电源最普遍使用的电力电子开关器件。IGBT
能够承受的短路时间取决于它的饱和压降和短路电流的大小,
一般仅为几μs至几十μs。短路电流过大不仅使短路承受时
间缩短,而且使关断时电流下降率di/dt过大,由于漏感及引
线电感的存在,导致IGBT集电极过电压,该过电压可在器件
内部产生擎住效应使IGBT锁定失效,同时高的过电压会使
IGBT击穿。因此,当出现短路过流时,必须采取有效的保护
措施。为了实现IGBT的短路保护,则必须进行过流检测。适
用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检
测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出
去控制驱动信号的关断;或者采用间接电压法,检测过流时
IGBT的电压降Vce,因为管压降含有短路电流信息,过流时
Vce增大,且基本上为线性关系,检测过流时的Vce并与设定
的阈值进行比较,比较器的输出控制驱动电路的关断。在短路
电流出现时,为了避免关断电流的di/dt过大形成过电压,导
致IGBT锁定无效和损坏,以及为了降低电磁干扰,通常采用
软降栅压和软关断综合保护技术。在检测到过流信号后首先是
进入降栅保护程序,以降低故障电流的幅值,延长IGBT的短
路承受时间。在降栅动作后,设定一个固定延迟时间用以判断
故障电流的真实性,如在延迟时间内故障消失则栅压自动恢
复,如故障仍然存在则进行软关断程序,使栅压降至0V以下,
关断IGBT的驱动信号。由于在降压程序阶段集电极电流已减
小,故软关断时不会出现过大的短路电流下降率和过高的过电
压。采用软降栅压及软关断栅极驱动保护,使故障电流的幅值
和下降率都能受到限制,过电压降低,IGBT的电流、电压运
行轨迹能保证在安全区内。在设计降栅压保护电路时,要正确
选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),
降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,
由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅
极可快些,不必采用软关断;如果降栅压幅度较小(比如5V
以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用
软关断,以避免过电压发生。

为了使电源在短路故障状态不中断工作,又能避免在原工作频
率下连续进行短路保护产生热积累而造成IGBT损坏,采用降
栅压保护即可不必在一次短路保护立即封锁电路,而使工作频
率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故
障消除后即恢复正常工作。

3 结语
开关电源保护功能虽属电源装置电气性能要求的附加功能,但
在恶劣环境及意外事故条件下,保护电路是否完善并按预定设
置工作,对电源装置的安全性和可靠性至关重要。验收技术指
标时,应对保护功能进行验证。

开关电源的保护方案和电路结构具有多样性,但对具体电源装
置而言,应选择合理的保护方案和电路结构,以使得在故障条
件下真正有效地实现保护。文中所述的保护电路可以灵活组合
使用,以简化电路结构和降低成本。(电源网原创转载请注明
出处)

相关文档
最新文档