人脸检测的基本原理
如何进行人脸识别和身份验证

如何进行人脸识别和身份验证人脸识别和身份验证技术已经成为现代生活中不可或缺的一部分。
它们被广泛应用于各个领域,如支付系统、手机解锁、安全通行、追踪犯罪嫌疑人等。
本文将介绍人脸识别和身份验证的基本原理、常见应用以及一些潜在的问题。
一、人脸识别的基本原理人脸识别技术是一种通过对人脸图像进行特征提取和匹配的技术,以识别和验证个体身份。
它的基本过程包括四个步骤:图像获取、人脸检测、人脸特征提取和人脸匹配。
1.图像获取:通常使用摄像头、相机或其他图像设备来获取人脸图像。
这些图像可以是静态图像或视频流。
2.人脸检测:在图像中检测出人脸的位置。
常见的方法有Haar特征检测、人工神经网络等。
这一步通常涉及到人脸姿势、光照变化和遮挡的问题。
3.人脸特征提取:从人脸图像中提取出具有识别特征的信息。
这些特征通常是人脸的几何和纹理特征,如眼睛的位置、鼻子的形状、嘴巴的轮廓等。
4.人脸匹配:将提取到的人脸特征与数据库中的已知人脸特征进行比对。
比对方法通常是计算两个特征向量之间的相似度或距离。
如果相似度高于一定阈值,则认为匹配成功,否则认为匹配失败。
二、身份验证的基本原理身份验证是一种通过验证个体的身份证明来确定其真实性和合法性的过程。
在人脸识别中,身份验证是指将识别到的人脸与事先已知的身份进行比对,以确认是否匹配。
身份验证的基本过程一般可以分为以下几个步骤:1.注册:用户首先需要在系统中注册自己的人脸信息。
这一步骤包括拍摄人脸照片、提取特征并存储到数据库中。
2.识别:当用户需要进行身份验证时,系统会获取用户当前的人脸图像,并提取特征。
3.比对:系统将提取到的人脸特征与数据库中已注册的人脸特征进行比对。
如果相似度高于事先设定的阈值,则认为是同一人,验证成功。
4.输出结果:系统根据比对结果返回验证成功或验证失败的信息。
三、人脸识别和身份验证的应用人脸识别和身份验证技术已经在各个领域得到广泛应用。
1.支付系统:在支付宝等移动支付平台上,用户可以使用人脸识别进行支付,提高支付的安全性和便利性。
人脸检测原理

人脸检测原理
人脸检测是计算机视觉领域中的一个重要研究方向,它主要应用于图像识别、安防监控、人脸识别等领域。
人脸检测的原理是利用计算机视觉和图像处理技术,通过对图像中的人脸进行特征提取和匹配,从而实现对人脸的自动识别和检测。
人脸检测的原理主要包括以下几个方面:
1. 图像预处理。
在进行人脸检测之前,首先需要对图像进行预处理,包括图像的灰度化、尺寸归一化、去噪等操作。
这些预处理操作可以提高人脸检测的准确性和鲁棒性。
2. 特征提取。
特征提取是人脸检测的关键步骤,它通过对图像中的人脸特征进行提取,如人脸的轮廓、眼睛、鼻子、嘴巴等特征点,从而实现对人脸的定位和识别。
常用的特征提取方法包括Haar特征、HOG特征、LBP特征等。
3. 分类器训练。
在特征提取之后,需要利用机器学习算法对提取的特征进行分类器的训练,以实现对人脸的准确检测。
常用的分类器包括SVM、Adaboost、神经网络等。
4. 人脸检测。
经过以上步骤,就可以利用训练好的分类器对图像中的人脸进行检测和识别。
通过对图像中的特征点进行匹配和比对,最终实现对人脸的自动检测和定位。
5. 算法优化。
为了提高人脸检测的准确性和速度,还可以对人脸检测算法进行优化,如采用级联分类器、快速人脸检测算法等,以实现对人脸的快速、准确检测。
总结起来,人脸检测是一项涉及计算机视觉、图像处理、机器学习等多个领域的综合技术,其原理主要包括图像预处理、特征提取、分类器训练、人脸检测和算法优化等步骤。
通过不断的技术创新和算法优化,人脸检测技术在安防监控、人脸识别等领域具有广阔的应用前景。
人脸识别简单原理

人脸识别简单原理一、人脸检测人脸识别的第一步是检测图像中的人脸。
这一步需要从复杂的背景中准确找出人脸的位置。
通常,这通过使用卷积神经网络(CNN)来实现。
CNN是一种深度学习算法,擅长于处理图像数据。
通过训练,CNN可以学习到人脸的特征,从而在新的图像中准确检测出人脸。
二、特征提取在检测到人脸后,下一步是提取人脸的特征。
这些特征是区分不同人脸的关键。
常用的特征提取方法有特征脸(Eigenfaces)、fisherfaces和深度学习方法。
深度学习方法,特别是卷积神经网络(CNN),因其强大的特征学习能力,成为目前最常用的特征提取方法。
三、特征匹配在提取到人脸特征后,需要将这些特征与数据库中的人脸特征进行匹配,以识别出人脸的身份。
这一步通常使用距离度量来完成,如欧氏距离。
距离越小,表示两张人脸越相似。
当距离小于某个阈值时,可以认为两张人脸属于同一个人。
四、活体检测为了防止人脸识别系统被照片或视频攻击,活体检测是必不可少的一步。
活体检测可以通过多种方式实现,如要求用户完成特定的动作,或者使用红外相机来检测人脸的温度和纹理。
五、隐私保护人脸识别技术涉及到个人隐私,因此隐私保护是至关重要的。
这可以通过多种方式实现,如只存储人脸的特征而不是原始图像,或者使用加密技术来保护数据的安全。
人脸识别简单原理概述:人脸识别技术是一种通过分析人脸特征来自动识别个人身份的技术。
它广泛应用于安全监控、身份验证和智能交互等领域。
本文将详细阐述人脸识别的基本原理,包括人脸检测、特征提取、特征匹配等关键步骤,并讨论活体检测和隐私保护的重要性。
引言:步骤详述:1. 人脸检测① 使用卷积神经网络(CNN)进行检测卷积神经网络(CNN)是一种深度学习算法,特别适用于图像处理。
通过训练,CNN能够从复杂的背景中准确识别出人脸。
② 运用Haar特征分类器Haar特征分类器是一种基于机器学习的方法,通过训练大量正负样本,学习到人脸的典型特征,从而实现人脸检测。
人脸识别技术

人脸识别技术人脸识别技术是一种通过人脸图像或视频进行自动识别的生物识别技术。
它已经广泛应用于安全系统、手机解锁、自动门禁等领域,也被用于犯罪侦查、边境安全等方面。
本文将探讨人脸识别技术的原理、应用以及面临的挑战。
一、人脸识别技术的原理人脸识别技术是通过识别人脸的唯一性来进行身份认证或辨别的一种技术。
其基本原理包括人脸检测、特征提取和匹配三个步骤。
1. 人脸检测:通过图像处理技术,将输入的图像中的人脸部分进行定位和提取。
这一步骤通常使用一些特定的算法来检测图像中的脸部特征,如皮肤颜色、眼睛位置等。
2. 特征提取:在得到人脸图像后,需要从中提取出一些具有代表性的特征,用于后续的比对和识别。
常见的特征包括脸部的轮廓、眼睛、鼻子和嘴巴等。
3. 匹配:在特征提取的基础上,将输入的人脸特征与数据库中已有的特征进行比对,判断是否匹配。
匹配的算法包括简单的欧氏距离计算、神经网络等。
二、人脸识别技术的应用人脸识别技术在各个领域都有着广泛的应用。
1. 安全系统:许多公司和机构使用人脸识别技术来加强其安全系统。
通过将识别的人脸与数据库中的人脸进行比对,可以实现员工或居民的身份识别,进一步加强门禁、考勤等措施的安全性。
2. 手机解锁:现在的智能手机普遍使用人脸识别技术来解锁。
用户只需将面部对准摄像头,系统就可以自动辨识出用户的身份,并解锁手机。
3. 电子支付:一些支付系统采用人脸识别技术来进行支付验证,提高支付的安全性和便利性。
用户只需将脸部对准手机摄像头,即可完成支付。
4. 犯罪侦查:警方利用人脸识别技术来寻找罪犯,通过与现有的人脸数据库进行比对,辅助侦破案件和追捕逃犯。
5. 边境安全:在边境口岸和机场等地,人脸识别技术可以识别不法分子和潜在危险人员,加强国家边境的安全监控。
三、人脸识别技术面临的挑战尽管人脸识别技术在很多领域有着广泛的应用,但它仍然面临一些挑战。
1. 数据隐私:使用人脸识别技术需要收集和存储大量的人脸数据,这涉及到个人隐私的问题。
人脸识别技术的基本原理和使用方法

人脸识别技术的基本原理和使用方法人脸识别技术是一种通过识别和验证人脸特征来对个体进行身份确认的技术。
随着科技的进步和应用场景的扩大,人脸识别技术被广泛应用于安全、生活便捷等领域。
本文将介绍人脸识别技术的基本原理和使用方法。
一、基本原理人脸识别技术是基于计算机视觉和模式识别的原理。
其基本原理可以归纳为以下几点:1. 人脸采集:首先,需要获取人脸图像。
这可以通过摄像头、照片或者视频来实现。
摄像头及其他设备将人脸图像转换为数字化的形式,以供后续处理。
2. 人脸检测与定位:接下来,系统需要检测和定位人脸。
这是通过计算机视觉技术实现的。
通常,系统会检测图像中的脸部特征,如眼睛、鼻子、嘴巴等,然后利用数学模型和算法确定人脸的位置和大小。
3. 人脸预处理:为了提高识别的准确性,还需要对人脸图像进行预处理。
这包括对图像进行灰度化、噪声过滤、对比度调整等操作,以便提取出更明显的人脸特征。
4. 特征提取:接下来,系统将提取人脸图像中的关键特征。
这些特征可以是人脸的形状、纹理或者特定的标志点(如眉毛、眼角等)。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)等。
5. 特征匹配:最后,系统会将提取出的特征与已知人脸数据库中的特征进行比对。
这可以通过计算两个特征之间的距离或相似度来实现。
系统会找到与输入的人脸最相似的数据库中的人脸,并给出识别结果。
二、使用方法人脸识别技术的使用方法主要分为注册阶段和验证阶段。
1. 注册阶段:在注册阶段,需要采集用户的人脸图像并进行特征提取。
一般情况下,系统会要求用户将头部保持在特定位置,然后进行人脸图像的采集。
系统会根据采集到的图像提取特征,并将其存储到数据库中。
这些特征将作为用户的身份证明。
2. 验证阶段:在验证阶段,用户需要提供自己的人脸信息进行身份验证。
用户可以通过摄像头、照片或视频等方式输入人脸信息。
系统会先进行人脸检测和定位,然后提取输入人脸的特征。
接着,系统将提取到的特征与数据库中的特征进行比对,判断输入人脸的身份是否与数据库中的匹配。
dnn人脸检测原理

dnn人脸检测原理
1. DNN人脸检测的基本原理
DNN人脸检测是一种基于深度神经网络的人脸检测技术。
其基本原理是通过训练一个具有多层神经元的神经网络,让其能够自动学习人脸的特征,并在输入图像中检测出人脸的位置和大小。
2. DNN人脸检测的训练过程
DNN人脸检测的训练过程分为两个阶段:网络训练和模型优化。
在网络训练阶段,需要使用大量的人脸图像数据对网络进行训练,以使其能够学习到人脸的特征。
在模型优化阶段,需要对已经训练好的网络进行优化,以提高其检测精度和性能。
3. DNN人脸检测的应用场景
DNN人脸检测技术广泛应用于人脸识别、人脸跟踪、人脸表情分析等领域。
在人脸识别方面,DNN人脸检测可以用于快速准确地检测出人脸,并提取出人脸的特征,从而实现人脸识别的功能。
4. DNN人脸检测的优缺点
DNN人脸检测技术的优点在于其检测速度快、准确率高、适应性强等特点。
然而,DNN人脸检测技术也存在一些缺点,如对计算资源的要求较高,需要大量的训练数据等。
5. DNN人脸检测的发展趋势
随着人工智能技术的不断发展,DNN人脸检测技术也在不断地发展和完
善。
未来,DNN人脸检测技术将更加普及和成熟,应用范围也将更加广泛。
人脸关键点检测 经典算法

人脸关键点检测经典算法人脸关键点检测经典算法是计算机视觉领域的一个重要研究方向,它旨在识别和定位人脸图像中的关键点,如眼睛、鼻子、嘴巴等。
本文将介绍人脸关键点检测的基本原理以及三种经典算法:传统机器学习方法、深度学习方法和级联回归方法。
通过分析比较这些算法的优劣势,我们能够更好地理解人脸关键点检测技术的发展和应用。
一、人脸关键点检测基本原理人脸关键点检测的基本原理是将人脸图像中的关键点位置信息映射到特定的坐标系中。
这样一来,我们就可以通过机器学习或深度学习算法来训练模型,使其能够自动识别和定位这些关键点。
具体来说,人脸关键点检测的基本步骤包括以下几个方面:1. 数据准备:从人脸图像或视频中收集一系列标注好的训练样本,其中包含了关键点的位置信息。
2. 特征提取:将人脸图像转换成计算机可以理解的特征向量。
常用的特征包括灰度直方图、梯度直方图和局部二值模式等。
3. 模型训练:使用机器学习或深度学习算法对提取的特征进行训练,以建立关键点检测模型。
4. 模型测试和优化:使用测试集评估模型的性能,并根据需要对模型进行调整和优化。
二、传统机器学习方法传统机器学习方法在人脸关键点检测中有着较长的历史。
常用的传统机器学习方法包括支持向量机(SVM)、随机森林(RandomForest)和神经网络等。
在传统机器学习方法中,特征提取是一个关键问题。
基于传统机器学习方法的人脸关键点检测通常使用手工设计的特征表示,如HOG(Histogram of Oriented Gradients)、SIFT(Scale-Invariant Feature Transform)和SURF(Speeded Up Robust Features)等。
其中,HOG是一种常用的特征表示方法,它通过计算图像中不同方向上梯度的直方图来描述图像的纹理和边缘信息。
SIFT和SURF 则是基于图像局部特征的表示方法,它们可以在尺度、旋转和光照变化下保持特征的稳定性。
python人脸检测及颜值打分涉及的知识点

一、人脸检测1.1 人脸检测的定义和作用人脸检测是指利用计算机视觉技术对图像或视瓶中的人脸进行自动检测和定位的过程。
其作用是通过对人脸的特征进行提取和识别,实现自动化的人脸识别、表情分析、面部特征分析等应用。
1.2 人脸检测的基本原理人脸检测的基本原理主要是利用计算机视觉和图像处理技术,结合人脸的特征进行图像的特征提取和分类识别,其中包括模式匹配、几何特征分析、机器学习和深度学习等算法。
1.3 人脸检测的技术难点人脸检测的技术难点包括光照、姿态、表情、遮挡等因素对人脸特征的干扰,以及对不同人种、芳龄、性莂等特征的识别和差异化处理。
二、颜值打分2.1 颜值打分的定义和应用颜值打分是指利用计算机视觉和人工智能技术对人脸进行美学评价和打分的过程。
其应用主要包括美颜相机、上线视瓶通话、社交评台等领域,为用户提供美化和个性化服务。
2.2 颜值打分的评价指标颜值打分的评价指标主要包括对人脸的五官、肤色、面部比例和整体美感等方面的评价,通过算法对人脸进行客观的美学分析和评分。
2.3 颜值打分的技术挑战颜值打分的技术挑战包括对不同种族、文化、审美观念的差异性处理,以及对图像质量、光照和姿态的适应性优化等方面的挑战。
三、Python在人脸检测及颜值打分中的应用3.1 Python在人脸检测领域的应用Python语言在人脸检测领域得到了广泛应用,主要基于OpenCV、Dlib等开源库实现了人脸检测算法的开发和部署,通过利用Python语言简洁的语法和丰富的库函数,实现了高效的人脸检测应用。
3.2 Python在颜值打分领域的应用Python语言同样在颜值打分领域有着重要的应用,基于深度学习和机器学习算法的Python库,实现了对人脸颜值的客观评价和打分,为美化相机、社交评台等应用提供了强大的技术支持。
四、总结4.1 人脸检测及颜值打分是计算机视觉和人工智能技术在图像处理和美学评价领域的重要应用,其涉及的知识点包括图像处理算法、模式识别和机器学习等方面的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸检测的基本原理1引言2人脸检测的基本知识2.1人脸特征2.2 预处理技术3图像处理的基本运算方法3.1数字图像的表示3.2区域分割与合并的原理3.3膨胀与腐蚀1引言人脸检测是指给定静止图像或视频序列,不管图像中人脸的位置、大小、方向、姿势、光照等如何变化,找到并定位所有人脸确切位置的技术。
有很多与人脸相关的研究领域与人脸检测技术紧密相关,比如人脸定位(Face Localization),经过简化的、仅针对包含单个人脸图像的检测技术;人脸跟踪(Face Tracking),在连续的视频序列中实时定位并跟踪人脸的位置;面部特征检测(Facial Feature Detection),准确定位人脸区域内的眼睛、眉毛、鼻子、嘴、嘴唇、耳朵等面部器官的位置;人脸识别(Face Recognition),比较输入图像与已经建好的人脸数据库内各图像间的差异,找到差异最小的作为识别结果输出;面部表情识别(Facial Expression Recognition),识别人脸面部的感情状态,比如高兴、沮丧、悲伤等等。
上述这些人脸处理技术的第一步都是要求准确定位好图像中的人脸,因此一个鲁棒、高效的人脸检测算法对这些技术的发展起着关键的作用。
2人脸检测的基本知识人脸检测从本质上讲是目标检测的一种,也就是将目标(人脸,Target)与干扰(背景,Clutter)区分开来的过程。
2.1人脸特征人脸图像中包含的特征非常丰富。
人脸检测利用的是人脸的共性特征,大致分为基本特征、肤色特征、变换域特征、统计特征等。
①基本特征1)灰度特征人脸区域内具有明显的灰度分布特征。
眉、眼和嘴等区域的灰度值较低,前额、脸颊、鼻梁和下颌等区域的灰度值较高。
利用这些信息,可以建立简单的人脸模板,用于粗检。
例如,多个人脸图像的平均就是一个简单的人脸模板,类似的眼模板和嘴模板也常常使用。
人脸具有明显的灰度梯度分布特征。
在人脸区域进行水平和垂直方向的灰度投影,根据极小点的位置可以得到眉、眼、鼻和嘴等器官所处的大致区域。
光照不均对灰度特征有很大的影响。
但在偏光的情况下,眼和嘴、鼻和嘴、鼻和脸颊等区域灰度的比值会保持一定的比率。
根据这个特点,可采用线性光照拟合和直方图均衡的方法来补偿光照的影响。
Log、Exp和LogAbout等一些非线性变换也可用于光照补偿。
2)边缘和形状特征人脸及人脸器官具有典型的边缘和形状特征,如人脸轮廓、眼睑轮廓、虹膜轮廓、眉毛边缘、鼻侧线和嘴唇轮廓等均可近似视为椭圆、圆、弧线或线段等简单的几何单元。
可采用Sobel、Laplacian和Canny等算子或小波变换提取这些边缘特征。
噪声的存在会导致边缘的不连续,常采用边缘跟踪器把属于同一轮廓的各段边缘连接起来,并通过约束搜索范围防止边缘跟踪失败。
数学形态学的腐蚀与膨胀运算与Hough变换也常用于提取人脸轮廓特征,并对噪声有较好的适应性。
应用Snakes模型或主动形状模型(ASM,Active Shape Model)能够较好地抽取人脸的边缘特征,但这些模型需要一个较好的初始化位置。
尽管在强光照变化下也会产生一些伪边缘,但相对于灰度特征,边缘特征对光照变化具有一定的鲁棒性。
3)结构特征结构特征主要表现在人脸的对称性和各个器官的空间位置分布。
人脸在结构上的对称性是十分有用的特征。
正面人脸左右对称,对应位置上的边缘和灰度特征基本一致;同时,各个器官也具有自身的对称性,比如双眼、鼻子、耳朵等。
面部器官如眉毛、眼睛、鼻子、嘴等,是按一定位置关系组织在一起的。
各器官按照从上而下的顺序排列,相对位置保持不变。
各器官间还存在着一些几何关系,比如两眼和嘴中心构成一个三角形、鼻子的中心大致位于这个三角形的中心等。
根据这些结构特征,配合前面介绍的灰度特征和边缘、形状特征,可以建立基本的规则,区分人脸区域与背景。
4)纹理特征人脸具有特定的纹理分布特征,基于灰度共生(SGLD,Space Grey Level Dependency)矩阵建立人脸纹理特征模型,得到表征人脸的一系列纹理特征。
②肤色特征肤色特征按类别划分应属于人脸基本特征,但其在彩色图像人脸检测中所起到的作用非常重要。
肤色是脸部区别于其他区域的重要特征,不依赖于面部细节特征,不受旋转、姿势、表情等变化的影响,具有相对稳定性并和大多数背景物体颜色相区别,已成为彩色图像人脸检测中的一个非常重要的特征。
尽管不同种族、不同年龄、不同光照条件下,肤色区域呈现不同的颜色,但相关研究证明,不同类的肤色点间的差别更多的在于颜色中的亮度分量,而色度分量在各肤色点间变化不大。
由此,可以在特定的色彩空间中建立肤色模型,描述人脸肤色的特征,有效去除图像中复杂背景的干扰、减小待搜索范围。
常用的色彩空间有RGB、归一化RGB、HSV、YCbCr、YIQ、YES、CIE XYZ、CIE LUV、CIE Lab、CIE DSH、TSL等,常用的肤色模型有直方图模型、高斯模型、混合高斯模型等。
③变换域特征基于FFT、DCT、小波、K-L等变换,根据能量规则选择一系列系数作为表征人脸图像的特征。
人脸识别中广泛使用的本征脸(Eigen Face)以及最近流行的类Haar特征(Haar-like feature)均属于变换域特征。
目前图像大多以压缩的格式存在,各个图像压缩标准广泛地应用了DCT和小波变换,因此,研究如何有效地提取这些变换域下的人脸特征,具有很强的实际意义,已成为目前一个很受重视的研究方向。
④统计特征由于人脸图像模式的复杂性,能够用来描述人脸共性特点的显式特征是有限的,而由此建立起的人脸规则的有效性也有很大的局限性。
解决这个问题的办法就是更多地使用人脸图像的统计特征,也可称为隐式特征。
统计特征是指通过统计的方法,从单个图像数据或大量图像数据中获得的特征,如自相关、高阶矩、不变矩、在子空间的投影、空间距离、隶属度、概率分布、熵、互信息,以及神经网络的抽象特征等。
统计特征不如基本特征直观,但描述的往往都是人脸与非人脸的本质区别,在一个更高的层次上描述人脸特征。
在大量统计特征基础上构建起来的基于统计学习的人脸检测算法,具有良好的适应性和鲁棒性,得到了广大研究人员的普遍重视,已成为目前研究的主流。
⑤运动特征对于视频序列,相邻帧间的运动信息是一个重要的特征。
计算相邻帧图像的差分即可得到运动区域。
为了提高算法对噪声的鲁棒性,可采用空间连通区域、多帧差分、差分图像光滑滤波、时空三维张量等方法。
运动特征也常用于人脸跟踪的研究中,基本方法就是跟踪整个人脸或基于特征器官(如眼、嘴)的跟踪。
2.2 预处理技术为了提高检测算法的效率,需对输入图像进行一些预处理。
通用的预处理手段主要包括:1)边缘提取,去除图像中低频的背景区域;2)直方图均衡,使图像中象素值分布均衡化;3)光照补偿,克服亮度不均对结果的干扰;4)肤色分割,将肤色区域与背景分离。
①背景去除人脸区域内灰度变化较大,在图像中属于高频信息,通过提取边缘、去除边缘很弱的图像区域,可以去除变化平坦的背景区域。
除了这种简单的方法外,Shaick等提出了一种新的针对灰度图像的预处理方法,算法的框图如图1所示。
图1 Shai ck算法框图首先对输入图像进行直方图均衡,然后利用2D-FFT将其变换到频域。
在频域利用最佳自适应相关器(Optimal Adaptive Correlator, OAC)将输入图像与“平均脸”模板求相关,滤波器输出如式(1)]),(]/[),(),(2*y x y x y x f f V f f U f f H ⊗=ω (1)其中U 、V 分别为“平均脸”模板和输入图像的傅立叶变换,“*”代表二维复共轭,x f 、y f 分别是二维频域内的索引,ω为5×5大小的矩形窗口,⊗代表卷积算子。
将滤波器的输出按照实验得到的阈值分为人脸区域、可能的人脸区域和背景区域三部分。
实际使用中,首先通过训练的方法得到“平均脸”模板,然后在7×9的窗口内对待测图像进行局部灰度均衡(Local Homogenization ),最后使用OAC 滤波器排除背景区域。
经过这样的处理,在MIT Set B 测试集中可以排除图像中99%的待检测区域,而仅仅产生了1.3%(2/153)的漏检,同时其计算复杂度也相对较小,可以在不对算法精度产生太大影响的条件下提高算法的速度。
②肤色模型肤色是彩色图像中人脸部区别与其他区域的一个非常重要的特征。
利用肤色分割算法不但可以减小待搜索图像的大小,而且还可以有效的控制误检。
因此肤色模型在人脸检测的研究中一直受到很大的重视。
1)彩色空间各种标准的彩色空间均可用于构建肤色模型,比如YCbCr 、HSV 、归一化rgb 等。
Hsu 等考察了肤色点与背景点在各彩色空间中的实际分布情况,具体的统计结果如图2所示。
图2 不同颜色空间内肤色点的分布(a) YCbCr 空间,(b)肤色点在CbCr 平面内的投影,(c)rgb 空间(d)HSV 空间(红点表示肤色点,蓝点表示背景点)由图2中可以明显看出,与其它空间相比,YCbCr 空间中的肤色点具有更加集中的分布,最为适合肤色分割。
因此目前很多研究工作都是基于YCbCr 彩色空间进行的。
在YCbCr 彩色空间的基础上,进行更深一步的考虑。
YCbCr 三分量与视频中使用的YUV 三分量具有相似的思路,即将原来的RGB 三个色度分量通过一个线性变换,转化为一个亮度和两个色度分量,其中Y 为亮度分量,CbCr 分别为蓝色(Blue )和红色(Red )的色度分量。
通过分析RGB 三个分量在肤色区域的分布,Dios 等提出与YCbCr 空间类似的一个新的颜色空间YCgCr ,使用Cg (代表绿色Green )分量来代替Cb 分量。
依据ITU Rec.BT.601规定的标准,Cg 分量可以由式(2)所示的变换公式得到:BG R Cr Cg Y ⋅----+=214.18768.93112915.30112085.81966.24553.128481.65256112812816 (2) 如图3所示,在YCgCr 空间内,肤色点的分布更加集中,更加有利于排除那些近似肤色点的区域。
相关的实验也证明了其可以获得更好的结果。
图3 两个颜色空间肤色分布比较进一步思考产生这个现象的原因。
人脸的肤色区域接近于黄色,而黄色是由红色和绿色混合而成,因此在肤色区域内,红、绿分量的值更大且基本相同(有很大的相关性),而蓝色分量则明显偏小且与其它两个颜色的分布无关。
这一点可以由图3明显看出,图3(a )的分布没有任何规律,而图3(b )则呈现线性分布。
因此,YCgCr 彩色空间可以更加有效地描述肤色点的分布情况。
2)肤色分布的描述常用的肤色分布描述方法有阈值法、高斯法、混合高斯法、直方图法等。