微波技术与天线课件 ppt
微波技术与天线-传输线特性参数(二)

2Z0
A
Z
p
0
4
E 1 2 Z0
ZZ0D
Z0 ZD
2Z0 Z0 Z0 2Z0
2Z0 Z0 2Z0 Z0
2Z0 Z0
BE
1
1
E E
1 1
1
3 1
2
3
|
值域 1≤≤
Z in ( z) | (z知 左 一 天 统) |道 图 个线驻非| 我 的 无和波常l 们 哪 线传| 系重现 一 传输j数要在 部 输线v是的讲分系(馈解?统微特线的必)波征,内然传参我容包们输数属括1把系,于:
这 一两般部可分以简用称测为天量馈线线、系网统络,
与的关系
|U | |U
(
l
(
z) || z)
|m(axz)|?|U?i?|?(11| |min |?U??i?| (11|
l l
|) |)
等反天 馈 分行v射o馈线析测系lt系的a仪量圆g统负e、。中载st驻O的Zaln波天d线i表ng可等w以仪a看v1表e成r进是atiuo
驻波比是描述天馈连接好 坏的一反个射非系常数重复平要面的指标!
传输线的反射系数
I(z)
Z U (z) A1e z A2e z Ui (z) Ur (z) g
I(z)
1 Z0
( A 1e
z
A2e
z )
Ii(z)
Ir (z)
Eg z
特性阻抗
Z0
Ui (z) Ii (z)
Ur (z) Ir (z)
U(z) Z0
Zin(z) z
(Ω)
ZL
0
输入阻抗
Zin(
ZB
1
《微波技术与天线》第二章传输线理论part1

引言
分布电路参数模型
相同的传输线,虽然不同频率、不同几何长度,但电长度 相同,都属于长线。
3 2 1 0 -1 -2 -3
3 2 1 0 -1 -2 -3
t=0
t=0
V(z,t)
V(z,t)
z, m 图2-1 10MHz信号的电压分布
0
10
20
30400123
4
z,cm 图2-2 10GHz信号的电压分布
2/7/2019 7
边界条件
引言
分布电路参数模型
1、长线的概念
长线—— 传输线的几何长度和线上传输电磁波的波 长的比值>>1 或≈1 的传输线。
l / 0.1
短线——传输线的几何长度<<线上传输电磁波的波
长。
l / 0.1
举例:频率为50Hz、 λ=6000km的交流电,1000m场的 输电线<<λ(电长度为0.000167<0.1)------短线 10GHz的电磁波,λ=3cm,5cm长的传输线与波 长相当(电长度为1.67 >0.1 )------长线
2/7/2019
23
均匀传输线方程及其解
已知终端边界条件(z=0、U(0)=UL、I(0)=IL )
1 A 1 2 (U L Z 0 I L ) U L , RL 1 A2 (U L Z 0 I L ) I L 2
1 1 z z U ( z ) ( U Z I ) e ( U Z I ) e L 0 L L 0 L 2 2 1 1 z (U L Z 0 I L )e (U L Z 0 I L )e z I ( z ) 2Z 0 2Z 0 U ( z ) U L chz I L Z 0 shz I ( z ) I chz U L shz L Z0
微波技术和天线(第四版)刘学观 第1章

第一章均匀传输线理论第章传输1.1节均匀传输线方程及其解1.2节传输线的阻抗与状态参量1.3节无耗传输线的状态分析1.4节传输线的传输功率、效率与损耗1.5节阻抗匹配151.6节史密斯圆图及其应用1.7节同轴线的特性阻抗1.1 均匀传输线方程及其解 本节要点传输线分类均匀传输线等效及传输线方程传输线方程解及其分析传输线的特性参数1.微波传输线定义及分类微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输因此又称为导波系统 第一类是双导体传输线,它由二根或二根以上平行传输,因此又称为导波系统。
第类是双导体传输线由根或根以平行导体构成,因其传输的电磁波是横电磁波(TEM 波)或准TEM 波,故又称为TEM 波传输线,主要包括平行双线同轴线带状线和微带线等行双线、同轴线、带状线和微带线等。
第二类是均匀填充介质的金属波导管,因电磁波在管内传播,故称为波导,主要包括矩形波导、圆波导、脊形波导和椭圆波导等。
第三类是介质传输线,因电磁波沿传输线表面传播,故称为表面波波导,主要包括介质波导、镜像线和单根表面波传输线等。
2. 均匀传输线方程当高频电流通过传输线时,在传输线上有:导线将产生热耗,这表明导线具有分布电阻;在周围产生磁场,即导线存在分布电感;由于导线间绝缘不完善而存在漏电流,表明沿线各处有分布电导;两导线间存在电压,其间有电场,导线间存在分布电容。
这四个分布元件分别用单位长分布电阻、漏电导、电感和电容描述。
设传输线始端接信号源,终端接负载,坐标如图所示。
Δz其上任意微分小段等效为由电阻R Δz 、电感L Δz 、电容C Δz z +Δz z z 0和漏电导G Δz 组成的网络。
i (z +Δz ,t )i (z ,t )R ΔzL Δz u (z +Δz ,t )u (z ,t )G Δz C Δz设时刻t 在离传输线终端z 处的电压和电流分别为u (z,t ) 和i (z,t ),+z +z +z z +Δz而在位置z Δz 处的电压和电流分别为u (z Δz,t )和i (z Δz,t )。
《微波技术与天线》第6章

比较电基本振子的远区场 Eθ与磁基本振子的远区场 Eφ , 可 以发现它们具有相同的方向函数 |sinθ|, 而且在空间相互正交 , 相位相差90°。所以将电基本振子与磁基本振子组合后 , 可构
成一个椭圆(或圆)极化波天线, 具体将在第8章中介绍。
磁基本阵子的应用
电磁测井
6.3 天线的电参数
1. 天线方向图及其有关参数 天线方向图,是指在离天线一定距离处, 辐射场的 相对场强(归一化模值)随方向变化的曲线图, 通常采 用通过天线最大辐射方向上的两个相互垂直的平面方向 图来表示。
例:画出沿z轴放置的电基本振子的E平面和H平面方向图。
解: ① E平面方向图:
② H平面方向图:
给定r处, 对于θ=π/2, Eθ的归一化场强值为|sinθ|=1,与φ无关, 因 而 H平面方向图为一个圆, 其圆心位于沿z方向的振子轴上, 且半径为1
图 6 -5 (a) 电基本振子E平面方向图
6.2 基本振子的辐射 预备知识:时变场的达朗贝尔方程,滞后位及其解
磁矢位和电标位 线性、均匀各向同性的无耗媒质中, 时谐形式的麦克斯韦方程
天线辐射场的求解思路:
点 点 源 的 磁 矢 位 转 换 点 源 的 辐 射 场 计算 连续 分布 结构 的辐 射场
源
突破点源后利用 结果推导新结构 的结果
pm k2 k 1 H j sin ( j 2 j 3 )e jkr 2 r r r
与电基本振子做相同的近似得磁基本振子的远区场为:
2 rλ 1 ω μ 0 pm Hθ sin θ e jkr η 2 rλ
E j
μ 0 pm
sin θe jkr
(6-2-8)
1. 电基本振子
天线PPT课件(完整版)

天线发展简史
一、1886, 赫兹(Heinrich Rudolf Hertz, 1857-1894)
1839年法拉第(Michael Faraday, 1791-1867)发现、 1873年麦克斯韦(James Clerk Maxwell, 1831-1879)完成的电磁 理论,在1886年由海因里希· 鲁道夫· 赫兹建立了第一个无 线电系统,首次在实验室证实。
§1.1 辅助函数法
在远场区
E jA E jA E jA Er 0
1 j ˆE ˆ A H r r
天线辐射问题分析过程
§1.2 电基本振子
什么是电基本振子? 一段通有高频电流的直导线,当导线长度远远小于
7
天线发展简史
三、1980, 超大阵列(VLA)抛物面天线(Very Large Array Steerable Parabolic Dish Antennas) 位于美国新墨西哥州(Socorro, New Mexico)的超大阵 列天线由27面直径为25米的抛物面按Y型方式排列组成,是 世界第一个射电天文望远镜。其分辨率相当于36千米跨度的 天线,而灵敏度相当于直径为130米的碟型天线。
2 A k A J
2
A 4 A 4
-线电流
远场辐,忽略高阶项
1 n 2,3,4, rn
jkr e ˆA , ˆA , ˆAr , A r , r
r
1 ˆA , ˆA , 1 E je jkr 2 r r
天线与电波传播
绪论
微波与天线PPT精品文档32页

1.22
0.1
20
1.3
0.1304 17.70
较好
1.4
0.1667 15.56
1.43
?
15
0.000 0.227 0.826
1.?0
1.700 2.779
?
100.00 99.773 99.174
99.0?00
98.300 97.221
?
0.000
请
0.010
填 入
0.036
?
空
?
格
0.074
(1) 线上电压和电流的振 幅恒定不变
(2) 电压行波与电流行波 同相,它们的相位是位置 z和时间t的函数 (3) 线上的输入阻抗处处 相等,且均等于特性阻 抗
纯驻波工作状态
负载不吸收有功功率,入射波的功率在终 端产生全反射,线上的入射波与反射波相 叠加,形成了纯驻波状态。
1 传输线理论
1.1 长线理论
反射系数 与输入阻抗的关系
Zin(z')Z011 ((zz''))
上式表明,线上任意点的反射系数和该点 向负载看去的输入阻抗有一一对应的关系。
将z′=0代入上式,便得终端负载阻抗与终端反 射系数的关系,即为
ZL
Z0
1 L 1 L
L
ZL ZL
Z0 Z0
波的反射是长线工作的基本物理现象,反射系数不但具有明确 的物理意义,而且便于测量,因此非常常用。
Umax ImaxVSWR
Umin Imin
Voltage Standing Wave Ratio
ZL
电压(电流)振幅
驻波系数
传输线任何点的电压和电流是入射波和反射波叠加的结果
第8章电磁场与微波技术+课件PPT(黄玉兰)

图8.3
电基本振子辐射的方向图
3. 中间区
8.3.2
磁基本振子的辐射场
0 SI jkr E sin e 2 r 0 SI 1 jkr H sin e 2 r 0
图8.4
小电流环及磁矩
8.4 天线的电参数
1. 天线的效率
A
P Pin
P P PL
2. 输入阻抗
U in Z in Rin jX in I in
3.方向性函数和方向图
归一化方向性函数
E , f , F , E max f , max
立体方向图可以完全反映出天线的方 向特性。 ·E面方向图:电场矢量所在平面的方向图。 ·H面方向图:磁场矢量所在平面的方向图。
动态位函数的解
r t v d r
r , t
1 4
(8.17) (8.18)
A r , t
4
r Jt1 4
e jkr
r
d
(8.21)
A r 4
N sin 2 E E 1 FN , E 1 sin 2
图8.11 均匀直线阵
8.7 其它类型天线简要介绍
8.7.1
行波天线
图8.12 菱形天线
8.7.2 缝隙天线
图8.13 缝隙天线
8.7.3 微带天线
图8.14
微带天线
8.7.4旋转抛物面天线
图8.15
旋转抛物面天线
0 zl l z 0
8.5.2 对称振子的辐射场
coskl cos coskl F , sin
《微波技术》课件

03
微波器件与系统
微波振荡器
微波振荡器是产生微波信号的 电子器件,其工作原理基于电 磁振荡,通过在谐振腔内形成
电磁振荡来产生微波信号。
常见的微波振荡器有晶体振荡 器和负阻振荡器等,广泛应用 于雷达、通信、电子对抗等领
域。
微波振荡器的性能指标包括频 率稳定度、相位噪声、输出功 率等,这些指标直接影响着微 波系统的性能。
微波滤波器的设计需要考虑电 磁波理论、材料特性、工艺制 造等多个因素,以确保其性能 和可靠性。
微波天线
01
微波天线是用于发射和接收微波信号的设备,其工作原理基于电磁波 的辐射和接收。
02
常见的微波天线有抛物面天线、平板天线、八木天线等,广泛应用于 雷达、卫星通信、广播电视等领域。
03
微波天线的性能指标包括增益、方向性图、极化方式等,这些指标直 接影响着微波系统的性能。
微波技术的发展历程
要点一
总结词
微波技术的发展经历了从基础研究到实际应用的过程,目 前仍在不断发展中。
要点二
详细描述
微波技术的发展始于20世纪初的基础研究,随着电子技术 和计算机技术的不断发展,微波技术逐渐从实验室走向实 际应用。在通信领域,微波技术率先得到广泛应用,如微 波接力通信、卫星通信等。随后,在雷达、加热、医疗等 领域,微波技术也得到了广泛的应用和发展。目前,随着 新材料和新技术的发展,微波技术仍在不断创新和进步中 。
向,以实现微波技术的绿色发展。
THANK YOU
感谢各位观看
新型微波材料的研究与应用
总结词
新型微波材料的研发是推动微波技术进步的关键,它们在改 善微波性能、提高系统稳定性等方面具有重要作用。
详细描述
随着科技的不断发展,新型微波材料如碳纳米管、石墨烯等 逐渐受到关注。这些材料具有优异的电磁性能,能够大幅提 高微波的传输效率和稳定性,为微波技术的应用开拓更广阔 的领域。