材料发展史

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的历史同人类社会发展史同样悠久。历史上,材料被视为人类社会进化的里程碑。历史学家曾把材料及其器具作为划分时代的标志:石器时代、青铜器时代、铁器时代、高分子材料时代∙∙ ∙ ∙ ∙ ∙。这里我们不难看到材料在社会进步过程中的巨大作用。

制作物品的来源即原料或材料。其中“来源”指物质。

材料:是由一种化学物质为主要成分、并添加一定的助剂作为次要成分所组成的,可以在一定温度和一定压力下使之熔融,并在模具中塑制成一定形状,冷却后在室温下能保持既定形状,并可在一定条件下使用的制品,其生产过程必须实现最高的生产率、最低的原材料成本和能耗,最少地产生废物和环境污染物,并且其废弃物可以回收、再利用。

按组成、结构特点进行分类:金属材料;无机非金属材料;高分子材料;复合材料。

按使用性能分类:利用材料力学性能的称为结构材料;而利用材料物理和化学性能的则称为功能材料。

也可将材料分为传统材料和新型材料。两者无严格区别,是互相依存、互相转化的。传统材料的特征:需求量大、生产规模大,但环境污染严重;新型材料的特征:投资强度较高、更新换代快、风险性大、知识和技术密集程度高,一旦成功,回报率也较高,且不以规模取胜。狭义陶瓷是陶器与瓷器的统称。

二者的坯料都由长石、硅石和矾土(氧化铝)构成。陶器的原料中矾土的成分多一些,是粘土质。瓷器的坯料是矾土成分较少的矿石质。

陶瓷的概念有狭义、广义之分。

从狭义上说,陶瓷是用无机非金属化合物粉体,经高温烧结而成的,以多晶聚集体为主的固态物质。狭义的陶瓷概念中不包括玻璃、搪瓷、水泥、耐火材料、金属陶瓷等。

从广义上说,陶瓷泛指一切经高温处理而获得的无机非金属材料,包括人工单晶、非晶态、狭义陶瓷及其复合材料、半导体、耐火材料及水泥等。

公元前8000年左右,铜首次被有意识地用来作为原料。先民们发现并利用天然铜块制作铜兵器和铜工具。

到公元前5000年,人们已逐渐学会用铜矿石炼铜。

公元前4000年,铜器及其制造就已推广,而石头作为材料已退居第二位。

铜是人类获得的第二种人造材料,也是人类获得的第一种金属材料。

在人类历史上,有过一个辉煌灿烂的青铜器时代。考古表明,青铜文明的源头在古代中国、美索不达米亚平原和埃及等。

随着时间的推移,先民们发现,在铜中加入部分锡,可使原来较软的铜制品变得更坚韧、更耐磨。于是青铜(铜锡合金)产生了。

中国商代青铜器已经盛行,并将青铜器的冶炼和铸造技术推向了世界的顶峰。

中国先民们掌握了6种不同铜、锡比例的青铜技术。知道含锡量1/6的青铜韧性较好,可做钟鼎;而含锡量2/5的青铜较硬,可做刀斧。

后来的化学成分分析证明,铁中含有百分之几的镍和钴,而不含碳和其他熔渣夹杂物。这说明它是天外来客——陨铁;

天上掉下陨铁的机会是很少的,人类不可能大量使用陨铁。但是,陨铁让人们认识了铁,知道它比铜更坚韧,用它可以制成更坚固耐用、更锋利的砍削工具。

早在2600年前的春秋时代中后期,我们的祖先就发明了生铁冶炼技术,比欧洲国家要早1000多年;世界上冶炼、浇铸生铁的最早文字,也记载于我国古代典籍名著《左传》中;

最早的钢是在大约1200ºC的较低温度下,用木炭还原出铁矿石里的混杂铁(含铁、矿渣和没烧尽的木炭混杂在一起的炼铁块)为原料,在炭火中反复锻打,反复渗碳而逐步形成的。

钢和生铁的最大区别是含碳量的多少,前者少而后者多,以2.11%为界。

生铁硬而脆,韧性不好;很少作为结构材料使用(跟碳含量有关)

炼钢跟炼铁的主要区别是消耗掉多余的碳,最简单的方法是利用空气中的氧气去除碳,以降低碳含量;

第一次技术革命发端于18世纪后期,以蒸汽机的发明及广泛应用为主要标志,由此引发的纺织工业、冶金工业、机械工业、造船工业等的工业大革命,是这次技术革命的产物,使人类从手工工艺时期跃进到机器工业时代,开创了工业社会的文明。

其主要的材料依靠是钢铁的飞速发展,实现了高炉、转炉、平炉制造优质钢材的工业化。第二次技术革命开始于19世纪末,以电的发明和广泛应用为标志,由于远距离送电材料以及通讯、照明用的各种材料的工业化,实现了电气化。其结果是石油开采、钢铁冶炼、化学工业、飞机工业、电气工业、电报电话等迅猛发展,组成了现代产业群,使人类跨进了一个新的时代,实现了向现代社会的转变。

其主要材料依托是紫铜、黄铜、铝、钨等有色金属以及高分子绝缘材料的迅猛发展。

第三次技术革命始于20世纪中期,以原子能应用为主要标志。1942年12月,意大利物理学家费米在美国建立了第一个核反应堆,实现了控制核裂变,使核能利用有了可能,实现了合成材料、半导体材料等大规模工业化、民用化,把工业文明推到顶点,开启了通向信息社

会文明的大门。

其主要材料依托是钛合金、先进合金、高温陶瓷、先进复合材料等材料的迅猛发展。

第四次技术革命始于20世纪70年代,它是以计算机,特别是微电子技术、生物工程技术和空间技术为主要标志,新型材料、新能源、生物工程、航天工业、海洋开发等新兴技术是主攻方向。

其主要材料依托是以硅、砷化镓为代表的半导体材料、先进高分子材料、先进复合材料、生物相容材料等的迅猛发展。

在炼钢时加进金属锰,就能炼出锰钢。锰钢最大的特点是强硬坚韧,是工业建设的栋梁之材,是国防建设的“铁甲卫士”。锰钢的问世,是一位年轻的冶金学家(英国的哈德菲尔德)藐视权威,以他那锰钢般的意志顽强攻关的结果。权威们告诫人们,钢铁中锰的含量绝不能超过1.5%,否则它就会越来越脆。在经过了几百次的失败以后,他终于发现当锰的含量达到13%时,锰钢一改它昔日脆弱的形象,变得既有很好的硬度,又富有韧性了。

不锈钢,是以铁为主体元素,加上一定比例的铬、镍、钼、锰等金属炼成的耐腐蚀合金材料。不锈钢以其锃亮的外表、良好的机械性能和对酸性腐蚀物质的强大抗御能力赢得了人们的欢迎,是现代工业生产和日常生活中常用的金属材料。冶金专家布里尔利在一次偶然发现,由电炉炼成的含铬8%,含碳0.24%的合金钢经过热处理后,具有极好的耐腐蚀性能,特别是不怕酸性物质的腐蚀。布里尔利把它起名为“不锈钢”。

到1898年,美国工人技师泰勒创造了一个奇迹。他想研制一种耐高温的高速刀具钢。他分析了钨锰钢的成分,认为钨是好的,熔点高达3380℃,受热肯定不会变软,问题一定是出在熔点和硬度都不够高的锰身上。泰勒思考了很久,决定采用铬取代锰。泰勒赶紧安排试验冶炼含铬钨钢。经过一段时间的试验,合乎要求的含铬钨钢炼出来了。新材料做的车刀的切削速度比过去提高了5倍!

在这之后,泰勒又对钨铬钢刀做了不少改进,使它能在五六百摄氏度下也不变软,切削速度达到每秒10米(600米/分钟),可与奥运会100米跑的冠军比一比速度。

进入20世纪以后,刀具材料又有了一次飞跃,那就是诞生了硬质合金。1907年,德国冶金专家施特勒尔用碳化钨的硬质颗粒,加上铁和钴的粉末,先压制成型,再以高温烧结,让铁和钴熔化而成为粘结材料,使碳化钨紧紧地“团结”起来,制成了硬质合金。硬质合金一经问世,便受到了热烈欢迎。人们发现用它制作的刀具,在1000℃的高温下也不会变软,切削速度可达到每分钟2000米以上,比普通碳素钢刀高出100多倍。

铝是地壳中含量最多,分布最广的金属元素。我们脚下的粘土,就是铝的藏身之处、所以人们称铝是“来自粘土的白银”。

在今天,铝是产量仅次于铁的第二金属。生活中随处可见。但在100多年前,铝比黄金还要贵几倍,是王公贵族才能赏玩的珍宝。

说明:炭没有从铝手里夺取氧的能力,那就换一种思路,让氯气从氧那里把铝夺过来。

他向烧得发红的矾土里通入氯气,发现有一些液体流出来,得到了应该是氯化铝。他仔细地把这些液体收集好,再加热并加入还原能力强大的钾汞剂(合金),让它代替炭去把铝还原出来。实验分析结果告诉他,有氯化钾生成。钾汞剂已经变成了铝汞剂,加热以后汞蒸发掉了,可铝也再一次变成了白色的矾土。

由于铝的需求量越来越大,原料矾土的供应也变得紧张。自然界纯矾土矿很有限,大部分的矿石含有一半的铁硅和其它杂质,不能直接用来炼铝。有必要寻求一种廉价的方法将氧化铝提取出来。

奥地利化学家拜尔采用煅烧矿石,然后粉碎,再加入氢氧化钠,使其与氧化铝反应,生成氢氧化铝。然后分离出氢氧化铝,最后加热使氢氧化铝分解,就可以得到纯净的矾土了。他们研究发现:

相关文档
最新文档