第4章闪烁探测器

合集下载

42闪烁探测器

42闪烁探测器

全能峰
射线能量较小时,主要是光电效应贡献;随着 射线能量增大,电子对效应贡献逐步增大。 光电效应:光电子能量 外层电子跃迁到K层,多余的结合能以X射线或俄歇电子形式辐射。因X射线能量很低,光电吸收截面很大,几乎被探测器完全吸收,能量迭加到Ee上,构成全能峰,总能量为 电子对效应:正负电子能量总和为 正电子在探测器内损失能量湮灭生成2个能量为mec2的射线,它们可能1个或2个被探测器光电吸收,也可能发生康普顿效应。若2个射线都被吸收,其能量迭加到Epair上构成全能峰,总能量为 康普顿效应:一次或多次散射的射线被探测器光电吸收,由于各次作用时间间隔比闪烁光的产生和衰减时间小很多它们所产生的闪烁光迭加贡献在全能峰。 全能峰对应的能量精确等于射线能量,所以用全能峰测量射线能量。选用大尺寸高Z探测器将显著增大全能峰减小康普顿连续谱。
逃逸峰
由于次级效应产生的电子、X射线和湮灭光子跑出探测器造成的。 次级电子逃逸:三种效应产生的次级电子在跑出探测器前可能损失掉一部分能量,产生的脉冲是连续分布的,能量从0-E,导致全能峰减少,连续分布增加,并使全能峰不对称。 湮灭光子逃逸:电子对效应中正电子湮灭产生2个光子,若1个光子逃出探测器,谱仪记录的能量比全能峰能量少511KeV,称作 单逃逸峰,相应的能量 若2个光子逃出探测器,则 称作双逃逸峰。 X射线逃逸:光电效应产生的X射线逃出探测器,被记录的光电子能量为 如NaI(Tl)测量137Cs的662KeV的射线能谱。因NaI(Tl)计数器的能量分辨率不够,分辨不开662KeV和(662-28=)634 KeV ,使全能峰不对称,低端下降慢,高端下降陡一些。而气体探测器可清楚分辨入射低能X射线和它的逃逸峰。
六、闪烁体的辐照效应
闪烁体
NaI(Tl)
CsI(Tl)

基于GEANT4蒙特卡罗算法的闪烁体探测器建模与优化

基于GEANT4蒙特卡罗算法的闪烁体探测器建模与优化

基于GEANT4蒙特卡罗算法的闪烁体探测器建模与优化目录一、内容描述 (2)1. 研究背景与意义 (3)2. 国内外研究现状 (4)3. 本文研究内容与方法 (5)二、GEANT4蒙特卡罗算法概述 (6)三、闪烁体探测器建模 (7)1. 闪烁体探测器工作原理 (8)2. 闪烁体探测器模型构建 (9)3. 模型参数设置与仿真 (10)四、基于GEANT4的闪烁体探测器优化 (11)1. 探测器优化方案设计 (12)2. 优化算法流程 (14)3. 关键参数优化 (14)4. 优化结果分析 (16)五、闪烁体探测器性能评估 (17)1. 性能评估指标 (18)2. 评估方法 (20)3. 性能评估结果 (21)六、实验验证与结果分析 (22)1. 实验设置与数据收集 (23)2. 实验结果分析 (24)3. 实验结果与模拟结果的对比 (25)七、结论与展望 (27)1. 研究成果总结 (27)2. 研究不足之处与展望 (28)一、内容描述介绍闪烁体探测器的基本原理,包括闪烁现象的产生机制及其在探测领域的应用。

针对GEANT4这一蒙特卡罗模拟框架,阐述其在闪烁体探测器建模中的应用方法和优势。

介绍建模过程中需要考虑的关键因素,如闪烁体的几何形状、光电性质以及能量沉积机制等。

详细阐述使用GEANT4蒙特卡罗算法进行闪烁体探测器模拟的流程,包括模型的建立、模拟参数的设置、事件的触发和跟踪以及数据的采集和处理等。

重点在于阐述如何对模型进行精准设计以及对模拟过程进行精确控制,以确保模拟结果的准确性和可靠性。

探讨基于GEANT4蒙特卡罗算法的闪烁体探测器性能优化策略,包括几何结构优化、材料选择优化以及信号处理优化等。

通过模拟实验和数据分析,研究不同优化策略对探测器性能的影响,并给出具体的优化建议和实施方法。

通过对模拟结果与实验结果的对比分析,验证基于GEANT4蒙特卡罗算法的闪烁体探测器建模与优化的有效性。

探讨模拟过程中可能存在的误差来源,以及如何减小这些误差以提高模拟结果的准确性。

粒子探测技术

粒子探测技术

已知自变量x1, x2 ,
xn的标准误差 x1 , x2

,可以证明
xn
多元函数f (x1, x2 , xn )的标准误差为:
2
2

2 f


f x1

2 x1


f x2

2 x2

2


f xn

2 xn
(N1 N2 ) N1+N2
N0

E W
漂移,扩散,吸附,复合
• 外电场对电离粒子运动的影响
探测器收集到的电子离子对数随外加电压的变化曲线
• 工作气体
负电性气体
猝灭气体
2019/5/13
粒子探测
8
2. 电离室
• 脉冲电离室 • 电流电离室
3. 正比计数器
• 气体放大现象,电子雪崩 • 工作特性:输出脉冲波形
能量线性和能量分辨率 • 类型:BF3慢中子正比计数器
各种粒子探测的基本原理
1. 微观粒子:
• 带电粒子:e、α、p、高能带电粒子 • 中性粒子:n • 电磁辐射:x、
2. 带电粒子和物质的相互作用:
• 电离激发效应 • Cerenkov效应 • 轫致辐射 • 多次散射 • 穿越辐射
2019/5/13
粒子探测
3
• 有关概念:电离激发,特征x射线,俄歇效应,电子多次散射,
2019/5/13
粒子探测
23
考试安排
• 时间:2011.12.26 下午2:30-4:30 • 地点:
– 东区(物理学院):1102教室 – 西区(核学院): 3110、3111教室
• 可以带:计算器、尺子

闪烁探测器的工作原理

闪烁探测器的工作原理

闪烁探测器的工作原理闪烁探测器是一种常用的辐射探测器,其工作原理基于闪烁效应。

闪烁效应是指当辐射粒子与探测材料相互作用时,引发探测材料中能量的吸收和发射,从而产生可见光的现象。

闪烁探测器的基本组成包括闪烁晶体、光电倍增管和信号处理电路。

首先,辐射粒子进入闪烁晶体时,会与晶体中的原子发生相互作用。

这些相互作用使得晶体中的电子从基态跃迁到激发态,并在很短的时间内返回基态。

在这个过程中,晶体吸收了辐射粒子的能量。

通过这种能量吸收,晶体中的原子被激发,形成了一个电子-空穴对。

接着,闪烁晶体中的电子-空穴对重新结合并释放出能量。

这部分能量以光子的形式发射出来。

光子的能量与辐射粒子入射时释放的能量成正比。

晶体中使用的材料通常是具有较高原子数和高密度的材料,如钠碘晶体、铯碘晶体等。

这些晶体在被激发后能够产生大量光子。

第三步,光子被闪烁晶体中的闪烁材料吸收,并使材料中的原子或分子从基态跃迁到激发态,由于激发态的电子处于不稳定状态,它们会以很短的时间内返回基态,并释放出与光子能量相等的光子。

这种光子的释放是有规律的,通常是快速且连续的。

然后,闪烁晶体中的光子进入到光电倍增管中。

光电倍增管是一种具有光电效应的真空管。

当光子进入光电倍增管后,会打击光电阴极上的电子,使其被弹出,形成电子云。

电子云受到倍增电场的作用,逐级倍增,最终形成一个带有大量电子的脉冲信号。

最后,这个电子信号经过信号处理电路进行放大、滤波、采集和计数等处理,得到最终的输出结果。

信号处理电路中通常会使用放大器、滤波器、模数转换器和多道分析器等设备。

通过这些设备的处理,闪烁探测器能够将辐射粒子的能量和入射强度转化为电信号输出。

总的来说,闪烁探测器的工作原理是通过辐射粒子与闪烁晶体相互作用,使得晶体中的电子-空穴对产生并释放出光子的能量。

光子进入光电倍增管中被放大形成电子信号,并经过信号处理电路处理得到最终结果。

闪烁探测器具有灵敏度高、能量分辨率好等优点,在核物理实验、医学影像学等领域得到了广泛的应用。

闪烁体探测器原理

闪烁体探测器原理

闪烁体探测器原理闪烁体探测器是一种常用于粒子物理实验和核物理实验中的探测器,它可以用来探测高能粒子的能量和种类。

闪烁体探测器的原理是利用闪烁体材料对入射粒子产生的闪烁光进行探测和测量,通过测量闪烁光的强度和时间分布来获取粒子的信息。

闪烁体探测器通常由闪烁体材料、光电倍增管和信号处理系统组成。

闪烁体材料是闪烁体探测器的核心部分,它能够将入射粒子的能量转化为可测量的光信号。

常用的闪烁体材料包括塑料闪烁体、无机晶体闪烁体等。

当高能粒子穿过闪烁体材料时,会与闪烁体原子发生相互作用,使得原子激发态跃迁到基态的过程中释放出光子,形成闪烁光。

光电倍增管是用来接收和放大闪烁体产生的光信号的装置,它能够将微弱的光信号转化为可观测的电荷脉冲信号。

当闪烁光进入光电倍增管时,会引起光电效应,使得光电倍增管产生电子,并经过倍增过程放大电子数目,最终输出一个与入射粒子能量成正比的电荷脉冲信号。

信号处理系统是用来接收、处理和分析光电倍增管输出的电荷脉冲信号的装置,它能够将电荷脉冲信号转化为能够被计算机或其他数据采集设备读取和分析的数字信号。

信号处理系统通常包括放大器、快门、多道分析器等部分,通过这些部分对电荷脉冲信号进行放大、选择、测量等处理,最终得到入射粒子的能谱和能量信息。

闪烁体探测器的工作原理可以用一个简单的模型来描述,当高能粒子穿过闪烁体材料时,会与闪烁体原子发生相互作用,使得原子激发态跃迁到基态的过程中释放出光子,形成闪烁光。

闪烁光被光电倍增管接收并放大,最终转化为电荷脉冲信号。

信号处理系统对电荷脉冲信号进行处理,得到入射粒子的能谱和能量信息。

总的来说,闪烁体探测器利用闪烁体材料对入射粒子产生的闪烁光进行探测和测量,通过测量闪烁光的强度和时间分布来获取粒子的信息。

它在粒子物理实验和核物理实验中起着重要的作用,是一种常用的粒子探测器。

核辐射探测学习题参考答案(修改)

核辐射探测学习题参考答案(修改)

第一章射线与物质的相互作用1.不同射线在同一物质中的射程问题如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得d (氘核)与t (氚核)在同一物质中的射程值?如能够,请说明如何计算?解:P12”利用Bethe 公式,也可以推算不同带点例子在某一种吸收材料的射程。

”根据公式:)()(22v R M M v R b ab b a a Z Z =,可求出。

步骤:1先求其初速度。

2查出速度相同的粒子在同一材料的射程。

3带入公式。

2:阻止时间计算:请估算4MeV α粒子在硅中的阻止时间。

已知4MeV α粒子的射程为17.8μm 。

解:解:由题意得 4MeV α粒子在硅中的射程为17.8um 由T ≌1.2×107-REMa,Ma=4得 T ≌1.2×107-×17.8×106-×44()s =2.136×1012-()s3:能量损失率计算课本3题,第一小问错误,应该改为“电离损失率之比”。

更具公式1.12-重带点粒子电离能量损失率精确表达式。

及公式1.12-电子由于电离和激发引起的电离能量损失率公式。

代参数入求解。

第二小问:快电子的电离能量损失率与辐射能量损失率计算:()20822.34700700()rad iondE E Z dx dEdx*⨯≅=≈4光电子能量:光电子能量:(带入B K ) 康普顿反冲电子能量:200.511m c Mev =ie hv E ε-=220200(1cos ) 2.04(1cos 20) 4.16160.060.3947(1cos )0.511 2.04(1cos 20)0.511 2.040.06Er Ee Mev m c Er θθ--⨯====+-+-+⨯5:Y 射线束的吸收解:由题意可得线性吸收系数10.6cm μ-=,311.2/pb g cm ρ=12220.6 5.3610/11.2/m pb cm cm g g cmμμρ--∴===⨯质量吸收系数 由r N μσ=*可得吸收截面:12322230.61.84103.2810/r cm cm N cm μσ--===⨯⨯ 其中N 为吸收物质单位体积中的原子数2233.2810/N cm =⨯ 0()t I t I e μ-=要求射到容器外时强度减弱99.9% 0()0.1%0.001t I t e I μ-∴=∴=即t=5In10 =11.513cm6:已知)1()(tι--=e A t f t 是自变量。

闪烁探测器的组成

闪烁探测器的组成

闪烁探测器的组成
闪烁探测器是利用辐射在某些物质中产生的闪光来探测电离辐射的探测器。

闪烁探测器主要由以下几部分组成:
1. 闪烁体:闪烁体是闪烁探测器的核心部分,当闪烁体受到射线照射时,闪烁体会吸收射线能量并发出荧光。

荧光光子被收集到光电倍增管的光阴极上,通过光电效应打出光电子。

2. 光导和反射体:光导和反射体的作用是将荧光均匀地引导到光电倍增管的光阴极上,以提高探测效率。

光导一般由高折射率的玻璃制成,而反射体则用来将散射的荧光反射到光阴极上。

3. 光电倍增管:光电倍增管是闪烁探测器的另一个重要组成部分,它的作用是将光电子倍增并输出到后续电路中,以便进行信号处理和测量。

4. 前置放大器:前置放大器的作用是将光电倍增管输出的信号放大,以便进行后续的信号处理和测量。

5. 磁屏蔽和暗盒:磁屏蔽和暗盒的作用是减少外部磁场和光照对探测器的影响,从而提高探测器的测量精度和稳定性。

综上所述,闪烁探测器由闪烁体、光导和反射体、光电
倍增管、前置放大器和磁屏蔽及暗盒等组成。

这些组成部分协同工作,实现了对电离辐射的高效、高精度和高灵敏度探测。

如需了解更多信息,建议查阅相关文献或咨询专业人士。

(整理)辐射探测与测量-要求及答案 四川大学版

(整理)辐射探测与测量-要求及答案 四川大学版
精品Fra bibliotek档精品文档
熟悉内容: 1. 闪烁体的作用; 2. 光电倍增管中光阴极、次阴极、阳极的作用; 光阴极是接受光子并放出光电子的电极。 次阴极又称倍增极打拿极,使通过光阴极的光电子通过各级时倍增。 阳极把所用电子收集起来,转变成电信号输出。 3. 光电倍增管暗电流产生的原因、对测量的影响?????;
6. 几个概念: 电离损失:带电粒子与靶物质中的原子的原子核外的电子发生非弹性碰撞,导致原子电离或 激发,因而损失其能量。 辐射损失:入射带电粒子与物质原子核发生非弹性碰撞时,以辐射光子的形式损失能量。 散射:β粒子与靶物质原子核库仑场作用时,只改变运动方向,而不辐射能量,这种过程称 为弹性散射。 轫致辐射:带电粒子与物质原子核发生非弹性碰撞时,带电粒子接近原子核时,速度迅速降 低,会发出电磁波,产生轫致辐射。 射程:入射粒子在吸收物质中,沿入射点到它终点之间的直线距离。 比电离:单位路程上的离子对数目。 歧离现象: 光电效应:γ光子与靶物质相互作用,γ光子的全部能量转移给原子中的束缚电子,使这些 电子从原子中发射出来,γ光子本身消失。 康普顿效应:入射入射γ光子与原子核外的电子发生非弹性碰撞,光子的一部分能量转移给 电子,使它反冲出来,而光子的运动方向和能量都发生了变化,而称为散射光子。 电子对效应:γ射线从原子核旁边经过时,在原子核的库仑场作用下,γ光子转化为一个正 电子和负电子。 角分布: 吸收曲线:粒子强度随吸收片厚度的变化的曲线。 吸收系数: 半吸收厚度:
1)测量坪曲线的方法、坪曲线各参数、由坪曲线选择工作电压的方法; 起始电压:计数管放电的阈电压;坪斜:通常以工作电压 Vp 每增 100V(或 1V)时的计数率增长的百分率表示;坪 长:坪区长度;
精品文档
精品文档 2)死时间、恢复时间、分辨时间;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、常用闪烁体 NaITl 发光效率高,Z,高,适宜于射线
探测。易潮解,须仔细封装。
CsI Tl 不潮解,价贵。
ZnS Ag 将 ZnS Ag 粉末加1%有机玻璃粉末
溶于有机溶剂涂于有机玻璃板上, 透明度差,薄层,测α,β粒子。 有机液体闪烁体 溶剂(二甲苯)+发光物质 (PPO)+移波剂(POPOP)。放 于玻璃或石英杯中。
3) 分压电阻
由于当电子在两个联极间运动时,会在分压电 阻上流过脉动电流,必须保证脉动电流远小于 由高压电源流经分压电阻的稳定电流,以保证 各打拿极的电压稳定。这也对高压电源的功率 提出了要求。
4) 最后几级的分压电阻上并联电容,以旁 路掉脉动电流在分压电阻上的脉动电压, 达到稳定滤波的效果。
4.3 闪烁探测器的输出信号
激发态的杂质原子有三种可能的退激方式:
① 电子从激发态立即跳回基态,发射出光子, 发光的衰减时间通常在10-7s以内,称为“荧光”。 荧光光子为可见光的范围,且有效地克服了发 光的自吸收,使晶体的发射光谱和吸收光谱有 效的分离。 ② 电子把激发能转换为晶格的振动(热运动)而 到达价带,并不发射光子,这种过程称为“淬 灭过程”。
Ⅰ.闪烁探测器输出信号的物理过 程及输出回路 Ⅱ.输出脉冲信号的电荷量 Ⅲ.闪烁探测器的电流脉冲信号
Ⅳ.闪烁探测器的电压脉冲信号
Ⅴ.闪烁探测器输出信号的涨落
I.闪烁探测器输出信号的物理过程及输出回路 1. 闪烁探测器输出信号的过程
2. 闪烁探测器信号的输出回路
Ik
Ia
3. 输 出 回 路 的等效电路
由总光子数 n ph n0e
0

t

dt n0
得到:
nt
n ph

e
t

对于大多数有机闪烁体及若干无机闪烁体 的发光有快、慢两种成分:
nt n f t ns t nf
f
e
t
f

s
ns
e
t
s
快、慢两种成分的相对比例随入射粒子而 变化 。
e
0 t t t
n ph T


M e (t te )dt
求 解
I t
I t
0
n ph T M e
t te

e
塑料闪烁体
苯乙烯(单体)+ PPO + POPOP, 聚合成塑料。
5、光的收集
1) 反射层 在非光子出射面打毛,致使光子 漫反射,并再衬以或涂敷氧化镁 或氧化钛白色粉末。 2) 光学耦合 为防止光由光密介质到光疏 介质发生的全反射,用折射 系数 n 1.4 ~ 1.8 的硅脂(或 硅油)。 3) 光导
以NaI(Tl)为例:
对β 粒子 Cnp 13%;对α 粒子 Cnp 2.6%
光能产额: Y ph
n ph
E nph为产生的闪烁光子总数。
光子数 MeV
发光效率与光能产额的关系: n ph E ph 1 C np Y ph E hv E hv
以NaI(Tl)为例
对1MeV的β 粒子,发射光子平均能量 h 3eV
n ph

T e
t

2、单光电子引起的电流脉冲信号
t e1
te 2
te 3
t eM
p( t )
面积 M e
t e
3、一次闪烁所引起的阳极电流脉冲
一次闪烁输出电流脉冲为 ne t 与 pt 的卷积
t 即: I t ne t t pt dt 0
4.1 闪烁体
1、闪烁体的分类 1) 无机闪烁体:
无机晶体(掺杂) NaITl , CsI Tl , ZnS Ag 玻璃体 LiO2 2SiO2 Ce (锂玻璃) 纯晶体 Bi4Ge3O12 BGO
2) 有机闪烁体:有机晶体——蒽晶体等; 有机液体闪烁体及塑料闪烁体.
3) 气体闪烁体:Ar、Xe等。
可以看出,闪烁探测器输出脉冲信号的电 荷量Q是与入射粒子在闪烁体内损耗的能 量E成正比的.
即:
QE
III. 闪烁探测器的电流脉冲信号 1、单位时间内第一打拿极收集到的光电子数
单位时间内闪烁体发出的光子数为:
nt
为:
n ph

e
t

单位时间内第一打拿极收集到的光电子数
ne t
电子倍增系数较 大,多用于能谱 测量系统。
具有较快的响应 时间,用于时间 测量或需要响应 时间快的场合。 直线结构 环状结构
百叶窗结构 盒栅型结构
2、PMT主要性能 1) 光阴极的光谱响应
光阴极受到光照后,发射光电子的概率是 入射光波长的函数,称作“光谱响应”。
2) 光照灵敏度
阴极灵敏度
光阴极的光电子流
第四章
闪烁探测器
Scintillation Detector
闪烁探测器是利用辐射在某些物质中产生 的闪光来探测电离辐射的探测器。
荧光 光子 反射层 光电倍增管 窗 (打拿极) 分压器 前置放大器
多道或单道
高压 闪烁体
光电子 管座 暗盒 阳极 光阴极
闪烁探测器的工作过程:
(1) 辐射射入闪烁体使闪烁体原子电离或 激发,受激原子退激而发出波长在可见光 波段的荧光。 (2) 荧光光子被收集到光电倍增管(PMT)的 光阴极,通过光电效应打出光电子。 (3) 电子运动并倍增,并在阳极输出回路 输出信号。 闪烁探测器可用来测量入射粒子的能量。
退激过程将可能发出光子,也可能变成晶 格振动能而不发光。
出现的问题:
A)对纯离子晶体,退激发出的光子容易被 晶体自吸收,传输到晶体外的光子很少; B)由于离子晶体禁带宽度大,退激发出的 光子能量为紫外范围,一般光电倍增管的 光阴极不能响应,这些发射的光子不能被 有效利用。
解决办法:在晶体中掺入少量杂质。 称为“激活剂”的杂质在晶格形成特殊的 晶格点,并在禁带中形成一些局部能级。 选择合适的杂质,使它的激发能级比晶体 的导带、激带低,而基态比价态高。杂质 能级成为发光中心。 由于杂质的电离能小于典型晶格点的电离 能,原子受激产生的电子、空穴将迅速迁 移到杂质能级的激发态和基态,即使杂质 原子处于激发状态。
5) PMT 的稳定性
稳定性是指在恒定辐射源照射下,光电倍增管 的阳极电流随时间的变化。
包含两部分:
短期稳定性,指建立稳定工作状态所需的时间。 一般在开机后预热半小时才开始正式工作。 长期稳定性:在工作达到稳定后,略有下降 的慢变化,与管子的材料、工艺有关,同时 与周围的环境温度有关。长期工作条件下, 须采用“稳峰”措施。
2、闪烁体的发光机制
1) 无机闪烁体的发光机制
激活剂
重点分析掺杂的无机晶体,以NaI(Tl), CsI(Tl),CsI(Na)属于离子晶体等为最典 型,又称卤素碱金属晶体。
晶体中电子的能态不 再用原子能级表示, 而用“能带”来描述。 禁带 晶体的发光机制 取决于整个晶体 的电子能态。 导带 激带 价带
③ 激发态是亚稳态,电子可以在此状态保持一 段较长的时间,像掉入陷阱一样。 这些电子可以从晶格振动中获得能量,重新跃迁 到导带,然后再通过发射光子而退激,因而发光 的衰减时间较长,称之为“磷光”。
2) 有机闪烁体的发光机制
有机闪烁体的发射光谱和吸收光谱的峰值是分 开的,所以,有机闪烁体对其所发射的荧光是 透明的。但发射谱的短波部分与吸收谱的长波 部分有重叠,为此在有的有机闪烁体中加入移 波剂,以减少自吸收。
Y ph
0.13 4 光子数 4.3 10 MeV 3eV
3) 发光衰减时间 受激过程大约 10 10 Sec 退激过程及闪烁体发光过程按指数规律 对于大多数无机晶体,t时刻单位时间发 射光子数:
9 11
nt n0 e
需时间。
t

τ为发光衰减时间,即发光强度降为1/e所
Sk
ik
F
A / Lm
光通量
阳极电流 阳极灵敏度
SA
iA
F
A Lm
阳极接受到的电子数 PMT增益 M 第一打拿极收集到的电 子数
SA iA n 6 8 M g 10 10 gc SK gc iK
打拿极间电子传输效率
3) PMT 暗电流与噪声
3、闪烁体的物理特性 1) 发射光谱
特点:发射光谱为连续谱。各种闪烁体都存在 一个最强波长;要注意发射光谱与光电倍增管 光阴极的光谱响应是否匹配。
2) 发光效率与光能产额
发光效率:C np
E ph E 100%
指闪烁体将所吸收的射线能量转化为光的比例。
Eph闪烁体发射光子的总能量; E入射粒子损耗在闪烁体中的能量。
上式和卷积形式一样给出了输出电流脉冲与发光衰减 时间 及单光电子电流响应 pt 的关系。
在很多情况下,与 相比, pt 是一个非常窄的 时间函数,这时可以忽略电子飞行时间的涨落, 用函数来近似 pt
即:可设 则: I (t )
pt M e t te
Ia
输出回路的等效电路
R 0 R L // R 入
C0 C C入 分布电容
'பைடு நூலகம்
II. 输出脉冲信号的电荷量
1、光电倍增管输出信号的总电荷量取决于: 闪烁体发出的闪烁光子数:
nph Yph E
F ph 光子被收集到光阴极上的概率:
K 光阴极的转换效率: 光电子被第一打拿极收集的概率:gc
当工作状态下的光电倍增管完全与光辐射隔 绝时,其阳极仍能输出电流(暗电流)及脉冲信 号(噪声)。
成因:
(1)光阴极的热电子发射。 (2)残余气体的电离----离子反馈; 残余气体的激发----光子反馈。
相关文档
最新文档