固液两相流的研究现状及进展

合集下载

液—固水力旋流器两相流动数值模拟研究进展

液—固水力旋流器两相流动数值模拟研究进展

液—固水力旋流器两相流动数值模拟研究进展液—固水力旋流器广泛应用于各个行业,如石油化工、选矿、造纸、医药卫生、环境保护和食品等。

近年来,随着各工业领域的不断发展,对液固分离技术与装备提出了新的挑战和更高的要求同时,为了适应当今不断高涨的降低能耗的要求,目前迫切需要开发出高分离速度、高脱水度、高分离精度的高性能液—固分离技术然而,由于实验条件的限制,单纯通过实验来研究旋流器的性能不仅周期长而且费用高,如果辅助以理论分析计算和流场模拟等方法来研究旋流器内部流体流动规律,以及结构尺寸变化对分离性能和压力特性的影响等,则可缩短研究周期和实验费用,具有重要的理论研究和工程应用价值。

液—固水力旋流器结构及工作原理图1所示为典型的液—固旋流器,主要由进料口、溢流口、底流口和器壁组成。

其工作原理为,当液体高速旋转受离心力作用时,轻相向轴心迁移,从溢流口排出,重相向壁面运动,由底流口排出,从而实现轻相( 液) 和重相( 固) 分离的目的。

图1 典型液—固旋流器两相流场数值模拟研究进展液—固水力旋流器中液固分离的问题在数值模拟中定义为液体和固体不相容的两相流问题。

由于液固两相之间的相互作用和每一相的运动,传热传质和反应等的影响,颗粒相的模拟基本分为两类:一类是Euler方法,该方法除将流体作为连续介质外,把颗粒群也作为拟连续介质或拟流体,设其在空间有连续的速度和温度分布及等价的输运性质( 粘性扩散导热等) ;另一类是Lagrange方法,该方法把流体作为连续介质,而将颗粒群看作离散体系,并以此来探讨颗粒动力学颗粒轨道等基于这两种方法,研究者采用了不同的模型对旋流器内的两相分离过程进行了模拟研究。

K T Hsien和R K Rajamani( 1991)根据颗粒的受力平衡,用代数逼近法求出固体颗粒的滑移速度和轨迹,P He,M Salcudean和I S Gartshore(1997 )分别用二维和三维模型计算了旋流器的分离效率。

液_固两相流冲蚀磨损机理及材料应用现状

液_固两相流冲蚀磨损机理及材料应用现状

收稿日期:2005204227; 修订日期:2005205212作者简介:陈 茜(19772 ),四川中江人,助理工程师.从事技术管理工作1铸造技术FOUNDR Y TECHNOLO GY Vol.26No.6J un.2005液/固两相流冲蚀磨损机理及材料应用现状陈 茜1,鲍崇高2(1.甘肃省金川集团有限公司,甘肃金昌737104;2.西安交通大学材料科学与工程学院,陕西西安710049)摘要:冲蚀磨损存在的工况多,材料失效和工业工程破坏严重。

通过分析液/固双相流过流部件的材料应用及发展现状,冲蚀磨损机理研究现状等,对指导该工况下材料设计、性能研究,特别是新型抗冲蚀磨损材料的应用等至关重要。

关键词:冲蚀磨损;机理研究;材料应用中图分类号:T G174.1 文献标识码:A 文章编号:100028365(2005)0620548203Mechanism and Materials Application by Liquid 2Solid Du al PhaseE rosion Wear and Its R esearch AdvancesCH EN Qian 1,BAO Chong 2gao 2(1.Gansu Jinchuan Group Ltd.,Jinchuan 737104,China ;2.School of Material Sci.&Eng.,Xi ’an Jiaotong University ,Xi ’an 710049,China )Abstract :Erosion 2wear conditio n exist in many industry ,and materials failure and engineering dest royed are serious.In t his paper ,mechanism research and materials application by liquid 2solid dual p hase ero sion wear and it s research advances have been systematically st udied ,and it is very important to guidance materials design and performance st udy ,especially new materials application wit h resistant erosion wear.K ey w ords :Ero sion 2wear ;Mechanism research ;Materials application 1 工程背景冲刷腐蚀(Ero sion 2Corro sion )是金属表面与腐蚀流体之间由于高速相对运动而引起的金属损坏现象[1],是材料受冲刷和腐蚀协同作用的结果。

水煤浆离心泵内固液两相流场的数值模拟研究的开题报告

水煤浆离心泵内固液两相流场的数值模拟研究的开题报告

水煤浆离心泵内固液两相流场的数值模拟研究的开题报告一、选题的背景和意义水煤浆是一种含有一定浓度煤粉的水溶液,在燃烧过程中可以代替部分固体燃料,从而降低环保和成本压力。

水煤浆离心泵作为水煤浆输送系统的核心部件,在输送过程中扮演着至关重要的角色。

然而,由于水煤浆离心泵中存在固体颗粒,这些颗粒的存在对泵的性能造成了影响,影响包括流量、压力、泵头等方面,使得泵的使用寿命缩短,降低其传输效率以及其可靠性,制约了水煤浆输送技术进一步发展。

因此,开展水煤浆离心泵内固液两相流场的数值模拟研究,对于提高水煤浆水平传输的效率和可靠性,具有重要意义。

二、研究现状和进展目前针对水煤浆离心泵内固液两相流场的研究主要集中在两个方面:1、数值模拟方法的发展。

数值模拟方法包括基于欧拉数学模型的CFD方法和基于拉格朗日数学模型的DEM方法。

其中CFD方法主要研究流体相的运动规律,难以处理颗粒相的运动规律;DEM方法主要研究颗粒相的运动规律,但忽略了流体相的影响。

因此,目前常常采用耦合CFD-DEM方法对水煤浆离心泵内固液两相流场进行模拟。

2、模拟结果的验证与优化。

模拟结果的验证主要通过实验方法进行,主要包括高速摄影技术、激光多普勒测速技术以及压力测量技术等。

通过对模拟结果和实验结果进行对比分析,对水煤浆离心泵的结构参数和工作参数进行优化,提高其传输效率和可靠性。

三、研究内容与方法本文拟采用耦合CFD-DEM方法,数值模拟水煤浆离心泵内固液两相流场。

主要研究内容包括:1、水煤浆离心泵内部流动场的分析与优化。

分析水煤浆离心泵内部流动规律,通过调整叶轮和泵壳的结构参数以及水煤浆输送的工作参数,优化泵的结构和工作条件,提高其传输效率和可靠性。

2、颗粒相的运动规律和沉积规律的研究。

研究颗粒相的运动规律,探究颗粒相在离心泵内的沉积规律以及对流体相的影响。

3、实验与模拟结果的对比分析。

通过高速摄影技术、激光多普勒测速技术以及压力测量技术等,对模拟结果进行验证,并与实验结果进行对比分析,验证模拟方法的可靠性和优化效果。

9_固液两相流动

9_固液两相流动

1.2 环空固液两相流动机理
3.悬移质运动
当钻井液以紊流形式运动时,由于紊流的扩散作用使钻井液各层之间不仅 有动量的交换,而且也有质量(岩屑)的交换。当岩屑沉速小于钻井液径向脉 动速度时,岩屑就可能以悬移的形式运动。
环空流态为紊流时,其紊动猝发体以低速自岩屑床面附近上升过程中,也 携带了那里的岩屑。当猝发体崩解时,岩屑达到悬浮最高点,转而开始下沉。 在降落过程中,一部分岩屑被正在向岩屑床层运动的高速带所攫取,回到近壁 流区,另一部分岩屑落入正在上升的漩涡中,又转而向两侧散开,形式一股新 的向上抬升的低速带。就这样岩屑进入悬浮状态,形成一种动态平衡。
岩屑运移最小返速模型由于计算简便在现场得到了广泛应用,但 它无法描述斜井段和水平井段形成岩屑床后的岩屑运移规律,即不 同水力条件下的岩屑床高度和环空压耗的变化规律。这就需要建立 环空中存在岩屑床时的分层流动模型,其研究方法可以概括为实验 回归和理论建模两大类。不考虑岩屑床的累积和运移过程,环空流 动达到稳定时的岩屑状态计算模型称为岩屑运移稳定模型。
bSb
i Si
Fgb
Ffb
扩散方程 Csd 1
exp[ h sin ( y h)]dACb来自Asd Asdp
p 0.0140dssdRe1/3
岩屑床渗流压降
p L
17.3 Re
0.336
f Cbr2
ds (1 Cb )4.8
1.4 岩屑运移稳定流动 1.两层稳定流动
1.4 岩屑运移稳定流动
在滚动过程中,上举力增加,使该颗粒脱离 岩屑床而跳起,当岩屑上升到一定的高度以后, 颗粒的水平分速接近钻井液轴向流速,从这一点 起,该岩屑又转而下落。若跃起较高,则落到床 层后还可以重新跳起,而且还使下落点附近的颗 粒也跳起前移。此时即形成跃移质运动。

固液两相流泵的研究热点和进展

固液两相流泵的研究热点和进展

② 无堵 塞泵 , 包括 旋 流 泵 、 流 道 泵 、 流道 泵 、 旋 单 多 螺 离 心泵 和 开 式 或 半 开 式 离 心 泵 等 , 要 用 于 抽 送 污 主 水、 纸浆 、 维等 , 纤 这类 泵 主要考 虑 的是 堵塞 问题 。 由于 固液两 相流 动 的复杂性 和特 殊性 , 以固液 所 两 相流 泵在 性能 、 声 、 噪 寿命 等 方 面存 在 着较 大 的缺
颗粒 的增 大 , 粒相 对 运 动 的包 角 越 大 , 颗 同时 在 运 动
中会越向叶片里面靠近, 与工作面发生碰撞 的概率会
增加 。 上述两 个实 验结论 在某 些 地方是 相互 矛盾 的 , 如
B K 苏波 隆得 出 的 固 体 颗粒 粒径 越 大 , 相对 运 动 .. 其 轨迹 越偏 离 叶 片 的压 力 面 , 赵 敬 亭 的 结 论 正 好 桂I 而
(h n h i nv ̄t o si c n cnl y S nh i 2 09 , h a Sa g a u i i c nea dt h o g , h g 0 0 3 C i ) e yf e e o a a n
Ab t a t n t e p p r h e e r h sae ft e s l s r c :I h a e ,t e r s ac t tso oi h d—l u d t h s o u s man y i t d c d tsae r m e i i q wo p a ef w p mp i l il nr u e .I t tsfo t o h i h rn a s o o n e e t w f w,p roma c p i z t n, h e in a d t e meh so e r s a c f h oi l l f e fr n eo t mi i a o t ed sg n h to f h e e r ho e s l d t t d—l u d t o p a ef w i i h s o q w l p mp F u o sb e r s a c ie t n r as d a a t u . o rp s il e e h d r ci sa e r i t s . r o e l Ke r s oi y wo d :s l d—l i w h s o u i d t o p a e f w p mp;i el r u r a d ei g x e i n a t d u q l mp l ;n mei lmo l ;e p r e c n me t su y l

9_固液两相流动分析

9_固液两相流动分析

9_固液两相流动分析固液两相流动是指固体颗粒悬浮在流体中并随流体运动的现象。

这种流动现象在工业生产过程中普遍存在,例如颗粒床干燥、固液混合搅拌等。

准确地分析和掌握固液两相流动的基本特征对于改进工业生产过程的效率和品质具有重要意义。

本文将从物理特性、固液两相流动模型和数值模拟三个方面进行详细分析和探讨。

固液两相流动的物理特性是理解和研究该现象的基础。

流体的物理特性主要包括粘度、密度和表面张力,而固体颗粒的物理特性主要包括粒径、形状和硬度。

这些特性决定了固液两相流动的行为和性质。

例如,在粘度较大的流体中,颗粒强烈地与流体互动,形成较稠密的颗粒床;而在粘度较小的流体中,则可能形成颗粒的分散悬浮态。

颗粒的粒径和形状会影响颗粒与流体的相互作用,从而影响流动行为。

硬度则决定颗粒在流体中的磨损和碎裂情况。

固液两相流动的模型是描述和预测流动特性的理论工具。

最常用的两种模型是连续相模型和离散相模型。

连续相模型将固液两相看作连续介质,通过求解连续介质的连续性方程、动量方程和能量方程来描述流动。

此模型适用于颗粒浓度较低和流体粘度较大的情况。

离散相模型则将流体和颗粒看作离散的个体,通过追踪个体之间和个体与容器之间的相互作用来描述流动。

此模型适用于颗粒浓度较高和流体粘度较小的情况。

这两种模型常常结合使用,以更好地反映实际情况。

数值模拟是对固液两相流动进行分析和预测的主要方法之一、数值模拟采用数值方法求解连续性方程、动量方程和能量方程,以获得流动过程中的流速、颗粒分布、浓度和温度等信息。

常用的数值模拟方法包括有限体积法、有限元法和粒子法等。

这些方法在不同的场景下有不同的优势和适用性。

例如,有限体积法适用于颗粒浓度较低且流体流速较慢的情况,而粒子法适用于颗粒浓度较高且流体流速较快的情况。

数值模拟可以提供细致的流动特性分布,辅助工程设计和优化。

总之,固液两相流动是工业生产中常见的流动现象,对其进行准确的分析与研究具有重要意义。

固液两相流泵的研究现状及展望

固液两相流泵的研究现状及展望

固液两相流泵的研究现状及展望张敬斋;汪军;杨骏【摘要】重点阐述了固液两相流泵的研究现状及其进展.在内部流动特性方面介绍了固体颗粒在叶轮内部的流动规律,研究了泵内部过流部件的磨损规律及抗磨措施;外部特性主要介绍了泵的几何参数对泵性能的影响.介绍了四种固液两相流泵的水力设计方法,并进行了分析,指出了四种设计方法对固液两相流理论发展的影响.从理论、试验研究和实际应用等方面分析了固液两相流泵性能优化的方向,并对固液相流泵的设计和应用作出了展望.【期刊名称】《能源研究与信息》【年(卷),期】2014(030)001【总页数】7页(P1-6,17)【关键词】固液两相流泵;数值模拟;设计方法【作者】张敬斋;汪军;杨骏【作者单位】上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093【正文语种】中文【中图分类】TH311固液两相流泵广泛应用于疏浚、煤炭、矿山开矿、化工、电力、土建、冶金和环保等行业,它输送的对象多为水与固体颗粒混合形成的混合物[1-2].因其工作条件的特殊性,使得过流部件磨损严重,泵的整体寿命大大缩短,运行效率低,造成能源和设备大量浪费.这一问题引起了国内外学者的高度重视,相关理论和试验研究也取得了一定的成果.70年代末国内研究人员开始了固液两相流泵设计理论和设计方法的研究,起步相对较晚[3].此后,基于两相流理论设计的泵开始逐步得到应用.许多学者运用了多种新方法和新技术对固液两相流泵进行试验研究,积累了大量经验和数据,为我国固液两相流泵的研究奠定了基础.1 固液两相流泵的研究现状1.1 固体颗粒对固液两相流泵运行的影响离心泵在输送固液两相流时与输送单相流时相比,其运行性能发生了很大的改变.当所输送固体的质量浓度较大时,相同流量下,泵效率降低,扬程降低,功率增大,内部磨损更严重.固液两相流对泵运行性能的影响主要有两方面:一方面,由于固体颗粒的存在使泵磨损严重,尤其是过流部件;另一方面,固液两相流泵内部流体的流态十分复杂,不同时刻颗粒的运动状态和受力状态变化因素增加,泵内部能量转换的有效性降低.1.2 固体颗粒在叶轮内的运动规律固体颗粒的运动特性和泵的运行性能密切相关.通过了解固液两相流泵内部颗粒的运动轨迹和颗粒碰撞机理,可为提高固液两相流泵的性能和使用寿命开辟新的道路. 国外学者相对较早开始此项研究.20世纪60年代开始采用高速摄影和图像处理技术研究固体颗粒的运动规律,并取得了一系列具有代表性的研究成果.Itaya等利用高速摄像机对固体颗粒在泵内的运动轨迹拍照,固体颗粒为玻璃球,粒径分别为5.19、8.82、12.75 mm,叶片出口安装角分别为15°、25°、35°、45°.将理论计算值和实测值进行对比,结果基本一致,发现粒径大小对固体颗粒的运动轨迹几乎没有影响[4].苏波隆利用高速摄像机拍摄了砂砾在叶轮内的运动规律,结果表明:小颗粒(1~2mm)沿着叶片工作面以10°左右的出口角离开叶轮;而大颗粒(8~10 mm)由于离心力作用背离叶片工作面以30°~35°的出口角离开叶轮[5].Zaya利用高速摄影技术得到直径d分别为7.4 mm的钢球和7.5 mm的铝球在泵内运动的速度实测值,研究结果表明:颗粒质量越小越朝背离叶片工作面方向运动;颗粒质量越大则沿着叶片工作面运动[6].国内方面,赵敬亭等通过理论计算并经实验检验发现:当颗粒密度大于某个临界值时,颗粒自进入叶轮流道到离开叶轮流道的过程中向叶片工作面靠近;当密度小于该临界值时,颗粒则向叶片背面靠近,并随着密度和粒径的减小这种趋势越明显[7].许洪元等利用高速摄像机拍照并进行数值计算,颗粒分别为豆类(d=4、6、8 mm)、玻璃球(d=4、6、8 mm)、钢球(d=6、12 mm)、石子(d=1~2 mm、5~6 mm),且在不同叶轮转速和不同叶片形状下进行实验,得到叶轮中固体颗粒运动轨迹.结果表明:质量大的粗颗粒与叶片头部相撞获得能量而偏离工作面运动;质量小的细颗粒不会集中撞击叶片头部而是沿着叶片工作面运动,但会在工作面出口处聚集,从而磨损叶片,造成叶片尾部快速磨损[8-9].戴江利用高速摄影和图像处理技术对固液两相流在离心泵内的流动规律进行了研究,得到叶轮内d=1~2 mm砂粒的浓度分布规律[10].吴玉林等对渣浆泵内固体颗粒的运动规律作了实验研究,同时对渣浆泵叶轮内的二维湍流流动进行了计算,并与实验作了对比[11-13].综上所述,针对泵内固体颗粒的运动规律研究人员有三种不同的观点:① 颗粒质量越大,其运动轨迹越靠近叶片工作面;② 颗粒质量越大,其运动轨迹越偏离叶片工作面;③ 一定范围内颗粒质量对其运动轨迹影响不明显.三种结论完全不同,得出的观点甚至完全相反.国内大多数学者都赞同第一种观点,在此基础上形成了固液两相流泵理论,并在固液两相流泵的设计方面取得了一定的成果.由于实验模拟中,为便于高速摄影,固体颗粒粒径大且质量浓度低,因此这些研究尚无法从根本上反映运行泵内固体颗粒的实际运动轨迹,还需进行系统的研究.1.3 固液两相流泵磨损研究由于固液两相流泵输送的介质含固体颗粒,这使得磨损成为固液两相流泵的主要问题之一,且磨损问题严重与否直接关系到泵的使用寿命.造成壁面磨损的原因一般分为三种:① 流体中所含颗粒冲击造成的损伤;② 汽蚀损伤;③ 颗粒冲击和汽蚀共同作用造成的损伤.由于颗粒冲击损伤和汽蚀破坏之间互相影响,使过流部件磨损更加严重.因此,系统地掌握磨蚀规律能够更好地指导泵内部部件参数化优化设计,提高其工作效率和寿命.Warman国际公司对一种高效率的几何泵(HE)进行了磨损规律研究,主要考察了泵转速和浆料浓度对磨损的影响.试验中浆料保持实际工作状况下的质量浓度基本不变,泵体和叶轮材料采用易磨损的铸铁以提高磨损率,颗粒直径d≤700 μm.试验表明泵入口侧壁的内衬板的磨损破坏程度高于叶轮和壳衬.同时在不同的流量下对三种不同几何设计的侧衬进行冲蚀磨损研究,流量控制在0.6 Qbep~1.0 Qbep(Qbep 为最高效率点对应的流量),结果表明:侧衬在大颗粒(1 000 μm)的冲蚀作用下磨损率变化不大;小颗粒时侧衬的冲蚀磨损率随流量的增加而下降[14].2007年,Khalid等对离心式渣浆泵叶轮进行了磨损失效分析,提出了降低渣浆泵磨损的措施[15].何希杰等对渣浆泵进行了快速磨损试验研究,试验中叶轮和泵体均采用铸铝材料,以比较坚硬的石英砂为磨粒,固液混合物中固体的质量浓度控制在30%~40%.为了测得各个阶段的磨损情况,每运转6 h(共运转42 h)拆检一次并更换磨粒,同时对泵体和叶轮的磨损情况进行观测.试验结果表明:① 磨损从叶轮进口向出口逐渐增强,磨损最严重的地方是叶片工作面出口部分及其出口处,同时混合物中大颗粒越多,进口处磨损越快;② 叶端总的磨损量与固液混合物液流径向分速度有关;③ 叶轮和泵体的磨损量在总磨损时间的3/7时,磨损量分别为总磨损量(磨损前的泵体和叶轮看作为总磨损量)的53.5%和62.2%,此时扬程下降近1/3,而在磨损结束时扬程下降近1/2;④ 叶轮和泵体的磨损率在总磨损时间的1/7~3/7时为最高,磨损最快;⑤ 颗粒以很高的径向速度撞击泵体圆周壁面,并在此壁面上形成滑动床,所以泵体圆周壁面磨损严重.何希杰等还采用数理统计和回归方法对渣浆泵现场使用寿命的试验资料进行了分析研究,得出了预测渣浆泵使用寿命的经验公式,为渣浆泵设计研究、选型和现场运行提供了有利的工具,并提出了防磨措施[16-17].李双寿等[18]采用正交试验方法对ADI(奥贝球体)渣浆泵叶片的磨损机理进行了研究,探讨了叶片材料、叶片参数和热处理工艺以及叶片力学性能、磨料等对叶片磨损的综合影响.研究表明,材料的特性对叶片磨损的影响比叶片参数和磨料种类的影响大.观察磨损的叶片发现,因受到流体作用不同,叶片不同部位的磨损程度也存在差异.ADI叶片头部以冲击磨损为主,磨损较严重;中部和尾部压力面受切削和碾压作用;中部和尾部吸力面以汽蚀为主,磨损最为严重.叶片磨损示意图如图1所示.该研究对叶轮叶片磨损失效机理进行了分析,并首次结合了材料的抗磨性分析,使两个不同领域有了有效的结合[18].由于过流部件磨损严重,材料价格昂贵,很多学者提出了耐磨陶瓷内衬、高耐磨橡胶以及Sialon-SiC耐磨陶瓷等三种渣浆泵的制备方法[19-21],以减少磨损.图1 叶片磨损示意图Fig.1 Schematic diagram of blade wear1.4 外部特性研究20世纪30年代起,国内外很多研究人员开始研究浆体质量浓度和泵本身参数对泵性能的影响.对于不同质量浓度的浆体,泵的性能变化不同.质量浓度一定时,泵输送细颗粒浆体时的效率有时会高于泵输送清水时的效率;而输送粗颗粒浆体时的效率一般低于清水泵的效率.对于不同种类的泵,在输送固液两相流时都有一个最佳的输送质量浓度.由此可知,泵过流部件的几何参数对泵的性能有一定的影响.叶轮出口角对泵的性能也有重要影响,在流量和转速一定时,离心泵应存在一个叶片出口角可使泵的效率达到最高[22].刘栋等应用计算流体力学FLUENT软件对3台叶片出口安装角不同的离心泵进行了数值模拟,分析了叶片出口安装角对泵内部固液两相流场的影响.研究表明:颗粒更容易在出口安装角大的叶片压力面聚集,且颗粒体积分数最大的区域偏向叶片压力面出口,使得更多的颗粒与叶片尾部压力面相撞,加速叶片磨蚀,故减小叶片出口角可减小颗粒聚集,从而提高叶轮寿命[23].杨华等对不同叶片包角的离心泵作了试验与数值模拟计算.结果表明,在叶轮外尺寸相同的情况下对叶片造型的设计存在最佳的叶片包角,包角取值不宜过大也不宜过小,同时得出单圆弧叶型不是最佳叶型[24].2 固液两相流泵的水力设计从20世纪60年代起,国内外学者开始关注固液两相流泵的水力设计,通过改变泵内部结构提高泵的效率.由于固液两相流泵设计技术不成熟,只能借鉴水泵的设计方法.由于输送介质的特殊性,因此无法从根本上解决磨损快和泵效率低的问题.近年来,国内外固液两相流泵水力设计方法有以下几种,其中前三种最常用.2.1 经验统计速度系数法经验统计速度系数法是以清水泵的公式为基础,结合国内外泵设计资料和试验数据推导出两相流泵的设计公式.公式中引入了可反映输送介质影响的系数.80年代初,刘湘文提出了离心式泥浆泵的设计方法[25],其设计要点包括:叶轮外径、叶片宽度、叶片入口角的计算公式,叶片出口角的选取,叶片型线采用双圆弧曲线或对数曲线,采用螺旋形护套,压出室水力设计和隔舌位置的确定等.由于该方法的建立是基于相似理论,没有从根本上脱离清水泵的设计方法,且和泵内部的两相流动相差太大,因此所设计的固液两相流泵的效率较低.虽然我国专家提出了几种经验公式,取得了一些成功案例[26-27],但这些公式不能普遍应用于固液两相流泵的设计,而且经验公式的总结需要大量的数据,这样就导致了这些经验公式的局限性.2.2 畸变速度设计法20世纪80年代初,蔡保元教授提出了两相流畸变速度设计法[28].其理论依据是:流体机械只能转换液体的能量而不能转换固体的能量,固体的能量是通过液体间接转换的,这是由于固体颗粒是在水流“裹协”下运动,可把固体颗粒作为水流运动的不连续边界条件.由于固体颗粒的影响造成液体的速度场和过流通道产生了畸变,使固体获得一定的能量,从而产生运动.在泵的入口,固体颗粒的速度小于液体速度,固体颗粒对水流的过流通道产生阻塞作用,使水流的过流通道变窄,水流畸变速度升高.反之,在泵的出口处,固体颗粒的速度大于液体速度时,固体颗粒相则产生抽吸作用,使水流的过流通道扩大,水流畸变速度降低.根据两相流的畸变速度场和两相流理论设计出泵的叶型和流道.水利电力部电力建设研究所使用畸变速度设计法先后研制了六种不同类型的杂质泵.这些杂质泵水力效率较高,泵的最高效率ηmax=70%~80%,汽蚀性能良好,泵的最高扬程Hmax=6~8 m水柱.从上可知,采用该方法研制的各种杂质泵水力效率高,使用寿命长,并可进行高位布置.这是由于该方法将两相流动理论应用于固液两相流泵的设计中,考虑了固体颗粒在流动中的影响,因此使其设计更为准确可靠.该方法进一步结合了泵内的两相流动规律,对固液两相流泵理论和设计方法的深入研究有极大的推动作用.虽然该方法首次把两相流设计理论运用到固液两相流泵的设计中,但是该理论还存在一定的争议,并且该方法设计的固液两相流泵的效率取决于泵内固体和液体的运动速度,通过计算得出的运输方程与实际有一定的差异,因此采用此理论设计的固液两相流泵必须要经过统计分析,并结合实践经验和一般水泵设计方法,才能完成设计任务.2.3 两相流速度比设计法按固液两相速度比进行固液两相流泵水力设计的方法称为两相流速度比设计法.该方法80年代末由许洪元提出[29],其设计理论(简称X理论)基本要点是:对固液两相流泵中的固液两相流动应用分离流动模型,在流道不同部位固体颗粒受力不同,固液两相之间的速度比发生变化,使两相流体的质量浓度比也随之变化.将得到的速度比方程应用于离心泵的设计中,推导出固液两相流泵的设计计算式.该设计方法考虑了泵中固液两相速度比的变化规律,使泵内过流部件能有效地转换能量,减少了泵的局部高速磨蚀,因此提高了泵的效率和寿命.实践证明,采用该方法设计的固液两相流泵有很大的优越性.许洪元设计了300GY-M型固液两相流泵,并在云南锡业公司所属新冠选矿厂进行了工业性能测试,结果表明,其效率比12PN-7型泵高14.3%,且耐磨性强,寿命长,振动和噪声明显减小[29];采用该方法设计的100XG-D1型固液泵优于国外同规格固液泵(如表1所示),最高效率达74.6%,抽送固液两相流时最高效率高于抽送清水的最高效率,高效区宽,适应性强,使用寿命长[30].在X型固液两相流泵的推广过程中发现,同一种口径的固液两相流泵因为工况不同,泵的运行参数相差较大,所以在选型时需考虑选用不同的设计参数.表1 不同泵的性能对比Tab.1 Performance comparison of different pumps型号最优流量下的性能指标(清水测试值)流量Q/(m3·h-1)扬程H/m水柱转速nmax/(r·min-1)最高效率η/%比转速ns100XG-D1固液泵26043145074.684.76/4E-AH沃曼泵256431 45059.584.06/4LXL-36两相流泵252391 45066.689.7100NG-40两相流泵210381 47063.084.74PN泥浆泵200371 47061.084.32.4 两相流流场分析设计法两相流流场分析设计法是基于固液两相流边界层理论提出的.该理论在设计中的利用主要有两个方面:其一是对过流表面的水力效率分析;其二是确定泵的叶片型线.从泵的流体动力学性能方面看,叶轮的叶片优劣并不在于叶片型线是“双圆弧”还是“变角螺旋线”,而主要取决于固液两相流在叶片表面沿出口方向(沿程方向)是否产生较大程度的边界层分离.边界层的分离可由边界层理论确定,而泵的理论扬程以欧拉方程为其表现形式.将固液两相流的边界层理论和欧拉方程相结合提出了固液两相流泵设计方法,通过流动简化,提出了叶片型线方程[31].这是一个较为新颖和全面的方法.随着计算机技术的迅速发展,许多大型的流场计算及性能预测软件随之出现,例如CFD、CFX、FLUENT、STAR-CD等软件.利用这些软件对泵进行流动规律分析和性能预测,并对最初的设计进行修改,直至达到最佳的效果[32],使得产品研发时的准确性大大提高,周期更短,成本更低.但采用该方法设计的泵没有互换性,使用范围比较窄,很多方面需要运用传统方法加以修正,但在固液两相流泵的设计中已成为主要方法之一.3 固液两相流泵的性能优化固液两相流泵的效率主要受限于过流部件,而过流部件由于受到固体颗粒的冲击磨损效率普遍较低.所以对固液两相流泵效率的研究主要是针对叶轮的研究.因此人们对此进行了广泛的研究,并建立了众多的模型和计算方法.Herbich等通过试验研究了几何参数不同的叶片对泵性能的影响,叶片线型分别取单圆弧、双圆弧、渐开线和对数螺线等四种叶型,进口安装角为45°,出口安装角分别为35°、28.75°和22.5°.结果显示,当出口安装角为22.5°时叶片效率最高,叶片量磨损最小.渐开线和对数螺线叶型的叶片效率无差别,比单圆弧叶片高6%左右[33].王幼民等提出了以叶轮叶片出口宽度、出口角、直径、叶片数、进口直径、进口角、进口宽度为设计变量,以泵的能量损失最小为目标函数的泵叶轮的优化设计模型及优化计算方法[34].除了对过流部件的优化,很多学者在泵的其它方面也做了很多的研究,以提高泵的整体效率.在泵内固液两相流中,由于固体的质量浓度不同,存在着牛顿流体和宾汉流体两种不同的流态[35].在宾汉渣浆流体中存在着一种柱状流动现象,由于柱状流动中层流薄层内的水成为柱体与管壁之间的润滑剂,因此泵内中柱状流动的摩擦损失要比清水时小,使泵的效率和输送效率都比较高.当流动为紊流状态下的牛顿流体流动时,可在流体中加入添加剂实现降阻,提高泵的工作效率.在实际工程中应针对相应的情况选择不同的添加剂提高效率,优化泵的性能.另外,应根据实际情况选用相应的固液两相流泵,使泵的效率最大化,同时也可根据泵的工作状态进行相应设计.虽然此方案在具体应用中有一定的困难,但随着经验的丰富仍可实现批量生产,从而减少成本,提高固液两相流泵效率.目前,我国在固液两相流泵的性能优化方面做得还不够好.在设计方面,已完成的固液两相流泵的优化计算还存在很多的问题,优化对象有很大的局限性,同时单目标的优化并不能从整体上彻底提高泵的效率,优化结果很不理想.但是随着计算机技术的发展和两相流理论的逐渐成熟,固液两相流泵的性能将得到较大的提高.4 结论由于固液两相流泵内流动的复杂性,以致很多问题还有待解决.因此,在今后的研究中,应注意以下几个问题:(1) 利用数值模拟对泵内的流动规律和颗粒分布特征进行更深入的研究,具体分析泵的磨损特性,积累数据,建立一套全面、完备的资料数据库,为固液两相流泵的抗磨损设计提供依据.(2) 加强固液两相流泵水力设计的CAD、CFD软件的开发,把最新的计算机技术应用于固液两相流泵的优化设计中.(3) 固液两相流泵的水力设计还没有统一的理论设计方法,可根据最新的两相流理论和经验进行研究,建立完善的设计方法.(4) 对现有固液两相流泵的数据进行归类,针对不同环境应用不同种类的泵或者进行相应的设计,以提高固液两相流泵的工作效率.参考文献:[1] 丁厚福,卢书媛,崔方明,等.冶金矿山湿式磨机衬板钢冲击腐蚀磨损行为的研究[J].兵器材料科学与工程,2003,26(6):31-35.[2] 姚丽琴,张红兵.大中型水泵空蚀与泥沙磨损预防及修复技术[J].科技情报开发与经济,2005,15(6):265-268.[3] 陈次昌,刘正英,刘天宝,等.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.[4] ITAYA T,NISHIKAWA T.Study on sand pumps[J].Trans of the JSMEB,1963,29(207):1786-1794.[5] 苏波隆 B K.混合液在泥浆泵流道中的流动特性的研究[J].杂质泵技术,1986(12):36-54.[6] ZAYA A N.The effect of the solid phase of a slurry on the head developed by a centrifugal pump[J].Fluid Mechanics-Soviet Research,1975,4(4):144-154.[7] 赵敬亭,赵振海.离心泵流道中固体颗粒的运动[J].水泵技术,1990,26(1):1-6.[8] 刘娟,许洪元,唐澎,等.离心泵内固体颗粒运动规律的实验研究[J].水力发电学报,2008,27(6):167-172.[9] 许洪元,吴玉林,高志强.稀相固粒在离心泵轮中的运动实验研究和数值分析[J].水利学报,1997,28(9):12-17[10] 戴江.离心泵叶轮内固液两相紊流流动规律的研究[D].北京:清华大学,1994.[11] 吴玉林,许洪元,高志强.杂质泵叶轮中固体颗粒运动规律的实验[J].清华大学学报(自然科学版),1992,32(5):52-59.[12] WU Y putation on turbulent dilute liquid-particle flows througha centrifugal impeller[J].Multiphase Flow,1994,32(8):118-125.[13] 吴玉林,曹树良,葛亮,等.渣浆泵叶轮中固液两相湍流的计算和实验[J].清华大学学报(自然科学版),1998,38(1):71-74.[14] WALKER C I,BODKIN G C.Empirical wear relationships for centrifugal slurry pumps:Part 1:side-liners[J].Wear,2000,242(1/2):140-146.[15] KHALID Y A,SAPUAN S M.Wear analysis of centrifugal slurry pump impellers[J].Industrial Lubrication and Tribology,2007,59(1):18-28.[16] 何希杰,张勇,李金生,等.渣浆泵现场寿命的预测方法[J].流体机械,2001,29(1):21-23.[17] 何希杰,李淑红,寇玉芬.渣浆泵快速磨损试验研究[J].水泵技术,2004,40(5):25-27.[18] 李双寿,卢达溶,洪亮,等.ADI渣浆泵叶片磨损机理的研究[J].流体机械,2000,28(6):5-8.[19] 杨昌桂,杨政,刘星陵,等.耐磨陶瓷内衬渣浆泵:中国,CN201083212[P].2008-07-09.[20] 赵敏.一种渣浆泵用高耐磨橡胶及其制备方法[J].橡胶工业,2009,56(12):738.[21] 刘宝林,高德利,杨景周,等.Sialon-SiC耐磨陶瓷的制备及液固冲蚀磨损性能研究[J].金属矿山,2009,39(6):132-135.[22] 谈明高,刘厚林,袁寿其,等.离心泵出口角对能量性能影响的CFD研究[J].中国农村水利水电,2008(11):104-106.[23] 刘栋,杨敏官,董祥.出口角对离心泵内固液两相流动影响[J].排灌机械,2009,27(1):1-5.[24] 杨华,刘超,汤方平,等.不同叶片包角的离心泵试验与数值模拟[J].机械工程学报,2007,43(10):166-169.[25] 刘湘文.离心式泥泵系数设计法[J].水泵技术,1982,18(2):47-49.[26] 郭晓民,许锡夺,颜春万.经验法设计渣浆泵小结[J].水泵技术,1996,32(1):16-20.[27] 赵振海.渣浆泵的抗磨设计[J].水泵技术,1993,29(3):11-15.[28] 蔡葆元.离心泵的“二相流”理论及其设计原理[J].科学通报,1983(8):498-502.[29] 许洪元.渣浆泵的固液流设计原理[J].工程热物理学报,1992,13(4):389-393.。

固液两相流与颗粒流的运动理论及实验研究

固液两相流与颗粒流的运动理论及实验研究

固液两相流与颗粒流的运动理论及实验研究近年来,随着科学技术的迅猛发展,固液两相流和颗粒流的工程应用日益增多,因此这些研究的研究日趋深入。

与这些领域的其它技术不同,固液两相流和颗粒流是一种复杂的系统,受到多种因素的影响,包括物理性质、流体动力学和流体流动等,它们的运动特性受到外部环境的巨大影响。

因此,对固液两相流与颗粒流的运动理论及实验研究具有重要意义。

本文将就固液两相流和颗粒流的运动特性进行分析,并结合实测数据进行深入探讨。

固液两相流与颗粒流的运动特性通常可分为流体粒子运动特性、粒子间相互作用特性、粒子边界表面特性、质量传输特性和流体动力学特性等几个方面。

流体粒子运动特性是指固液两相流和颗粒流在外界力作用下的运动规律,比如流体的总体运动方向、流体流速和应力状态等。

粒子间相互作用特性指的是粒子之间的相互作用,包括粒子的互相依赖、粒子的能量转化和粒子的互相影响等。

粒子边界表面特性是指粒子边界表面与固液两相流和颗粒流之间的相互作用,可以影响流体流动和影响粒子间相互作用。

质量传输特性指的是在固液两相流和颗粒流中,物质的传热和传质状态,可以影响粒子的运动规律。

流体动力学特性指的是在液体流动方面,流体的总体压力、动能代数、应力状态等,它们可以影响固液两相流和颗粒流的运动特性。

结合实测数据,我们发现,固液两相流和颗粒流的运动特性是一个复杂的耦合系统,由多种因素共同作用而形成。

流体粒子运动特性是由多方面因素共同作用形成的,特别是受外界环境因素的影响比较大,这些因素包括流体粘性,流体压力,流体温度,流体流动等。

粒子间相互作用特性受到粒子间离子层结构和粘性等方面的影响,也受到物质传输的影响,当物质传输的速率高于粒子间的离子层结构时,粒子间的相互作用会变得很弱。

粒子边界表面特性受到流体的浸润性影响,因此,粒子边界表面的粘性系数是关键因素之一。

质量传输特性是由物质的传热和传质状态共同决定的,物质的传输能力受到表面张力和质量流率的影响,这关系到粒子之间的聚集程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固液两相流的研究现状及进展摘要:本文主要写了固液两相流泵在国内的研究现状以及分别从内特性、外特性两方面对国内固液两相流泵的研究进展进行分析。

文中还给出了对固液两相流动中的最佳流动模式进行了探讨及固液两相流泵常用研究方法的分析。

关键词:固液两相流泵数学模型流动模式牛顿流体1.固液两相流泵在国内的研究背景我国对液固两相流泵的研究则始于20世纪70年代末80年代初,直到80年代中期以后按两相流理论设计的泵才逐步得到应用。

经过几十年的努力,我国两相流泵技术也得到了长足的发展, 国内许多学者应用两相流理论对固液泵进行了水力设计和试验研究, 积累了许多很有价值的经验和数据, 为我国对液固两相流泵的研究开辟了广阔的道路。

2.国内固液两相流泵的研究现状固液两相流泵的基本概念通常分为两类①杂质泵,包括泥浆泵、砂泵、挖泥泵等,主要用于冶金、矿山开采、电力、煤炭、水泥等行业抽送尾矿、精矿、灰渣、煤泥、水泥等,也可用于江、河、湖、海的挖泥和疏浚。

离心式泵约占杂质泵总量的70% 左右,这类泵主要应考虑磨损问题。

市场调查发现: 上海主流泵生产企业生产的离心式的固液两相流泵主要是渣浆泵。

②无堵塞泵,包括旋流泵、单流道泵、多流道泵、螺旋离心泵和开式或半开式离心泵等,主要用于抽送污水、纸浆、纤维等,这类泵主要考虑的是堵塞问题。

由于固液两相流动的复杂性和特殊性,所以固液两相流泵在性能、噪声、寿命等方面存在着较大的缺陷。

为了克服上述缺点,国内外学者先后通过理论分析,实验研究和数值模拟等方法深入研究固液两相流泵的流动机理,优化泵的设计来提高其效率和寿命,降低噪音。

3.固液两相流泵的研究理论3.1外特性研究20 世纪30 ~ 60 年代,国外学者研究固液相的性质与外特性关系得出的主要结论是: ①泵的扬程随着浓度的增加而下降; ②泵的功率随着浓度的增大而增大; ③泵的效率随着浓度的增加而下降;④泵的最高效率点向着小流量区偏移。

固液混合物的性质( 浓度、比重、粒径) 对离心泵性能方面的影响。

固液混合物按固相比例分为高浓度和低浓度。

由于实际应用和实验大多数是在低浓度下,固体颗粒的质量分数上限为35% ,而对应的体积分数基本在15% 范围内,相当多的文献记载用CFD 方法分析过固相体积浓度为15% 范围内的渣浆泵的流场。

3.2 内特性研究固液两相流的内特性研究主要通过以下几个部分来进行:3.2.1 叶轮内的运动规律代表性的是B. K.苏波隆运用高速摄影技术研究固体颗粒在叶轮内部运动规律时得出的成果: ①叶道内固体颗粒运动轨迹的特点是: 小颗粒( 1 ~2mm) 大致沿着叶片的工作面运动,大颗粒( 8 ~10mm) 由于离心力作用,运动背离工作面; ②叶轮直径等于310mm,大颗粒出口角为30°~ 50°,而小颗粒出口角为10°左右; ③小颗粒分布均匀,大颗粒集中在泵壳内壁。

3.2.2叶轮内部磨损固液两相流泵因其工作介质的缘故,磨损是其面临的主要问题之一。

它的产生原因可分为三个部分:固体颗粒的冲击造成的损伤、汽蚀损伤、损伤和腐蚀共同作用造成的损伤。

工业应用表明: 叶轮是固液两相流泵内磨损最严重的零件,而叶轮出口处又是叶轮中磨损最严重位置之一,叶片工作面与后盖板相交棱角处有很深的条形沟纹,这种条形沟在叶片工作面的不同部位深度和宽度不同,一般在叶轮出口附近最深.甚至有可能使叶片或后盖板洞穿。

叶片非工作面上有凹凸不平的麻坑,但相对工作面磨痕较浅.叶片入口附近有带形的凹坑,个别凹坑很深甚至使后盖板洞穿而导致叶轮失效。

叶轮前后盖板的内表面有颗粒滑痕,除靠近叶片工作面位置外,磨损较轻; 外表面光滑、有均匀磨损痕迹。

离心泵的磨损与颗粒的运动轨迹,速度及分布以及泵内流场有很大的关系。

泵运行过程中产生的Von - Mises 力,随着颗粒的直径、速度、入侵角的增大而增大,而与颗粒的锥顶角负相关。

通过反复试验得出: 采用小叶片出口角β2、少叶片数Z 和大出口宽度b2的叶轮能减轻泵的磨损。

3.2.3 蜗壳内固体颗粒的运动规律叶轮出口的流体沿径向高速流出,夹带的固体颗粒直接冲刷蜗壳圆周外壁,形成高浓度区固相的滑动床,因此比蜗壳侧壁的磨损要严重得多。

数值模拟和试验研究还显示,在对称轴面按螺旋角增大方向的固相分布规律是: 冲击磨损最为严重的是隔舌位置; 磨擦,磨损逐渐加剧。

4 两相流泵数学模型建立4.1 单流体模型这种模型把离散固体颗粒和流体看作混合流体来处理, 流体与固体之间的流动参数与混合物平均运动参数之间用一个附带扩散速度本构关系的所谓扩散方程联系起来, 所以不需用颗粒动量和能量方程, 只要有固体颗粒的连续方程或扩散方程即可。

这种模型直观、简单。

但由于其没有考虑两相之间的相互作用和相互影响,不能反映泵内部两相流的运动规律。

4.2双流体模型。

双流体模型认为固体颗粒和流体相之间存在速度差, 存在相互作用和影响, 并认为颗粒具有与流体类似的湍流特性。

此模型的处理方法一般是分别建立流体相和固体颗粒相的基本方程,并通过颗粒与流体之间的相互作用来使两相联系。

4.3固相颗粒随机轨道模型随机轨道模型把固体颗粒当成离散相,以拉格朗日法进行处理, 而流体相用欧拉型的连续介质模型来描述。

考虑流体对颗粒的作用,计算颗粒轨迹及其沿程变化, 归结于用Monet-carlo方法求解颗粒的瞬态动量方程。

许洪元等用此模型计算了固液两相流泵叶轮中固体颗粒的运动轨迹, 并与实验结果相比较,能够较好地吻合。

4.4 固液两相湍流的KET模型和动力学模型对于固体颗粒浓度比较大的情况,由于固体颗粒之间碰撞加剧, 用前面介绍的几种模型,会造成比较大的误差。

由此,魏进家等建立了描述密相的液固两相湍流的KET模型。

由颗粒相动力学理论,把密相流动的颗粒运动分为3部分(平均运动、颗粒群的脉动和单颗粒的随机脉动),同时再加上颗粒湍动能的耗散作用。

徐义华等用此模型模拟离心叶轮内的含颗粒幂律流体的两相流动。

唐学林等运用分子动力学法, 基于固体颗粒的Boltzmann方程,得到高浓度液固两相流湍流的连续方程和动量方程,并考虑颗粒的相互作用,由动力学方法推导出高浓度时的颗粒间碰撞项, 由此建立高浓度液固两相湍流的动力学模型。

4.5大涡模拟大涡模拟(LES)是通过滤波函数,在大尺度内直接求解N-S方程对小尺度涡采用亚格子模型(SGS)模拟。

吴玉林等在双流体模型的基础上,用大涡模拟思想,通过滤波函数,分别对流体相和颗粒相建立了连续方程和动量方程, 计算了液固两相流泵固液两相湍流流动, 并与实验结果进行了比较。

5固液两相流泵常用研究方法的分析常用的研究方法主要有理论分析、试验分析、数值模拟。

在20 世纪80 年代之前,研究叶轮机械的主要方法是理论分析和实验研究后来随着电子计算机的发展,数值模拟占据着研究叶轮机械越来越重要的地位。

5.1理论研究在流体力学发展的前期,研究者用理论分析方法来建立叶轮内部流动规律的统一的数学描述。

但由于方程的复杂性,计算能力的有限性,理论研究一直没得到突破。

5.2实验研究试验研究流体机械主要是流体参数的测量和流动的显示。

流体参数的测量主要方法是探针和热线热膜技术缺点是探针等介入会扰动真实流场,且需要复杂的遥测技术将采集信号从转子传递到静止参考系。

传统的流场显示技术又可分为壁面显迹法、丝线法、示踪法和光学法4 类,现代流动显示技术包括: 激光双聚测速仪,能够测量二维流动,测速范围广; 激光多普勒测速仪( Laser Doppler Velocimetry 简LDV) 。

能够测量三维流动,可测出近壁区的流动,但只能获得平均速度,需要选择合适的示踪粒子; 粒子图像测速仪( PⅣ) ,能测量瞬时流动,需要选择合适的示踪粒子,但由于受壁面反射光的影响,近壁区的测量结果尚不理想; 激光诱发荧光( LIF) 技术、激光分子测速( LMV) 技术和压敏涂层测压( PSP) 技术等。

其中LDA 和PIV 是目前应用最多的测速技术。

利用这些方法,在流体机械的研究方面取得了最大的成绩。

5.3数值模拟近年来越来越多的研究人员都热衷于CFD,因为它可方便、快捷、可视化等。

通过这种“数值试验”,可以充分认识流动规律,方便地评价、选择多种设计方案,进行优化设计,并大幅度减少实验室和测试等实体试验研究工作量。

6固液两相流动中最佳流动模式6.1 固液两相流动中的两种流体在固液两相流动中存在着两种流体即牛顿流体与宾汉渣浆流体。

试验证明在含某种固体颗粒的两相流动中, 当固体的重量浓度较低时, 液体呈现出牛顿流体的特性当重量浓度较高时, 流体却呈现出宾汉渣浆流体的流动特性, 这种随着固体重量浓度不同呈现出不同流动特性的现象, 不仅在管道内的两相流动中存在, 而且在泵内两相流动中亦存在。

6.2 宾汉渣浆流体中的最佳流动模式对含某种固体颗粒的两相流体而言, 当固体的浓度增高至某一浓度时, 流体的性质就发生了变化, 从牛顿流体转变成为宾汉渣浆流体。

在宾汉渣浆流体中存在着一种柱状流动现象, 所谓柱状流动是在管壁处存在着一浓度很低, 粘性显著下降的薄层, 在薄层内的流体可看作层流运动的牛顿流体, 在薄层外的管道中部为主流区, 该主流区的两相流动如同固体一样作整体运动。

因此柱状流动实际上是靠近管壁薄层内的层流与管道中部的柱状流的叠加。

由于柱状流动中层流薄层内的水成为柱体与管壁之间的润滑剂, 因此管道中柱状流动的摩擦损失要比清水时的小,当速度变化很快时,管壁附近的速度梯度使处于悬浮状态下的固体获得一种旋转运动。

由于这种自旋运动的结果, 作用在固体颗粒上的侧向力就使之离开管壁而趋向流动中臼这就是物理上的“马格努斯效应” , 它在理论上是有充分根据的。

使用管道在柱状流动的范围内输送固液两相流体, 其经济效益为采用最低流速而不会沉淀, 因而管道阻力损失为最小输送混合物的浓度最高而不会有堵塞管道的危险管道中流速给定时, 柱状流的摩擦损失比层流或紊流时的都要小因此柱状流动是管道中最经济实用的流动模式。

不仅在管道中柱状流动是两相流输送的最经济实用的流动模式, 而且在两相流泵中柱状流动也是输送固液两相流的最佳流动模式。

6.3牛顿流体中的最佳流动模式在固液两相流动中, 当固体的重量浓度较高时, 两相流体呈现出宾汉渣浆流体的特性。

在宾汉渣浆流体中存在着一种最佳流动模式Β一一柱状流动, 在柱状流动状态下, 两相流动的摩擦阻力损失要比清水的小在两相流动中, 当固体的重量浓度较低时, 两相流体呈现出牛顿流体的特性。

在工程流动问题中, 有许多流体是处于紊流状态下的牛顿流体, 在这种流动中是否也存在着一种摩擦阻力损失比清水的还小的流动模式Χ国外学者通过试验发现在紊流状态下的水流中加人固体添加剂可减小内流中的粘性损失, 甚至加人适量的添加剂后其流动损失低于清水时的流动损失。

相关文档
最新文档