阿基米德三角形精编版
阿基米德三角形及其性质

阿基米德三角形及其性质一、阿基米德三角形的概念过圆锥曲线上任意两点作两条切线交于点Q ,则称△QAB 为阿基米德三角形.二、抛物线的阿基米德三角形的性质:(以抛物线22y px =为例) 性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设112200(,),(,)(,)A x y B x y Q x y ,,弦AB 的中点为(,)M M M x y , 则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+, 联立两切线方程,解得1212,22y y y y x y p +==,所以1202y y y +=, 又122M y y y +=,所以0M y y =,即QM 平行于x 轴. 性质2 底边长为a 的阿基米德三角形的面积的最大值为38a p. 证明:Q 到AB 的距离为2121212()224x x y y y y d QM p p+-≤=-=,设AB 方程为x my n =+, 则23222221211(1)()()428a a AB a m y y y y a d S ad p p ==+-⇒-≤⇒≤⇒=≤. 性质3 若阿基米德三角形底边AB 过抛物线内定点00(,)C x y ,则顶点Q 的轨迹方程为00()y y p x x =+.证明:设(,)Q x y ,则由性质1有1212,22y y y y x y p +==, 由AB AC k k =10122221210222y y y y y y y x p p p--⇒=--,化简得1201202()y y px y y y +=+, 即0000222()px px yy yy p x x +=⇒=+为Q 点的轨迹方程.推论 若阿基米德三角形底边AB 过焦点,则Q 点的轨迹为准线,且QA QB ⊥.性质4 阿基米德三角形底边的中线QM 的中点P 在抛物线上,且O 处的切线与AB 平行.证明:由性质1得12121212,,,2222y y y y x x y y Q M p p ⎛⎫+++⎛⎫ ⎪ ⎪⎝⎭⎝⎭,QM 中点21212(),82y y y y P p ⎛⎫++ ⎪⎝⎭, 显然P 在抛物线上,过P 的斜率为122AB p k y y =+,故P 处的切线与AB 平行.性质5 在阿基米德三角形中,QFA QFB ∠=∠.证明:作','AA BB 垂直于准线,垂足分别为','A B ,如图,对22y px =两边求导得12'2'QA p p yy p y k y y =⇒=⇒=, 又1'FA y k p-=,所以'1'QA FA k k QA FA ⋅=-⇒⊥,又'AA AF =,设'A F 与QA 交于C , 则'''','ACA ACF QAA QAF QAA QAF QA QF QA A QFA ∆≅∆⇒∠=∠⇒∆≅∆⇒=∠=∠, 同理可证'''90''90'QA A QA B QB A QB B QFA QFB ∠=∠+=∠+=∠⇒∠=∠ 性质6 在阿基米德三角形中有2AF BF QF ⋅=.证明:222221212121212()()()()2224244y y y y p p p p p AF BF x x x x x x p +⋅=++=+++=++, 2221212()()222y y y y p QF p p +=-+=22221212()244y y y y p p +++,所以2AF BF QF ⋅=. 三.阿基米德焦点三角形的性质把底边过焦点的阿基米德三角形称之为阿基米德焦点三角形.性质1 AB 过焦点F ,则PA ⊥PB ,PF ⊥AB ,△PAB 面积的最小值为2p .性质2 P 是椭圆22221(0)x y a b a b+=>>过右焦点F 的弦在两端点处切线的交点,则P 在椭圆右准线上,且PF ⊥AB ,△PAB 面积的最小值为4b ac. 性质3 P 是双曲线22221x y a b-=过右焦点F 的弦在两端点处切线的交点,则P 在双曲线右准线上,且PF⊥AB,△PAB面积的最小值为4bac.【拓展】当阿基米德三角形的顶角为直角时,有如下性质:对于圆222x y r+=,其阿基米德三角形顶点Q的轨迹为2222x y r+=对于椭圆22221(0)x ya ba b+=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=+;对于双曲线22221(0)x ya ba b-=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=-.。
第80讲、阿基米德三角形(学生版)2025高考数学一轮复习讲义

第80讲阿基米德三角形知识梳理如图所示,AB 为抛物线22(0)x py p =>的弦,11(,)A x y ,22(,)B x y ,分别过,A B 作的抛物线的切线交于点P ,称PAB △为阿基米德三角形,弦AB为阿基米德三角形的底边.1、阿基米德三角形底边上的中线平行于抛物线的轴.2、若阿基米德三角形的底边即弦AB 过抛物线内定点()00 C x y ,,则另一顶点P 的轨迹为一条直线.3、若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.4、底边长为a 的阿基米德三角形的面积的最大值为38a p.5、若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线,且阿基米德三角形的面积的最小值为2p .6、点P 的坐标为1212,22x x x x p ⎛⎫+ ⎪⎝⎭;7、底边AB 所在的直线方程为()121220; x x x py x x +--=8、PAB △的面积为3128PAB x x S p-=.9、若点P 的坐标为()00,x y ,则底边AB 的直线方程为()000x x p y y -+=.10、如图1,若E 为抛物线弧AB 上的动点,点E 处的切线与PA ,PB 分别交于点C ,D ,则||||||||||||AC CE PD CP ED DB ==.11、若E 为抛物线弧AB 上的动点,抛物线在点E 处的切线与阿基米德三角形PAB △的边PA ,PB 分别交于点C ,D ,则2EABPCDS S = .12、抛物线和它的一条弦所围成的面积,等于以此弦为底边的阿基米德三角形面积的23.图1必考题型全归纳题型一:定点问题例1.(2024·山西太原·高二山西大附中校考期末)已知点()0,1A -,()0,1B ,动点P 满足PB AB PA BA =⋅.记点P 的轨迹为曲线C .(1)求C 的方程;(2)设D 为直线=2y -上的动点,过D 作C 的两条切线,切点分别是E ,F .证明:直线EF 过定点.例2.(2024·陕西西安·西安市大明宫中学校考模拟预测)已知动圆M 恒过定点10,8F ⎛⎫⎪⎝⎭,圆心M 到直线14y =-的距离为1,8d d MF =+.(1)求M 点的轨迹C 的方程;(2)过直线1y x =-上的动点Q 作C 的两条切线12,l l ,切点分别为,A B ,证明:直线AB 恒过定点.例3.(2024·全国·高二专题练习)已知平面曲线C 满足:它上面任意一定到10,2⎛⎫⎪⎝⎭的距离比到直线32y =-的距离小1.(1)求曲线C 的方程;(2)D 为直线12y =-上的动点,过点D 作曲线C 的两条切线,切点分别为A B 、,证明:直线AB 过定点;(3)在(2)的条件下,以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.变式1.(2024·陕西·校联考三模)已知直线l 与抛物线2:2(0)C x py p =>交于A ,B 两点,且OA OB ⊥,OD AB ⊥,D 为垂足,点D 的坐标为(1,1).(1)求C 的方程;(2)若点E 是直线4y x =-上的动点,过点E 作抛物线C 的两条切线EP ,EQ ,其中P ,Q 为切点,试证明直线PQ 恒过一定点,并求出该定点的坐标.变式2.(2024·安徽·高二合肥市第八中学校联考开学考试)抛物线的弦与在弦两端点处的切线所围成的三角形被称为“阿基米德三角形”.对于抛物线C :2y ax =给出如下三个条件:①焦点为10,2F ⎛⎫⎪⎝⎭;②准线为12y =-;③与直线210y -=相交所得弦长为2.(1)从以上三个条件中选择一个,求抛物线C 的方程;(2)已知ABQ 是(1)中抛物线的“阿基米德三角形”,点Q 是抛物线C 在弦AB 两端点处的两条切线的交点,若点Q 恰在此抛物线的准线上,试判断直线AB 是否过定点?如果是,求出定点坐标;如果不是,请说明理由.变式3.(2024·湖北武汉·高二武汉市第四十九中学校考阶段练习)已知抛物线2:C y ax =(a 是常数)过点(2,2)P -,动点1,2D t ⎛⎫- ⎪⎝⎭,过D 作C 的两条切线,切点分别为A ,B .(1)求抛物线C 的焦点坐标和准线方程;(2)当1t =时,求直线AB 的方程;(3)证明:直线AB 过定点.变式4.(2024·全国·高三专题练习)已知动点P 在x 轴及其上方,且点P 到点(0,1)F 的距离比到x 轴的距离大1.(1)求点P 的轨迹C 的方程;(2)若点Q 是直线4y x =-上任意一点,过点Q 作点P 的轨迹C 的两切线QA 、QB ,其中A 、B 为切点,试证明直线AB 恒过一定点,并求出该点的坐标.题型二:交点的轨迹问题例4.(2024·全国·高三专题练习)已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --=.(1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.例5.(2024·全国·高三专题练习)已知抛物线2:4C x y =的焦点为F ,过点F 作直线l 交抛物线C 于A 、B 两点;椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率2e =.(1)求椭圆E 的方程;(2)经过A 、B 两点分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点M .证明:点M 定在直线1y =-上;(3)椭圆E 上是否存在一点M ',经过点M '作抛物线C 的两条切线M A ''、(M B A '''、B '为切点),使得直线A B ''过点F ?若存在,求出切线M A ''、M B ''的方程;若不存在,试说明理由.例6.(2024·全国·高三专题练习)已知动点Q 在x 轴上方,且到定点()0,1F 距离比到x 轴的距离大1.(1)求动点Q 的轨迹C 的方程;(2)过点()1,1P 的直线l 与曲线C 交于A ,B 两点,点A ,B 分别异于原点O ,在曲线C 的A ,B 两点处的切线分别为1l ,2l ,且1l 与2l 交于点M ,求证:M 在定直线上.变式5.(2024·全国·高三专题练习)已知动点P 与定点(1,0)F 的距离和它到定直线:4l x =的距离之比为12,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.变式6.(2024·全国·高三专题练习)已知点F 为抛物线2:2(0)C x py p =>的焦点,点M 、N 在抛物线上,且M 、N 、F 三点共线.若圆22:(2)(3)16P x y -+-=的直径为MN .(1)求抛物线C 的标准方程;(2)过点F 的直线l 与抛物线交于点A ,B ,分别过A 、B 两点作抛物线C 的切线1l ,2l ,证明直线1l ,2l 的交点在定直线上,并求出该直线.变式7.(2024·全国·高三专题练习)下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点()00,M x y 处的切线方程为.理由如下:.(2)椭圆22221(0)x y a b a b+=>>上一点()00,x y 处的切线方程为;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB 的方程是.这是因为在()11,A x y ,()22,B x y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=,化简得Δ0=,得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为.(5)抛物线22(0)y px p =>上一点()00,x y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设()11,A x y ,()22,B x y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上.题型三:切线垂直问题例7.(2024·全国·高三专题练习)已知抛物线C 的方程为24x y =,过点P 作抛物线C 的两条切线,切点分别为,A B .(1)若点P 坐标为()0,1-,求切线,PA PB 的方程;(2)若点P 是抛物线C 的准线上的任意一点,求证:切线PA 和PB 互相垂直.例8.(2024·全国·高三专题练习)已知抛物线C 的方程为24x y =,点P 是抛物线C 的准线上的任意一点,过点P 作抛物线C 的两条切线,切点分别为,A B ,点M 是AB 的中点.(1)求证:切线PA 和PB 互相垂直;(2)求证:直线PM 与y 轴平行;(3)求PAB 面积的最小值.例9.(2024·全国·高三专题练习)已知中心在原点的椭圆1Γ和抛物线2Γ有相同的焦点(1,0),椭圆1Γ的离心率为12,抛物线2Γ的顶点为原点.(1)求椭圆1Γ和抛物线2Γ的方程;(2)设点P 为抛物线2Γ准线上的任意一点,过点P 作抛物线2Γ的两条切线PA ,PB ,其中,A B 为切点.设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值.变式8.(2024·全国·高三专题练习)已知中心在原点的椭圆1C 和抛物线2C 有相同的焦点()1,0,椭圆1C 过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.()1求椭圆1C 和抛物线2C 的方程;()2设点P 为抛物线2C 准线上的任意一点,过点P 作抛物线2C 的两条切线PA ,PB ,其中A ,B 为切点.①设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值;②若直线AB 交椭圆1C 于C ,D 两点,PAB S ,PCD S 分别是PAB ,PCD 的面积,试问:PABPCDS S 是否有最小值?若有,求出最小值;若没有,请说明理由.变式9.(2024·全国·高三专题练习)抛物级22(0)x py p =>的焦点F 到直线2py =-的距离为2.(1)求抛物线的方程;(2)设直线1y kx =+交抛物线于()11,A x y ,()22,B x y 两点,分别过A ,B 两点作抛物线的两条切线,两切线的交点为P ,求证:PF AB ⊥.变式10.(2024·河南驻马店·校考模拟预测)已知抛物线E :()220x py p =>的焦点为F ,点P 在E 上,直线l :20x y --=与E 相离.若P 到直线l 的距离为d ,且PF d +的最小值为2.过E 上两点,A B 分别作E 的两条切线,若这两条切线的交点M 恰好在直线l 上.(1)求E 的方程;(2)设线段AB 中点的纵坐标为n ,求证:当n 取得最小值时,MA MB ⊥.题型四:面积问题例10.(2024·全国·高三专题练习)已知抛物线C 的方程为()220x py p =>,点3,2A x ⎛⎫ ⎪⎝⎭是抛物线上的一点,且到抛物线焦点的距离为2.(1)求抛物线的方程;(2)点Q 为直线12y =-上的动点,过点Q 作抛物线C 的两条切线,切点分别为D ,E ,求QDE △面积的最小值.例11.(2024·全国·高三专题练习)已知抛物线22x py =上一点()0,1M x 到其焦点F 的距离为2.(1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.例12.(2024·全国·高三专题练习)已知抛物线2:2(0)C x py p =>的焦点到原点的距离等于直线:440l x y --=的斜率.(1)求抛物线C 的方程及准线方程;(2)点P 是直线l 上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,求PAB 面积的最小值.变式11.(2024·全国·高三专题练习)如图,已知抛物线2:2(0)C y px p =>上的点R 的横坐标为1,焦点为F ,且||2RF =,过点(4,0)P -作抛物线C 的两条切线,切点分别为A 、B ,D 为线段PA 上的动点,过D 作抛物线的切线,切点为E (异于点A ,B ),且直线DE 交线段PB 于点H .(1)求抛物线C 的方程;(2)(i )求证:||||AD BH +为定值;(ii )设EAD ,EBH △的面积分别为12S S ,,求12133S S S =+的最小值.变式12.(2024·全国·高三专题练习)已知点A (﹣4,4)、B (4,4),直线AM 与BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 作曲线C 的切线,切点分别为D 、E ,求△QDE 的面积S 的最小值.变式13.(2024·河南开封·河南省兰考县第一高级中学校考模拟预测)已知点()F ,平面上的动点S 到F 的距离是S 40+=的距离的2倍,记点S 的轨迹为曲线C .(1)求曲线C 的方程;(2)过直线:2l y =上的动点()(),22P s s >向曲线C 作两条切线1l ,2l ,1l 交x 轴于M ,交y 轴于N ,2l 交x 轴于T ,交y 轴于Q ,记PNQ V 的面积为1S ,PMT △的面积为2S ,求12S S ⋅的最小值.题型五:外接圆问题例13.(2024·全国·高三专题练习)已知P 是抛物线C :2134y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB ⋅=- .(1)试判断直线AB 是否经过某一个定点?若是,求这个定点的坐标;若不是,说明理由;(2)设点M 是PAB 的外接圆圆心,求点M 的轨迹方程.例14.(2024·高二单元测试)已知点P 是抛物线21:34C y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB ⋅=- .(1)判断点()0,1D 是否在直线AB 上?说明理由;(2)设点M 是△PAB 的外接圆的圆心,点M 到x 轴的距离为d ,点()1,0N ,求MN d -的最大值.例15.(2024·全国·高三专题练习)已知点P 是抛物线21:34C y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB ⋅=- .(1)判断点()0,1D -是否在直线AB 上?说明理由;(2)设点M 是△PAB 的外接圆的圆心,求点M 的轨迹方程.题型六:最值问题例16.(2024·全国·高三专题练习)如图已知()2,P t -是直线2x =-上的动点,过点P 作抛物线24y x =的两条切线,切点分别为,A B ,与y 轴分别交于,C D.(1)求证:直线AB 过定点,并求出该定点;(2)设直线AB 与x 轴相交于点Q ,记,A B 两点到直线PQ 的距离分别为12,d d ;求当12AB d d +取最大值时PCD 的面积.例17.(2024·湖南·高三校联考阶段练习)在直角坐标系xoy 中,已知抛物线()2:20C x py p =>,P 为直线1y x =-上的动点,过点P 作抛物线C 的两条切线,切点分别为,A B ,当P 在y 轴上时,OA OB ⊥.(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.例18.(2024·辽宁沈阳·校联考二模)从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的轴,根据光路的可逆性,平行于抛物线的轴射向抛物线后的反射光线都会汇聚到抛物线的焦点处,这一性质被广泛应用在生产生活中.如图,已知抛物线()2:21C x py p =>,从点()4,9发出的平行于y 轴的光线照射到抛物线上的D 点,经过抛物线两次反射后,反射光线由G 点射出,经过点()1,5-.(1)求抛物线C 的方程;(2)已知圆()22:34M x y +-=,在抛物线C 上任取一点E ,过点E 向圆M 作两条切线EA 和EB ,切点分别为A 、B ,求EA EB ⋅ 的取值范围.变式14.(2024·贵州·高三校联考阶段练习)已知抛物线()2:20C x py p =>上的点()02,y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线l :=3y -上,过点D 作抛物线C 的两条切线,切点分别为,A B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当MN 最小时,求ABMN 的值.变式15.(2024·黑龙江大庆·高二大庆实验中学校考阶段练习)已知抛物线2:4C y x =,点P 为直线2x =-上的任意一点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,则点()0,1M 到直线AB 的距离的最大值为()A .1B .4C .5D题型七:角度相等问题例19.设抛物线2:C y x =的焦点为F ,动点P 在直线:20l x y --=上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程.(2)证明∠PFA=∠PFB .例20.(2024·全国·高三专题练习)已知F ,F '分别是椭圆221:171617C x y +=的上、下焦点,直线1l 过点F '且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段GF 的垂直平分线交2l 于点H ,点H 的轨迹为2C .(1)求轨迹2C 的方程;(2)若动点P 在直线:20l x y --=上运动,且过点P 作轨迹2C 的两条切线PA 、PB ,切点为A 、B ,试猜想PFA ∠与PFB ∠的大小关系,并证明你的结论的正确性.例21.(2024·江苏南通·高三统考阶段练习)在平面直角坐标系xOy中,已知圆22=>交于点M,N(异于原点O),MN恰为该圆的+-=与抛物线2:2(0)C x py pG x y:(1)1直径,过点E(0,2)作直线交抛物线于A,B两点,过A,B两点分别作抛物线C的切线交于点P.(1)求证:点P的纵坐标为定值;∠=∠.(2)若F是抛物线C的焦点,证明:PFA PFBy x=的焦点为F,动点P 变式16.(2024·全国·高三专题练习)如图所示,设抛物线C:2x y--=上运动,过P作抛物线C的两条切线PA,PB,切点分别为A,B,在直线l:20求证:AFB BFP∠=∠.变式17.(2024·全国·高三专题练习)在平面直角坐标系xOy中,已知点E(0,2),以OE为直径的圆与抛物线C∶x2=2py(p>0)交于点M,N(异于原点O),MN恰为该圆的直径,过点E作直线交抛物线与A,B两点,过A,B两点分别作拋物线C的切线交于点P.(1)求证∶点P的纵坐标为定值;(2)若F是抛物线C的焦点,证明∶∠PFA=∠PFB。
2025届高三数学二轮复习 -圆锥曲线之阿基米德三角形微专题 课件(共32张PPT)

特别地,若阿基米德三角形的底边AB过焦点F,则QFAB.
阿基米德三角形的性质
性质 10 |AF|·|BF|=|QF|2.
证明:|AF|·|BF|= (x1
p 2
)
(
x2
p) 2
=
x1x2
p 2
( x1
x2 )
p2 4
= ( y1 y2 )2 + y12 y22 + p2 ,
2p
44
而|QF|2= ( y1 y2 p )2 ( y1 y2 )2
y1 y0
y12 2p
x0
,
l
即 y12 y1 y2 y1x0 y2 x0 y12 2 py0 ,
将
y=
y1
2
y2
,
y1 y2
2 px
代入得
y0 y
p(x
x0 ) ,即为 Q
点的轨迹方程.
阿基米德三角形的性质
性质 5 抛物线以 C 点为中点的弦平行于 Q 点的轨迹.
利用两式相减法易求得以 C 点为中点的弦的斜率为 p ,因此该 y0
2p 2
2
= ( y1 y2 )2 + y12 y22 + p2 =|AF|·|BF|.
2p
44
典例分析
例 1.(2024 届广州市高三二模)已知点 F 是抛物线 C : y2 4x 的焦点, C 的两条切线交于点 P(x0 , y0 ) , A , B 是切点. (1)若 x0 0 , y0 3 ,求直线 AB 的方程; (2)若点 P 在直线 y x 3 上,记 PFA 的面积为S1 , PFB 的面积为S2 ,求S1 S2 的最小值; (3)证明: PFA BFP .
阿基米德三角形的性质

阿基米德三角形的性质【概念】一、阿基米德三角形:抛物线(圆锥曲线)的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形(如图一SAB ∆即为阿基米德三角形).重要结论:抛物线与弦之间所围成区域的面积(图二中的阴影部分)为阿基米德三角形面积的三分之二.图(一) 图(二)阿基米德运用逼近的方法证明了这个结论. 【证明】:如图(三)SM 是SAB ∆中AB 边上的中线,则SM 平行于x 轴(下面的性质1证明会证到),过M '作抛物线的切线,分别交SA 、SB 于,A B '',则A AM ''∆、B BM ''∆也是阿基米德三角形,可知A C '是A AM ''∆中AM '边上的中线,且A C '平行于x 轴,可得点A '是SA 的中点,同理B '是SB 的中点,故M '是SM 的中点,则SA B S ''∆是M AB S '∆的12,由此可知:A A C S '''''∆是C M A S ''∆的12,B B D S '''''∆是D M B S ''∆的12,以此类推,图(二)中蓝色部分的面积是红色部分而知的12,累加至无穷尽处,便证得重要结论.【性质1】:阿基米德三角形底边上的中线平行于抛物线的轴. 【证明】:设),(11y x A ,),(22y x B ,M 为弦AB 的中点,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,联立方程,1212px y =,2222px y =,解得两切线交点)2,2(2121y y p y y Q +【性质2】:若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线;【证明】:设),(11y x A ,),(22y x B ,00(,)C x y 为抛物线内的定点,弦AB 的过定点C ,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,则设另一顶点(),Q x y '',满足11()y y p x x ''=+且22()y y p x x ''=+,故弦AB 所在的直线方程为()yy p x x ''=+,又由于弦AB 过抛物线内的定点00(,)C x y ,故00()y y p x x ''=+,即点Q 的轨迹方程为直线00()y y p x x =+ .【性质3】:抛物线以C 点为中点的弦平行于Q 点的轨迹;【证明】:由【性质2】的证明可知:点Q 的轨迹方程为直线00()y y p x x =+ .因为点C 为弦AB 的中点,故Q 的轨迹方程为121222y y x x y p x ++⎛⎫=+ ⎪⎝⎭,斜率122p k y y =+;而弦AB 所在的直线方程为()yy p x x ''=+,由【性质1】的证明可知:122y y y +'=,122y yx p'=,故弦AB 所在的直线方程为121222y y y y y p x p ⎛⎫+=+ ⎪⎝⎭,斜率122pk y y =+,又因为直线AB 与Q 的轨迹方程不重合,故可知两者平行. 【性质4】:若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点(若直线l 方程为:0ax by c ++=,则定点的坐标为,c bp C aa ⎛⎫− ⎪⎝⎭;【证明】:任取直线l :0ax by c ++=上的一点()0,o Q x y ,则有000ax by c ++=,即00a cy x b b=−−┅①,过点Q 作抛物线22y px =的两条切线,切点分别为,A B ,则又由【性质2】的证明可知:弦AB 所在的直线方程为00()y y p x x =+,把①式代入可得:()00a c x y p x x b b ⎛⎫−−=+ ⎪⎝⎭,即0a c y p x px yb b ⎛⎫−−=+ ⎪⎝⎭,令0a y p b −−=且 0c px y b +=,可得:弦AB 所在的直线过定点,c bp C a a ⎛⎫− ⎪⎝⎭.【性质5】:底边为a 的阿基米德三角形的面积最大值为pa 83;【证明】:AB a =,设Q 到AB 的距离为d ,由性质1知:22212121212122()22444x x y y y y y y y y d QM p p p p++−≤=−=−=(直角边与斜边),设直线AB 的方程为 x my n =+,则2221(1)()a m y y =+−,所以2322121()428a a y y a d s ad p p−≤⇒≤⇒=≤. 【性质6】:若阿基米德三角形的底边过焦点,顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为2p ;【证明】:由性质2,若底边过焦点,则00,02p x y ==,Q 点的轨迹方程是2px =−,即为准线;易验证1QA QB k k ⋅=−,即QA QB ⊥,故阿基米德三角形为直角三角形,且Q 为直角顶点。
专题4 阿基米德三角形

专题4 阿基米德三角形专题3 阿基米德三角形 微点1 阿基米德三角形 【微点综述】在近几年全国各地高考的解析几何试题中可以发现许多试题涉及到与一个特殊的三角形——由抛物线的弦及过弦的端点的两条切线所围成的三角形有关的问题,这个三角形常被称为阿基米德三角形. 阿基米德三角形包含了直线与圆锥曲线相交、相切两种位置关系,聚焦了轨迹方程、定值、定点、弦长、面积等解析几何的核心问题,“坐标法”的解题思想和数形结合方法的优势体现得淋漓尽致,能很好的提升学生解决圆锥曲线问题的能力,落实逻辑推理、数学抽象、数学运算等核心素养.鉴于此,微点研究阿基米德三角形。
一、预备知识——抛物线上一点的切线方程(1)过抛物线()220y px p =>上一点()00,M x y 的切线方程为:()00y y p x x =+;(2)过抛物线()220y px p =−>上一点()00,M x y 的切线方程为:()00y y p x x =−+;(3)过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+; (4)过抛物线()220x py p =−>上一点()00,M x y 的切线方程为:()00x x p y y =−+.下面仅以情形(3)为例给出证明,同理可证其余三种情形。
证法1:设抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00y y k x x −=−,代入22x py =,整理得2002220x pkx py pkx −−+=,由0x ∆=,得()222000044220,220,p k py pkx pk x k y +−=∴−+=抛物线上一点处的切线唯一,∴ 关于k 的一元二次方程200220pk x k y −+=有两个相等的实数根,0,x k p∴=∴所求的切线方程为()000x y y x x p−=−,即2000x x x py py =+−,又2002x py =,∴过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+。
抛物线阿基米德三角形常用结论高中

抛物线、阿基米德三角形常用结论一、抛物线1. 抛物线的定义抛物线是一种特殊的曲线,其定义可以由平面上的点P到给定直线上一点F的距离等于P到另一固定点D的距离的平方的约束条件定义。
2. 抛物线的常用方程抛物线的常用方程形式为y = ax^2 + bx + c 或者 x = ay^2 + by + c。
其中a、b、c为常数,a≠0。
3. 抛物线的性质(1)抛物线的对称轴与顶点抛物线的对称轴是其顶点处的垂直平分线。
(2)抛物线的焦点和直线抛物线的焦点是与其对称轴上的一个定点F,直线是与抛物线平行于其对称轴的直线。
二、阿基米德三角形1. 阿基米德三角形的定义阿基米德三角形是一种特殊的三角形,其三边分别由三个与三个同一直线上的点相连而得到。
这三个点一般是由同一圆的直径上得到。
2. 阿基米德三角形的常用结论(1)阿基米德三角形的边长关系公式设阿基米德三角形的边长分别为a、b、c,其边长关系可由公式a^2 = b^2 + c^2得到。
(2)阿基米德三角形的面积公式设阿基米德三角形的三角形边分别为a、b、c,其面积S可由公式S = 1/2 * b * c * sinA得到。
其中A为a对应的角度。
三、高中数学中抛物线和阿基米德三角形的应用1. 抛物线在物理学中的应用在物理学中,抛物线常常用来描述抛体运动的轨迹。
抛出的物体在水平方向上的运动可以用抛物线方程描述。
2. 阿基米德三角形在几何学中的应用在几何学中,阿基米德三角形经常用于解决三角函数相关问题。
在求解三角函数值时,可以利用阿基米德三角形的边长关系进行变换,从而简化计算。
四、结语抛物线和阿基米德三角形作为数学中的重要内容,在高中数学教学中被广泛应用。
通过对其定义、性质以及应用的深入了解,不仅可以增加数学知识的广度和深度,还能够帮助学生更好地理解数学的应用价值。
希望学生们能够加强对抛物线和阿基米德三角形的学习,不断提升数学思维能力和解决问题的能力。
抛物线和阿基米德三角形作为数学中重要的内容,不仅在高中数学教学中被广泛应用,而且在科学研究和工程技术中也发挥着重要作用。
最新版圆锥曲线专题17之12 阿基米德三角形
专题12阿基米德三角形第一饼阿基米德三角形与切点弦问题一、主要概念及性质1、定义:圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形.(如果弦过定点,那么弦与两条切线交点的轨迹构成一对极点极线.)一般情况下阿基米德三角形指的抛物线阿基米德三角形,它的一些基本性质有:2、主要性质:性质1阿基米德三角形底边上的中线平行于抛物线上的轴.性质2:若阿基米德三角形的底边即弦48过抛物线内定点C,则另一顶点Q的轨迹为一条直线.性质3:在性质2中,抛物线以C点为中点的弦平行于。
点的轨迹.性质4:若直线/与抛物线没有公共点,以/上的点为顶点的阿基米德三角形的底边过定点.性质5:底边长为〃的阿基米德三角形的面积的最大值为即性质6:若阿基米德三角形的底边过焦点,则顶点。
的轨迹为准线,且阿基米德三角形的面积的最小值为P2.性质7:在阿基米德三角形中,/QFA=NQFB.性质8:∖AF∖∙∖BF∖=∖QF^性质9QM的中点?在抛物线上,且P点处的切线与AB平行.【例21](云南二模)已知抛物线炉=4),的焦点为产,准线为/,经过/上任意一点P作抛物线炉=4y的两条切线,切点分别为A、B.(1)求证:以AB为直径的圆经过点尸;(2)比较AF•用与PF2的大小.【例22】(2005•江西)如图,设抛物线C:),=/的焦点为尸,动点P在直线2=0上运动,过P作抛物线C的两条切线24、PB,且与抛物线C分别相切于A、8两点.(1)求ZXAPB的重心G的轨迹方程.(2)证明NPEA=NP∕B∙第二讲阿基米德三角形与面积问题【例23】(2019•新课标HD已知曲线Uy=工,。
为直线y=-』上的动点,过。
作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,3为圆心的圆与直线反相切,且切点为线段AB的中点,求四边形ADBE的面积.2【例24】(2008•山东)如图,设抛物线方程为f=20,(〃>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.(1)求证:A,M,A三点的横坐标成等差数列;(2)已知当M点的坐标为(2,-2p)时,∣AB∣=4√10.求此时抛物线的方程;(3)是否存在点使得点C关于直线AB的对称点。
阿基米德三角形常用结论及证明
阿基米德三角形常用结论及证明嘿,伙计们!今天我们要聊聊一个超级有趣的数学问题——阿基米德三角形!这个名字听起来就很酷炫,是不是?那你知道阿基米德三角形有哪些常用结论和证明吗?别着急,让我们一起来揭开它的神秘面纱吧!我们来了解一下什么是阿基米德三角形。
阿基米德三角形是一个古老的几何图形,它的每个顶点都是一个等边三角形的内切圆与外接圆的交点。
这个图形看起来有点像一个金字塔,但是它有很多神奇的性质和结论哦!1. 阿基米德三角形的内角之和是180度。
这个结论很简单,因为每个小三角形的内角都是60度,而一个大三角形的内角之和就是3个小三角形的内角之和,也就是180度。
2. 阿基米德三角形的边长比是一个恒定的值。
具体来说,如果一个大三角形的边长分别是a、b、c,那么它的内切圆半径r、外接圆半径R和边长比之间的关系就是:(a+b+c)/2 = R + r = (a+b+c)/2R。
这个关系式告诉我们,无论阿基米德三角形的大小如何变化,它的边长比总是保持不变。
3. 阿基米德三角形的面积可以通过海伦公式计算。
海伦公式是一个关于三角形面积和三边长之间关系的公式,它的形式是:S = sqrt(p*(p-a)*(p-b)*(p-c)),其中S是三角形的面积,a、b、c分别是三角形的三边长。
阿基米德三角形的面积可以通过将大三角形的面积除以9得到,即:S = (a+b+c)/2 * R^2 / 9。
4. 阿基米德三角形可以用来计算任意多边形的面积。
这个结论可能有点难以理解,但是它可以帮助我们解决很多实际问题。
比如说,我们知道一个正方形的面积是边长的平方,那么我们可以通过阿基米德三角形的方法计算出任意多边形的面积。
具体做法是先将多边形划分成若干个小三角形,然后根据阿基米德三角形的性质计算出每个小三角形的面积,最后将这些小三角形的面积相加就可以得到整个多边形的面积了。
5. 阿基米德三角形可以用来求解复杂的数学问题。
比如说,我们知道一个圆的周长是πd,其中d是直径。
阿基米德折弦定理详解及详解
阿基米德折弦定理详解及详解
阿基米德折弦定理(Thales Theorem)又称塔尔特定理,它的定义如下:
如果有三角形ABC,在它的外接圆上有三个点A′,B′,C′,则这三个点满足AA′:BB′:CC′=1:1:1。
阿基米德折弦定理使申明了一个三角形最外面包含了一个外接圆,而这个外接圆分别在三角形每一条边对应的延长线上,但是满足一定的比例关系,也就是说,无论多大的三角形,其外接圆上所确定的三点连接后都存在一个等腰三角形。
在数学上,阿基米德折弦定理的意义在于,它的一个充分必要条件是圆的半径r (OA•OB)与三角形的边长之比等于常数C,即:
OA•OB=C*AB
从而可以推得:
AB²= 2*r*C* AB
此式两边同时乘以AB,可以得出:
AB³= 2*r*C*AB³
即:
AB³:AC³:BC³= 2*r*C:AC³:BC³
将以上式子改形,可以得出:
AB: AC: BC= √(2*r*C):AC:BC
即:
AB:AC:BC = √(2*r*C):√(2*r*C):√(2*r*C)
也就是说,只要知道外接圆的半径,就可以知道三角形ABC折弦定理的等比例。
第15节 阿基米德三角形的常见性质及其应用-解析版
第15节 阿基米德三角形的常见性质及其应用知识与方法1.如图1所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,则: (1)设AB 中点为M ,则PM 平行于(或重合)抛物线的对称轴;(2)PM 的中点S 在抛物线上,且抛物线在点S 处的切线平行于弦AB .2.如图2所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,则: (1)若弦AB 过抛物线内的定点Q ,则点P 的轨迹是直线;特别地,若弦AB 过定点()0,m ()0m >,则点P 的轨迹是直线y m =-;(2)若弦AB 过抛物线内的定点Q ,则以Q 为中点的弦与(1)中点P 的轨迹平行.3.如图3所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,若AB 过焦点F ,则点P 的轨迹为抛物线准线,PA PB ⊥,PF AB ⊥,且PAB 的面积的最小值为2p . 4.如图4所示,不妨设抛物线为()220x py p =>,抛物线上A 、B 两点处的切线交于点P ,则:(1)PFA PFB ∠=∠;(2)2AF BF PF ⋅=提醒:阿基米德三角形在小题和大题中都可能涉及,小题可以直接用性质速解,大题则必须给出详细的求解过程.典型例题【例1】己知点()1,1P -在抛物线()220y px p =>的准线上,过点P 作抛物线的切线,切点为A 、B ,则直线AB 的斜率k =_______.【解析】点()1,1P -在抛物线()220y px p =>的准线上⇒抛物线的准线为1x =-⇒抛物线的焦点为()1,0F ,由阿基米德三角形性质,直线AB 过F 且PF AB ⊥,而101112PF k -==---,所以直线AB 的斜率为2.【答案】2变式1 已知点()2,1M -和抛物线2:4C x y =,过C 的焦点F 且斜率为k 的直线与C 交于A 、B 两点,若90AMB ∠=︒,则k =_______.【解析】由题意,M 在抛物线C 的准线上,直线AB 过点F 且90AMB ∠=︒,所以MAB 是阿基米德三角形,如图,由阿基米德三角形性质,MF AB ⊥,而11120MF k --==--,所以直线AB 的斜率为1.【答案】1变式2 已知抛物线2:4C x y =,过点()1,1P -作抛物线C 的两条切线,切点分别为A 和B ,则经过P 、A 、B 三点的圆的方程为______.【解析】由题意,点P 在抛物线C 的准线上,则PA PB ⊥,PF AB ⊥,且直线AB 过焦点()0,1F ,所以经过P 、A 、B 三点的圆就是以AB 为直径的圆,直线PF 的斜率为11210--=--, 所以直线AB 的斜率为12,其方程为112y x =+,设()11,A x y ,()22,B x y , 联立21124y x x y ⎧=+⎪⎨⎪=⎩消去y 整理得:2240x x --=, 故122x x +=,()12121232y y x x +=++=,从而AB 中点为31,2⎛⎫⎪⎝⎭,1225AB y y =++=,所以经过P 、A 、B 三点的圆的方程为()22325124x y ⎛⎫-+-= ⎪⎝⎭.【答案】()22325124x y ⎛⎫-+-= ⎪⎝⎭变式3 已知过抛物线22x y =焦点F 的直线与抛物线交于A 、B 两点,抛物线在A 、B 处的切线交于点C ,则ABC 面积的最小值为______.【解析】由阿基米德三角形性质,当直线AB 过焦点F 时,ABC 面积的最小值为21p =. 【答案】1变式4 已知抛物线2:4C y x =的焦点为F ,过F 的直线与抛物线C 交于A 、B 两点,抛物线C 在A 、B 两点处的切线相交于点P ,若3AF =,则PF =_______.【解析】设AFO α∠=,则231cos AF α==+,所以1cos 3α=-,故()2231cos 1cos 2BF παα===+--,由阿基米德三角形性质,2AF BF PF ⋅= 所以32PF AF BF ⋅=.32【例2】抛物线2:2C x py =()0p >的焦点为F ,且F 与圆()22:21I x y ++=上的点的距离的最大值为4.(1)求p 的值;(2)若点Q 在圆I 上,QA 、QB 是抛物线C 的两条切线,A 、B 是切点,当IQ AB ∥时,求直线AB 与y 轴交点的坐标.【解析】解:(1)由题意,342p+=,所以2p =.(2)显然直线AB 斜率存在,可设其方程为y kx m =+,由(1)知抛物线C 的方程为24x y =,联立24y kx mx y=+⎧⎨=⎩消去y 整理得:2440x kx m --=,由韦达定理,124x x k +=,124x x m =-,设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由24x y =可得24x y =,所以2xy '=,故直线QA 的方程为()211142x x y x x -=-,整理得:21124x x y x =-,同理,直线QB 的方程为22224x x y x =-,联立2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩解得:1222x x x k +==,124x x y m ==-,所以点Q 的坐标Wie ()2,k m -, 因为点Q 在圆I 上,所以()22421k m +-+=①,因为IQ AB ∥,所以22mk k-=,从而222k m =-, 代入式①可得()()22221m m -+-+= 解得:32m =,又2220k m =-≥,所以2m ≤,故32m =, 从而直线AB 与y 轴的交点的坐标为(0,32.【反思】对于开口向上(或向下)的抛物线的阿基米德三角形大题,通常采用设两个切点,写出切线方程并联立求出交点坐标,同时将切点弦所在直线与抛物线联立,结合韦达定理计算的方法来处理.强化训练1.(★★★)已知点()2,1P -在抛物线()2:20C y px p =>的准线上,过P 作抛物线C 的切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】()2,1P -在准线上4p ⇒=⇒抛物线的焦点为()2,0F ,由阿基米德三角形性质,直线AB 过F ,且PF AB ⊥,而101224PF k -==---,所以直线AB 的斜率为4, 故直线AB 的方程为()42y x =-【答案】()42y x =-2.(★★★)已知抛物线2:4C x y =的焦点为F ,过点F 的直线l 交抛物线C 于A 、B 两点,抛物线在A 、B 两点处的切线相交于点P ,则PAB 面积的最小值为_______. 【解析】当AB 过焦点时,阿基米德三角形面积的最小值为24p =. 【答案】43.(★★★)已知抛物线2:2C y x =和点1,12P ⎛⎫- ⎪⎝⎭,过C 的焦点F 且斜率为k 的直线l 与抛物线C 交于A 、B 两点,若0PA PB ⋅=,则k =_______.【解析】由题意,1,02F ⎛⎫⎪⎝⎭,点P 在抛物线的准线上,且PA PB ⊥,所以PAB 是阿基米德三角形,从而PF PB ⊥,直线PF 的斜率1011122PF k -==---,故直线AB 的斜率为1. 【答案】14.(★★★)已知抛物线2:4C x y =,过点()0,1P x -作抛物线C 的两条切线,切点分别为A 和B ,若经过P 、A 、B 三点的圆被x 轴截得的弦长为4,则0x =______.【解析】由题意,点P 在抛物线C 的准线上,则PA PB ⊥,PF AB ⊥,且AB 过焦点()0,1F ,直线PF 的斜率为001120x x --=--,所以直线AB 的斜率为02x , 其方程为012x y x =+,设()11,A x y ,()22,B x y 联立02124x y x x y ⎧=+⎪⎨⎪=⎩消去y 整理得:20240x x x --=,所以1202x x x +=, ()201212022x y y x x x +=+=+, 从而AB 中点为200,12x x ⎛⎫+ ⎪⎝⎭,212024AB y y x =++=+, 因为PA PB ⊥,所以经过P 、A 、B 三点的圆就是以AB 为直径的圆,该圆的半22220014222x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,解得:01x =±.【答案】1±5.(★★★★)已知抛物线2y x =和点()0,1P ,若过某点C 可作抛物线的两条切线,切点分别为A 和B ,且满足1233CP CA CB =+,则ABC 的面积为______.【解析】()()12123333CP CA CB CP CP PA CP PB PA PB =+⇒=+++⇒=-⇒P 、A 、B 三点共线,设直线AB的方程为1y kx =+,设()11,A x y ,()22,B x y ,不妨设0k >,联立21y kx y x =+⎧⎨=⎩消去y 整理得:210x kx --=,判别式240k =+>, 由韦达定理12x x k +=,121x x =-,又2PA PB =-,所以122x x =-,联立12121212x x kx x x x+=⎧⎪=-⎨⎪=-⎩可解得:2k =,所以122x x +=,设AB 中点为D ,则1222D x x x +==,代入1y kx =+得22514D y =+=, 由阿基米德三角形性质知CD x ⊥轴且点C 在直线1y =-上,所以()59144CD =--=,故1211999222418216ABC S CD x x =⋅-=⨯⨯=⨯=.【答案】272166.(★★★★★)已知动圆过点()0,1F ,且与直线:1l y =-相切.(l )求动圆圆心的轨迹E 的方程;(2)设P 为一动点,过P 作曲线E 的两条切线PA 、PB ,切点分别为A 和B ,且PA PB ⊥,直线AB 与圆224x y +=相交于C 、D 两点,设点P 到直线AB 的距离为d ,是否存在点P ,使得24AB CD d ⋅=?若存在,求出点P 的坐标;若不存在,说明理由. 【解析】(1)由题意,动圆圆心到点F 的距离和到定直线l 的距离相等, 所以动圆圆心的轨迹是以F 为焦点,l 为准线的抛物线,其方程为24x y =.(2)显然直线AB 的斜率存在,故可设其方程为y kx m =+,设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,联立24y kx m x y=+⎧⎨=⎩消去y 整理得:2440x kx m --=,由韦达定理,124x x k +=,124x x m =-,由24x y =得24x y =,所以2x y '=,故直线PA 的方程为()211142x x y x x -=-,整理得:21124x x y =-,同理,直线PB 的方程为22224x x y =-,联立2112222424x x y x x y ⎧=-⎪⎪⎨⎪=-⎪⎩解得:1222x x x k +==,124x x y m ==-,所以点P 的坐标为()2,k m -,因为PA PB ⊥,所以12122x x m ⋅=-=-,故1m =,从而AB 过点F , 所以()212122444AB y y k x x k =++=++=+, 原点到直线AB 21k +,故21241CD k =-+ 点P 到直线AB 的距离22222211k d k k +==++所以24AB CD d ⋅=等价于()()222144241611k k k +⋅-++, 化简得:2101k =+,无解,故不存在点P ,使得|24AB CD d ⋅=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M|= x1 x2 p = y12 y22 + p 2 2 4p 2
≥ 2 | y1 y2 | + p = 2 p2 + p = p , 4p 2 4p 2
而
SVQAB
1 2
|
QM
|
( y1
y2 )
≥| QM | | y1y2 | ≥ p2
题型类比拓展
题 3(2007 江苏卷,理 19 题):
(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且
阿基米德三角形面积的最小值为 p2 .
证明(2):若底边过焦点,则 x0
p 2
,
y0
0
,Q
点轨迹方程为
x
p 2
即为准线;易
验证 kQA kQB 1 ,即 QA⊥QB,故阿基米德
三角形为直角三角形,且 Q 为直角顶点; ∴|Q
利用两式相减法易求得以 C 点为中点的弦的斜率为 p ,因此该弦与 y0
Q 点的轨迹即直线 l 平行.
阿基米德三角形的性质
性质 6 若直线 l 与抛物线没有公共点,以 l 上的点为顶点的阿基米德三角形的底边过定
点.
证明:如上图,设 l 方程为
ax by c 0 ,且 A(x1, y1) ,
l
点为M.
(Ⅰ)证明→ FM·→ AB 为定值; (Ⅱ)设△ABM 的面积为 S,写出 S=f(λ)的表达式,并求 S 的 最小值.
阿基米德三角形的性质
性质 10 |AF|·|BF|=|QF|2.
证明:|AF|·|BF|= (x1
p 2
)
(
x2
p) 2
=
x1x2
p 2
( x1
x2 )
p2 4
= ( y1 y2 )2 + y12 y22 + p2 ,
2p
2
M ( x1 x2 , y1 y2 ) ,易得 P 点坐
2
2
标为 ( ( y1 y2 )2 , y1 y2 ) ,此点
8p
2
显然在抛物线上;过 P 的切线的
斜率为
p y1 y2
2p y1 y2
= kAB ,
2
结论得证.
阿基米德三角形的性质
性质 3 如图,连接 AI、BI,则△ABI 的面积是△QST 面积的 2 倍. 证明:如图,这里出现了三个 阿基米德三角形,即△QAB、△TBI、 △SAI;应用阿基米德三角形的性质: 弦与抛物线所围成的封闭图形的面积
,又 |
FP
|
x02 4
t
,
解题方法研究
有 SVPDE
1 2
|
FP | |
xE
xD
| 1 t 8
(x02 4t)2 (t 1)2 x02
,
又 SVQAB
1 2
4 (1
x02 4
)
4 x02 2
于是 SVQAB 4 (x02 4)[x02 (t 1)2 ]
SVPDE 1 t
(x02 4t)2
CP
B
QA 为此抛物线的切线;
AO x
(3)试问(2)的逆命题是否成立?说明理由. Q
l
阿基米德三角形的性质
性质 8 底边长为 a 的阿基米德三角形的面积的最大值为 a3 . 8p
证明:|AB|=a,设 Q 到 AB 的距离为 d,
由性质 1 知 d | QM | x1 x2 y1 y2 2 2p
如图,在平面直角坐标系 xOy 中,过 y 轴正方向上一点 C(0,c)
任作一直线,与抛物线 y x2 相交于 A,B 两点.一条垂直于 x 轴的
直线,分别与线段 AB 和直线 l : y c 交于点 P,Q .
y
uuur uuur (1)若 OAgOB 2 ,求 c 的值; (2)若 P 为线段 AB 的中点,求证:
∴∠QA'A=∠QA'B'+900=∠QB'A'+900=∠QB'B, ∴∠QFA=∠QFB,结论得证.
特别地,若阿基米德三角形的底边AB过焦点F,则QFAB.
题型类比拓展
题 1(2005 年江西卷,理 22 题):
如图,设抛物线 C : y x2 的焦点为 F,动点 P 在直线
l : x y 2 0上运动,过 P 作抛物线 C 的两条切线
y1 y p(x x1)
y2
y
p(x
x2 )
y12
2 px1
y22 2 px2
解得两切线交点 Q( y1 y2 , y1 y2 ),
2p
2
进而可知 QM ∥x 轴.
阿基米德三角形的性质
性质 2 QM 的中点 P 在抛物线上,且 P 处的切线与 AB 平行. 证明:由性质 1 知
Q( y1 y2 , y1 y2 ),
SVQST
,∴ SVABI
2 SVQST .
2012年江西卷 理科第20题
已知三点 O(0, 0), A(2,1), B(2,1) ,曲线 C 上任意一点 uuur uuur uuuur uuur uuur
M(x,y)满足| MA MB | OM (OA OB) 2 .
(1)求曲线 C 的方程;
DF
由已知得 (2x)2 (2 2y)2 2y 2 ,
化简得曲线 C 的方程: x2 4 y
P
(2)假设存在点 P(0,t)(t<0)满足条件,则直线 PA 的方程
是 y t 1 x t ,直线 PB 的方程是 y 1 t x t ,曲线 C 在
2
2
点 Q 处的切线 l 的方程为 y x0 x x02 , 它与 y 轴的交点为 24
阿基米德三角形及其性质
阿基米德三角形名称的由来
抛物线的弦与过弦的端点的两条切 线所围的三角形,这个三角形又常被称 为阿基米德三角形,因为阿基米德最早 利用逼近的思想证明了:抛物线的弦与 抛物线所围成的封闭图形的面积等于阿 基米德三角形面积的2/3.
B A
P
引理
引理1:AB与CD是抛物线的两条平行弦,且AB=2CD, AB、CD的中点分别是M、N。P为抛物线的AB弧(含抛 物线顶点的部分)上一点,且P与AB的距离最远。求证: P、N、M三点共线,且PM=4PN。
F (0,
x02 ) ,由于 2 4
x0
2 ,因此 1
x0 2
1
解题方法研究
①当 1 t 0 时,
1
t
1 2
1 2
,存在
x0
(2,
2)
,使得
x0 2
t 1 , 2
即 l 与直线 PA 平行,故当 1 t 0 时不符合题意
②当 t 1时, t 1 1 x0 ,1 t 1 x0 ,所以 l 与直线 PA,PB 一定
y12 y22 2 y1 y2 = ( y1 y2 )2 ,
4p 4p
4p
设直线 AB 方程为: x my n ,则
a
(1 m2 )( y2
y1 )2
,∴ ( y2
y1 ) 2
≤ a2 ,∴ d
a2 4p
,即
S=
1 2
ad≤ a3 8p
.
阿基米德三角形的性质
性质 9 在阿基米德三角形中,∠QFA=∠QFB. 证明:如图,作 AA'⊥准线,BB'⊥准线,
2p
44
而|QF|2= ( y1 y2 p )2 ( y1 y2 )2 = ( y1 y2 )2 + y12 y22 + p2 =|AF|·|BF|.
2p 2
2
2p
44
阿基米德三角形的性质
性质 11 在抛物线上任取一点 I(不与 A、B 重合),过 I 作抛物线切线交 QA、QB 于 S、T,则△QST 的垂心在准线上.
连接
QA'、QB'、QF、AF、BF,则 kFA'
y1 p
,
显然 kFA' kQA 1 ,∴FA'⊥QA,又∵|AA'|=|AF|,
由三角形全等可得∠QAA'=∠QAF,
∴△QAA' △QAF,∴|QA'|=|QF|,∠QA'A=∠QFA,
同理可证|QB'|=|QF|,∠QB'B=∠QFB,∴|QA'|=|QB'|, 即∠QA'B'=∠QB'A'
y1 y2 y12 y22 2p 2p
y1 y0
y12 2p
x0
,
即 y12 y1 y2 y1x0 y2 x0 y12 2 py0 ,
将
y=
y1
2
y2
,y1 y2
2 px
代
入得 y0 y p(x x0 ) ,即为 Q 点的轨迹方程.
阿基米德三角形的性质
性质 5 抛物线以 C 点为中点的弦平行于 Q 点的轨迹.
B(x2 , y2 ) ,弦 AB 过点 C (x0 , y0 ) ,由
性质 2 可知 Q 点的轨迹方程
y0 y p(x x0 ) ,
该方程与 ax by c 0 表示同一条
直线,对照可得
x0
c a
,
y0
bp a
,
即弦 AB 过定点 C( c , bp ). aa
阿基米德三角形的性质
性质 7 (1)若阿基米德三角形的底边过焦点,则顶点 Q 的轨迹为准线;反之,若阿 基米德三角形的顶点 Q 在准线上,则底边过焦点.
存在 t=-1,使△ QAB 与△ PDE 的面积之比是常数 2。
阿基米德三角形的性质
性质 4 若阿基米德三角形的底边即弦 AB 过抛物线内定点 C,则另一顶点