2015高考数学一轮复习第4讲 导数及其应用1
高考数学一轮复习导数在函数中的应用-教学课件

聚焦中考——语文 第五讲
表达方式与记叙的顺序
• (2013·荆门)阅读下文,完成习题。 • ①那天下午6点多,该上公交车的人早已上了车,唯独有个小女孩,在车
门边来回徘徊。眼看着司机就要开车了,我在想,这小女孩肯定是没钱 上车。 ②“小姑娘,上车吧,我帮你交车票钱。”当看到我为她刷完卡后,她 随即上了车,说了声“谢谢阿姨”,一时脸蛋儿全红了。近距离一看, 才发现,小女孩左侧脸上有颗小痣。几天前的一幕不由浮现眼前—— ③送走远方的朋友,我从火车站迎着风雨赶到就近的公交车站台,已是 下午5点多。这时正是下班高峰期,来了几辆公交车,我总也挤不上去。 雨还在急速地下着,人还在不断地涌来。当又一辆10路公交驶来后,我 和许多人一起先往前门挤,但挤不上去。等司机发话后,才从后门好不 容易挤上车。车内人头攒动,人满为患。这人贴人的,身体若要移动一 下都难。正感叹着,我突然感觉好像有一件事还没做。是什么事呢?哦, 对了,没买车票。本想挤到前面去交车钱,可大伙儿都好像没事人一样 在原地一动不动,根本挤不过去。见此情形,司机也没说什么,这样, 我也就心安理得地和大家一样坐了一次免费的公交车。
本题在当年的高考中,出错最多的就是将第(1)题 的 a=4 用到第(2)题中,从而避免讨论,当然这是错误的.
【互动探究】 1.(2011 届广东台州中学联考)设 f′(x)是函数 f(x)的导函数,
将 y=f(x)和 y=f′(x)的图象画在同一直角坐标系中,不可能正确 的是( D )
考点2 导数与函数的极值和最大(小)值
高考数学一轮复习导数在函数中的应用-教学课件
第2讲 导数在函数中的应用
考纲要求
考纲研读
1.了解函数单调性和导数的关系;能利用 1.用导数可求函数的单 导数研究函数的单调性,会求函数的单调 调区间或以单调区间为 区间(对多项式函数一般不超过三次). 载体求参数的范围.
高考数学一轮复习第三章导数及其应用4导数的综合应用课件新人教A版2

-15考点1
考点2
考点3
当x变化时,g(x),g'(x)的变化情况如下表:
2
-∞,
3
x
g'(x)
+
0
单调递增↗
g(x)
2
,4
3
2
3
68
27
则函数 g(x)的极大值为 g
-
4
(4,+∞)
0
+
-m 单调递减↘ -16-m 单调递增↗
2
3
=
68
27
-m,极小值为 g(4)=-16-m.
∴要使 g(x)的图象与 x 轴有三个不同的交点,
则欲证
12 - 22
>2a,
只需证 2a(12 − 22 )>3x2-x1.
只需证 2a(12 − 22 )>2(x2-x1)+(x1+x2).
只需证 a(x1-x2)+
1 - 2
1 + 2
1
> .
2
因为 f'(x1)=0,f'(x2)=0,ax1=-ln x1,ax2=-ln x2,
(3)证明:由题设c>1,
设g(x)=1+(c-1)x-cx,
则g'(x)=c-1-cxln c,
ln
令 g'(x)=0,解得 x0=
-1
ln
ln
.
当 x<x0 时,g'(x)>0,g(x)单调递增;
当 x>x0 时,g'(x)<0,g(x)单调递减.
由(2)知 1<
-1
ln
2015届高考数学(文科)一轮总复习导数及其应用

2015届高考数学(文科)一轮总复习导数及其应用第三篇导数及其应用第1讲导数的概念及运算基础巩固题组(建议用时:40分钟)一、填空题1.(2014•深圳中学模拟)曲线y=x3在原点处的切线方程为________.解析∵y′=3x2,∴k=y′|x=0=0,∴曲线y=x3在原点处的切线方程为y=0.答案y=02.已知f(x)=xlnx,若f′(x0)=2,则x0=________.解析f(x)的定义域为(0,+∞),f′(x)=lnx+1,由f′(x0)=2,即lnx0+1=2,解得x0=e.答案e3.(2014•辽宁五校联考)曲线y=3lnx+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是________.解析由题意知y′=3x+1=4,解得x=1,此时4×1-y-1=0,解得y =3,∴点P0的坐标是(1,3).答案(1,3)4.(2014•烟台期末)设函数f(x)=xsinx+cosx的图象在点(t,f(t))处切线的斜率为k,则函数k=g(t)的部分图象为________.解析函数f(x)的导函数为f′(x)=(xsinx+cosx)′=xcosx,即k=g(t)=tcost,则函数g(t)为奇函数,图象关于原点对称,排除①,③.当0<t<π2时,g(t)>0,所以排除④,选②.答案②5.曲线y=sinxsinx+cosx-12在点Mπ4,0处的切线的斜率为________.解析y′=cos2x++=11+sin2x,故所求切线斜率k==12.答案126.(2013•广东卷)若曲线y=ax2-lnx在点(1,a)处的切线平行于x轴,则a=________.解析y′=2ax-1x,∴y′|x=1=2a-1=0,∴a=12.答案127.已知f(x)=x2+3xf′(2),则f′(2)=________.解析由题意得f′(x)=2x+3f′(2),∴f′(2)=2×2+3f′(2),∴f′(2)=-2.答案-28.(2013•江西卷)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=________.解析y′=αxα-1,∴斜率k=y′|x=1=α=2-01-0=2,∴α=2.答案2二、解答题9.求下列函数的导数:(1)y=ex•lnx;(2)y=xx2+1x+1x3;(3)y=x-sinx2cosx2;(4)y=(x+1)1x-1.解(1)y′=(ex•lnx)′=exlnx+ex•1x=exlnx+1x.(2)∵y=x3+1+1x2,∴y′=3x2-2x3.(3)先使用三角公式进行化简,得y=x-sinx2cosx2=x-12sinx,∴y′=x-12sinx′=x′-12(sinx)′=1-12cosx.(4)先化简,y=x•1x-x+1x-1=,∴y′=n=-12x1+1x.10.(2014•南通二模)f(x)=ax-1x,g(x)=lnx,x>0,a∈R是常数.(1)求曲线y=g(x)在点P(1,g(1))处的切线l.(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的值;若不存在,简要说明理由.解(1)由题意知,g(1)=0,又g′(x)=1x,g′(1)=1,所以直线l的方程为y=x-1.(2)设y=f(x)在x=x0处的切线为l,则有ax0-1x0=x0-1,a+1x20=1,解得x0=2,a=34,此时f(2)=1,即当a=34时,l是曲线y=f(x)在点Q(2,1)的切线.能力提升题组(建议用时:25分钟)一、填空题1.(2014•盐城一模)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是0,π4,则点P横坐标的取值范围是________.解析设P(x0,y0),倾斜角为α,y′=2x+2,则k=tanα=2x0+2∈0,1],解得x0∈-1,-12.答案-1,-122.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn(x)=f′n-1(x),n∈N*,则f2013(x)=________.解析f1(x)=f0′(x)=cosx,f2(x)=f1′(x)=-sinx,f3(x)=f2′(x)=-cosx,f4(x)=f3′(x)=sinx,…,由规律知,这一系列函数式值的周期为4,故f2013(x)f1(x)=cosx.答案cosx3.(2014•武汉中学月考)已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,设曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2013x1+log2013x2+…+log2013x2012的值为________.解析f′(x)=(n+1)xn,k=f′(1)=n+1,点P(1,1)处的切线方程为y-1=(n+1)(x-1),令y=0,得x=1-1n+1=nn+1,即xn=nn+1,∴x1•x2•…•x2012=12×23×34×…×20112012×20122013=12013,则log2013x1+log2013x2+…+log2013x2012=log2013(x1x2…x2012)=-1.答案-1二、解答题4.设函数f(x)=ax-bx,曲线y=f(x)在点(2,f(2))处的切线方程为7x -4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.(1)解方程7x-4y-12=0可化为y=74x-3,当x=2时,y=12.又f′(x)=a+bx2,于是2a-b2=12,a+b4=74,解得a=1,b=3.故f(x)=x-3x.(2)证明设P(x0,y0)为曲线上任一点,由f′(x)=1+3x2知曲线在点P(x0,y0)处的切线方程为y-y0=1+3x20(x -x0),即y-(x0-3x0)=1+3x20(x-x0).令x=0,得y=-6x0,从而得切线与直线x=0交点坐标为0,-6x0.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为12-6x0|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,此定值为6.。
(江苏专用)高考数学一轮复习 第四章 导数及其应用 热点探究课2 函数、导数与不等式教师用书-人教版

热点探究课(二) 函数、导数与不等式[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的X 围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点1 利用导数研究函数的单调性、极值与最值(答题模板)函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的X 围.(本小题满分14分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值X 围.【导学号:62172114】[思路点拨] (1)求出导数后对a 分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a 的X 围.[规X 解答] (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .2分若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.3分若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.5分所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.6分 (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.11分 因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.12分令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值X 围是(0,1).14分[答题模板] 讨论含参函数f (x )的单调性的一般步骤 第一步:求函数f (x )的定义域(根据已知函数解析式确定). 第二步:求函数f (x )的导数f ′(x ).第三步:根据f ′(x )=0的零点是否存在或零点的大小对参数分类讨论. 第四步:求解(令f ′(x )>0或令f ′(x )<0). 第五步:下结论.第六步:反思回顾,查看关键点、易错点、注意解题规X .温馨提示:1.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题.2.若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.[对点训练1] 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x,若函数g (x )在x ∈[-3,2]上单调递增,某某数c 的取值X 围.[解] (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.2分当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1,解得a =-1.4分(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎪⎫-∞,-3和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.8分(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x, 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x=(-x 2-3x +c -1)e x,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立, 只要h (2)≥0,解得c ≥11,所以c 的取值X 围是[11,+∞).14分热点2 利用导数研究函数的零点或曲线交点问题研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图象交点的个数;(2)由函数的零点、图象交点的情况求参数的取值X 围.(2016·高考节选)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值X 围. [解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .2分 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .4分 (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.6分令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.8分f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:x (-∞,-2)-2 ⎝⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,+∞ f ′(x ) +-+f (x )c c -3227所以,当c >0且c -27<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-3,x 3∈⎝ ⎛⎭⎪⎫-3,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.14分[规律方法] 用导数研究函数的零点,常用两种方法:一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图象的交点问题,利用数形结合来解决.[对点训练2] 设函数f (x )=ln x +m x,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数. 【导学号:62172115】[解] (1)由题设,当m =e 时,f (x )=ln x +ex,则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.2分 ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.4分(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).6分设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.10分又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.14分热点3 利用导数研究不等式问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)不等式恒成立问题;(3)存在型不等式成立问题. ☞角度1 证明不等式设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x>x 2-2ax +1.[解] (1)由f (x )=e x-2x +2a ,x ∈R ,f ′(x )=e x-2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减2(1-ln 2+a )单调递增故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).6分(2)设g (x )=e x -x 2+2ax -1,x ∈R .于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 又g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x-x 2+2ax -1>0,故e x >x 2-2ax +1.14分 ☞角度2 不等式恒成立问题(2016·全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1).(1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值X 围. [解] (1)f (x )的定义域为(0,+∞).1分 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.3分故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.6分 (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0.9分 ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0.综上,a 的取值X 围是(-∞,2].14分 ☞角度3 存在型不等式成立问题设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值X 围.[解] (1)f ′(x )=a x+(1-a )x -b . 由题设知f ′(1)=0,解得b =1.3分 (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x -1=1-a x ⎝ ⎛⎭⎪⎫x -a 1-a (x -1).5分①若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.7分②若12<a <1,则a 1-a >1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.10分所以存在x 0≥1,使得f (x 0)<aa -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <aa -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 221-a +a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1恒成立,所以a >1.综上,a 的取值X 围是(-2-1,2-1)∪(1,+∞).14分 [规律方法] 1.运用导数证明不等式,常转化为求函数的最值问题.2.不等式恒成立通常可以利用函数的单调性求出最值解决.解答相应的参数不等式,如果易分离参数,可先分离变量,构造函数,直接转化为函数的最值问题,避免参数的讨论.3.“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.应特别关注等号是否成立问题.热点探究训练(二)1.设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值X 围. 【导学号:62172116】 [解] (1)对f (x )求导得f ′(x )= 6x +a e x -3x 2+ax exe x 2=-3x 2+6-a x +aex.3分 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.7分(2)由(1)知f ′(x )=-3x 2+6-a x +aex, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.9分当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.11分由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92.故a 的取值X 围为⎣⎢⎡⎭⎪⎫-92,+∞.14分2.(2017·某某模拟)设函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值X 围. [解] (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=x e x -2e x x 3-k x -2x 2=x -2e x-kx x 3.由k ≤0可得e x-kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).6分 (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x-kx ,x ∈[0,+∞). 因为g ′(x )=e x-k =e x-e ln k,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x-k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点; 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减,x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g 0>0,g ln k <0,g 2>0,0<ln k <2,解得e<k <e22.13分综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值X 围为⎝ ⎛⎭⎪⎫e ,e 22. 14分3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值X 围.[解] (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ).1分 (ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.3分 (ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ). ①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增. ②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.5分③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.7分(2)(ⅰ)设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,所以f (x )有两个零点.9分(ⅱ)设a =0,则f (x )=(x -2)e x,所以f (x )只有一个零点.(ⅲ)设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值X 围为(0,+∞).14分4.(2017·某某模拟)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2]函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤f ′x +m 2在区间(t,3)上总不是单调函数,求m 的取值X 围;(3)求证:ln 22×ln 33×ln 44×…×ln n n <1n (n ≥2,n ∈N +). 【导学号:62172117】[解] (1)f ′(x )=a 1-xx(x >0). 当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a =0时,f (x )不是单调函数.4分(2)由f ′(2)=-a 2=1得a =-2,∴f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,且g ′(0)=-2, ∴⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题意知:对于任意的t ∈[1,2],g ′(t )<0恒成立,所以有:⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0,∴-373<m <-9.8分(3)证明:令a =-1,此时f (x )=-ln x +x -3,所以f (1)=-2,由(1)知f (x )=-ln x +x -3在(1,+∞)上单调递增,∴当x ∈(1,+∞)时f (x )>f (1),即-ln x +x -1>0,∴ln x <x -1对一切x ∈(1,+∞)成立,∵n ≥2,n ∈N +,则有0<ln n <n -1,∴0<ln n n <n -1n.word11 / 11 ∴ln 22×ln 33×ln 44×ln n n <12×23×34×…×n -1n =1n(n ≥2,n ∈N +).16分。
高考数学一轮复习 第四章 导数及其应用 第24课 含参数

第24课 含参数的函数的单调性1.可因式分解型【例1】已知函数ax x x a x f ++-=2221ln 2)()(R a ∈求函数)(x f 的单调区间. 【解析】函数)(x f 的定义域为),0(+∞,xa x a x x a ax x x f ))(2(2)(22-+=-+=' 令()0f x '=,得1x a = ,22x a =- 由于0x > ,所以①当0=a 时,0)(>='x x f ,此时,)(x f 在定义域),0(+∞上单调递增, ②当0>a 时,02a a >>-令()0f x '>,得x a > ;令()0f x '<,得0x a <<即 当x a >时,()0f x '>,()f x 在(,)a +∞上单调递增;当0x a <<时,()0f x '<,()f x 在(0,)a 上单调递减 ③当0<a 时,20a a ->>令()0f x '>,得2x a >- ;令()0f x '<,得02x a <<-即 当2x a >-时,()0f x '<,()f x 在(0,2)a 上单调递减;当02x a <<-时,()0f x '<,()f x 在(2,)a -+∞上单调递增综上所述:当0=a 时,()f x 的递增区间为),0(+∞;当0>a 时,()f x 的递增区间为(,)a +∞,递减区间为(0,)a ;当0<a 时,函数)(x f 的单调递增区间为(2,)a -+∞,单调递减区间为(0,2)a . 【变式】设函数32112()232a f x x x ax a -=+--,讨函数()f x 的单调性 【解析】由已知,得()f x 的定义域为R ∵32112()232a f x x x ax a -=+--,2()(12)2(1)(2)f x x a x a x x a '∴=+--=+- 令()0f x '=,解得11x =-,2x a = (1)当21a =- ,即12a =-时,2()(1)(2)(1)0f x x x a x '∴=+-=+≥,此时()f x 在(,)-∞+∞上是增函数;(2)当21a >- ,即12a >-时 令()0f x '>,解得2x a >或1x <-;令()0f x '>,解得12x a -<< 此时()f x 在(,1)-∞-上递增,在(1,2)a -上递减,在(2,)a +∞上递增 (3)当21a <- ,即12a <-时 令()0f x '>,解得1x >-或2x a <;令()0f x '<,解得21a x <<- 此时()f x 在(,2)a -∞上递增,在(2,1)a -上递减,在(1,)-+∞上递增综上所述:当12a =-时,()f x 在(,)-∞+∞上是增函数;当12a >-时,()f x 在(,1)-∞-上递增,在(1,2)a -上递减,在(2,)a +∞上递增;当12a <-时,()f x 在(,2)a -∞上递增,在(2,1)a -上递减,在(1,)-+∞上递增. 反思:如果求函数)(x f 的单调区间,结论如何写? 2.不可因式分解型 【例3】设函数3211()232f x x x ax a =+--,讨函数()f x 的单调性 【解析】由已知,得()f x 的定义域为R∵3211()232f x x x ax a =+--,2()2f x x x a '∴=+-,()0f x '=的判别式18a ∆=+ (1)当0∆=,即18a =-时,2211()()042f x x x x '∴=++=+≥,此时()f x 在(,)-∞+∞上是增函数;(2)当0∆<,即18a <-时,()0f x '∴>恒成立,此时()f x 在(,)-∞+∞上是增函数;(3)当0∆>,即18a >-时,令()0f x '=,解得112x -=212x -+=,并且12x x < ;令()0f x '>,解得x >或x <;令()0f x '<x <<此时()f x在(,-∞上是增函数,在,上是减函数,在1(,)2-++∞上是增函数.综上所述,当18a ≤-时,()f x 在(,)-∞+∞上是增函数;当18a >-时,()f x 在1(,)2--∞上是增函数,在11(,22---+上是减函数,在1(,)2-++∞上是增函数.第24课 含参数的函数的单调性的课后习题1. 一动圆P 圆221:(3)9F x y ++=与圆222:(3)1F x y -+=外切,求动圆圆心P 的轨迹方程,并说明它是什么样的曲线。
江西省高考数学一轮复习 导数及其应用(含积分)备考试题

江西省2015届高三数学一轮复习备考试题导数及其应用(含积分)一、选择题1、(2014年江西高考)若12()2(),f x x f x dx =+⎰则1()f x dx =⎰A.1-B.13-C.13 D.12、(2013年江西高考)若22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰则123S S S 的大小关系为 A.123S S S << B.213S S S << C.231S S S << D.321S S S <<3、(乐安一中2015届高三上学期开学考试)定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <4、(南昌二中2015届高三上学期第一次考)定义在R 上的可导函数)(x f ,当),1(+∞∈x 时,0)1)(()()1(''>--⋅-x x f x f x 恒成立,若)2(f a =, )3(21f b =, )2(121f c -=,则c b a ,,的大小关系是( )A .b a c <<B .c b a <<C .c a b <<D .b c a <<5、(南昌三中2015届高三上学期第一次月考)设()ln f x x x =,若0'()2f x =,则0x =( ) A. 2e B. e C.ln 22D. ln 26、(南昌市八一中学2015届高三8月月考)已知函数f (x )在R 上满足f (1+x )=2f (1﹣x )﹣x 2+3x+1,则曲线y=f (x )在点(1,f (1))处的切线方程是学科网( ) A . x ﹣y ﹣2=0 B . x ﹣y=0 C . 3x+y ﹣2=0 D . 3x ﹣y ﹣2=0 7、(南昌市新建二中2015届高三9月月考)设()f x 是定义在R 上的可导函数,且满足()()f x f x '>,对任意的正数a ,下面不等式恒成立的是( ).A.()(0)af a e f <B.()(0)af a e f > C.(0)()a f f a e <D .(0)()af f a e> 8、(遂川中学2015届高三上学期第一次月考)由直线3x π=-,3x π=,0y =与曲线cos y x =所围成的封闭图形的面积为( )A .12B .1C .32D . 39、(南昌三中2014届高三第七次考试)已知二次函数2()1f x ax bx =++的导函数为'()f x ,且'(0)f >0,()f x 的图象与x 轴恰有一个交点,则'(1)(0)f f 的最小值为 ( ) A .3 B .32 C .2 D .5210、(吉安一中2014届高三下学期第一次模拟)设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A. 4B. 14-C. 2D. 12-二、填空题1、(2014年江西高考)若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.2、(2013年江西高考)设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)xf =3、(2012年江西高考)计算定积分121(sin )x x dx -+=⎰___________。
(全国通用版)高考数学一轮复习第四单元导数及其应用学案理
第四单元 导数及其应用教材复习课“导数”相关基础知识一课过1.基本初等函数的导数公式2(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[小题速通]1.下列求导运算正确的是( ) A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x解析:选B ⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2;(log 2x )′=1x ln 2;(3x )′=3x ln 3;(x 2cos x )′=2x cosx -x 2sin x ,故选B.2.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103解析:选D 因为f ′(x )=3ax 2+6x , 所以f ′(-1)=3a -6=4, 所以a =103.4.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析:因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 答案:3 5.函数y =x +x的导数为________.解析:y ′=⎣⎢⎡⎦⎥⎤x +x′=x +x -x x +x 2=x +2x +1·x -x +x 2=2x2x +1-x +x 2=2x -x +x +x +x2.答案:y ′=2x -x +x +x +x2[清易错]1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n -1中n ≠0且n∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x)′=a xln a ,而不是(a x)′=xax -1.1.已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2解析:选B ∵f ′(x )=(sin x -cos x )′=cos x +sin x , 又f ′(x )=12f (x ),∴cos x +sin x =12sin x -12cos x ,∴tan x =-3.2.若函数f (x )=2x+ln x 且f ′(a )=0,则2aln 2a=( ) A .-1 B .1 C .-ln 2D .ln 2解析:选A f ′(x )=2x ln 2+1x ,由f ′(a )=2a ln 2+1a =0,得2a ln 2=-1a,则a ·2a·ln2=-1,即2a ln 2a=-1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).[小题速通]1.(2018·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.解析:因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0. 答案:x -y -1=03.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.解析:因为y ′=4x ,设切点为(m ,n ),则4m =2,所以m =12,则n =2×⎝ ⎛⎭⎪⎫122=12,则切点的坐标为⎝ ⎛⎭⎪⎫12,12. 答案:⎝ ⎛⎭⎪⎫12,12 4.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________.解析:因为函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,所以f ′(1)=3,且f (1)=3×1-2=1,所以f (1)+f ′(1)=1+3=4.答案:4[清易错]1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2, 设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1,所以选A.2.(2017·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.解析:因为函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,所以此函数的图象在点(1,3)处的切线斜率为3+a ,所以⎩⎪⎨⎪⎧3+a =2,3=1+a +b ,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:31.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f ′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间. [小题速通]1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( ) A .(1,2) B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞)解析:选A 解f ′(x )=6x 2-18x +12<0可得1<x <2,所以单调减区间是(1,2). 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧Δ=a 2-24>0,-a4≤1,g =5+a ≥0⇔-26≤a ≤26或a >26⇔a ≥-26,故选C.[清易错]若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立, ∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎢⎡⎭⎪⎫13,+∞1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[小题速通]1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.2.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.3.(2017·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范围为________.解析:f ′(x )=x -a +1x =x 2-ax +1x(x >0),因为函数f (x )=12x 2-ax +ln x 有极值,令g (x )=x 2-ax +1,且g (0)=1>0,所以⎩⎪⎨⎪⎧a 2>0,g ⎝ ⎛⎭⎪⎫a 2=-a 24+1<0,解得a >2.答案:(2,+∞)5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:由题意,f ′(x )=3x 2-4ax +a 2=0,得x =a3或a .又∵x 1<2<x 2,∴x 1=a3,x 2=a ,∴⎩⎪⎨⎪⎧a >2,a3<2,∴2<a <6.答案:(2,6)[清易错]1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论. 1.(2017·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2x解析:选D 因为A 、B 为单调函数,所以不存在极值,C 不是奇函数,故选D. 2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________. 解析:f ′(x )=3x 2-3, 由f ′(x )>0可得x >1或x <-1, 由f ′(x )<0可得-1<x <1,所以函数f (x )的增区间是[-2,-1],[1,2],减区间是[-1,1]. 又因为f (-2)=-1,f (-1)=3,f (1)=-1,f (2)=3, 所以M =3,m =-1, 所以M +m =2. 答案:2定积分1.定积分的概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3) ⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x ) ⎪⎪⎪ba,即⎠⎛ab f (x )d x =F (x ) ⎪⎪⎪ba =F (b )-F (a ).[小题速通]1.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A 因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.2.⎠⎛01(e x+x)d x =________.解析:⎠⎛01(e x+x )dx =⎝ ⎛⎭⎪⎫e x +12x 2⎪⎪⎪10=⎝⎛⎭⎪⎫e 1+12-(e 0+0)=e -12.答案:e -123.(2015·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x 2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)dx =⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪1=16. 答案:16[清易错]定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.由曲线y =x 2和直线x =0,x =1,y =14所围成的图形(如图所示)的面积为( )A .23B.13C .12D.14解析:选D 由题意及图形可得阴影部分的面积 S =⎰201⎝ ⎛⎭⎪⎫14-x 2dx +⎰211⎝ ⎛⎭⎪⎫x 2-14dx =⎝ ⎛⎭⎪⎫14x -13x 3⎪⎪⎪⎪12+⎝ ⎛⎭⎪⎫13x 3-14x ⎪⎪⎪⎪112=14.一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( ) A .e B.1eC.1e2D.12解析:选B 因为f ′(x )=1x ln a ,所以f ′(1)=1ln a =-1,所以ln a =-1,所以a =1e.2.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( )A .-1B .1C .2D .-2解析:选C 由曲线y =x 2+ax +b ,得y ′=2x +a , 由题意可得⎩⎪⎨⎪⎧k +1=3,k =2+a ,1+a +b =3,解得⎩⎪⎨⎪⎧k =2,a =0,b =2,所以2a +b =2.3.函数y =2x 3-3x 2的极值情况为( )A .在x =0处取得极大值0,但无极小值B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对解析:选C y ′=6x 2-6x ,由y ′=6x 2-6x >0,可得x >1或x <0, 即单调增区间是(-∞,0),(1,+∞).由y ′=6x 2-6x <0,可得0<x <1,即单调减区间是(0,1),所以函数在x =0处取得极大值0,在x =1处取得极小值-1. 4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)解析:选C 由题意,f ′(x )=-x +m x≤0在(1,+∞)上恒成立,即m ≤x 2在(1,+∞)上恒成立,又因为x 2>1,所以m ≤1.5.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,∴f (x )的单调递增区间是(2,+∞).故选D.6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .3解析:选B f(x)=x(x 2-2mx +m 2)=x 3-2mx 2+m 2x ,所以f′(x)=3x 2-4mx +m 2=(x -m)(3x -m).由f′(1)=0可得m =1或m =3.当m =3时,f′(x)=3(x -1)(x -3),当1<x<3时,f′(x)<0,当x<1或x>3时,f′(x)>0,此时在x =1处取得极大值,不合题意,∴m =1,此时f′(x)=(x -1)(3x -1),当13<x <1时,f′(x)<0,当x<13或x>1时,f′(x)>0,此时在x =1处取得极小值.选B .7.由曲线y =x 2-1,直线x =0,x =2和x 轴所围成的封闭图形的面积是( )A .⎠⎛02(x 2-1)d xB.⎠⎛02|x 2-1|d xC .⎠⎛02(x 2-1)d xD .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x解析:选B 作出封闭图形的示意图如图所示,易得所围成的封闭图形的面积是S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x .8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范围是( ) A .[2,3] B .(2,3] C .(-∞,2]D .(-∞,2)解析:选A 当x ≤0时,0≤f (x )=1-2x<1; 当x >0时,f (x )=x 3-3x +a ,f ′(x )=3x 2-3, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以当x =1时,函数f (x )取得最小值f (1)=1-3+a =a -2.由题意得0≤a -2≤1,解得2≤a ≤3,选A.二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________. 解析:由题意知f (x )的定义域为(0,+∞),f ′(x )=1+a x,要使函数f (x )=x +a ln x 不是单调函数,则需方程1+a x=0在(0,+∞)上有解,即x =-a ,∴a <0.答案:(-∞,0)10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x-2f ′(-1)x +3,∴f ′(-1)=-1+2f ′(-1)+3, ∴f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:811.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.解析:由题意知f ′(1)=12,f (1)=12×1+3=72,∴f (1)+f ′(1)=72+12=4.答案:412.已知函数g (x )满足g (x )=g ′(1)ex -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m 的取值范围为________.解析:g ′(x )=g ′(1)ex -1-g (0)+x ,令x =1时,得g ′(1)=g ′(1)-g (0)+1, ∴g (0)=1,g (0)=g ′(1)e 0-1=1,∴g ′(1)=e ,∴g (x )=e x -x +12x 2,g ′(x )=e x-1+x ,当x <0时,g ′(x )<0,当x >0时,g ′(x )>0, ∴当x =0时,函数g (x )取得最小值g (0)=1. 根据题意得2m -1≥g (x )min =1,∴m ≥1. 答案:[1,+∞) 三、解答题13.已知函数f (x )=x +ax+b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求实数b 的取值范围.解:(1)f ′(x )=1-a x2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8.由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9,所以函数f (x )的解析式为f (x )=x -8x+9.(2)由(1)知f ′(x )=1-a x2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a , 当x 变化时,f ′(x ),f (x )的变化情况如下表:上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f,即⎩⎪⎨⎪⎧b ≤394-4a ,b ≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b ≤74,所以实数b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导,得f ′(x )=14-a x 2-1x (x >0),由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2, 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x =5时取得极小值f (5)=-ln 5,无极大值. 高考研究课(一)导数运算是基点、几何意义是重点、定积分应用是潜考点 [全国卷5年命题分析]导数的运算[典例] (1)(2018·惠州模拟)已知函数f (x )=x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x(3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e[解析] (1)∵f ′(x )=-1x 2cos x +1x(-sin x ),∴f (π)+f ′⎝ ⎛⎭⎪⎫π2=-1π+2π·(-1)=-3π. (2)∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , ∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x , ∴f n (x )是以4为周期的函数,∴f 2 018(x )=f 2(x )=cos x -sin x ,故选D.(3)由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. [答案] (1)C (2)D (3)B [方法技巧]1.可导函数的求导步骤(1)分析函数y =f (x )的结构特点,进行化简; (2)选择恰当的求导法则与导数公式求导; (3)化简整理答案. 2.求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.[即时演练]1.(2018·江西九校联考)已知y =(x +1)(x +2)(x +3),则y ′=( ) A .3x 2-12x +6 B .x 2+12x -11 C .x 2+12x +6D .3x 2+12x +11解析:选D 法一:y ′=(x +2)(x +3)+(x +1)(x +3)+(x +1)(x +2)=3x 2+12x +11. 法二:∵y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.2.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________. 解析:f ′(x )=ln x +1,由f ′(x 0)=2, 即ln x 0+1=2,解得x 0=e. 答案:e导数的几何意义问中,难度较低,属中、低档题. 常见的命题角度有:求切线方程; 确定切点坐标;已知切线求参数值或范围; 切线的综合应用. 角度一:求切线方程1.已知函数f (x )=ln(1+x )-x +x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是________.解析:∵f ′(x )=11+x -1+2x ,∴f ′(1)=32,f (1)=ln 2,∴曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.答案:3x -2y +2ln 2-3=0角度二:确定切点坐标2.已知函数f (x )=exx(x >0),直线l :x -ty -2=0.若直线l 与曲线y =f (x )相切,则切点横坐标的值为________.解析:由f (x )=e x x (x >0),得f ′(x )=e x ·x -e x x2=exx -x 2(x >0).当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.根据直线l 的方程x =ty +2,可得l 恒过点(2,0).①当t =0时,直线l :x =2垂直于x 轴,不与曲线y =f (x )相切,舍去;②当t ≠0时,设切点A (x 0,y 0),直线l 可化为y =1t x -2t ,斜率k =1t=f ′(x 0)=e x 0x 0-x 20,又直线l 和曲线y =f (x )均过点A (x 0,y 0),则满足y 0=1t x 0-2t =e x 0x 0,所以e x 0x 0-x 20=e x 0x 0-x 0·x 0=⎝ ⎛⎭⎪⎫1t x 0-2t ·x 0-1x 0=x 0-2t ·x 0-1x 0=1t,两边约去t 后,可得(x 0-2)·x 0-1x 0=1,化简得x 20-4x 0+2=0, 解得x 0=2± 2.综上所述,切点的横坐标为2± 2. 答案:2± 2角度三:已知切线求参数值或范围3.(2017·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是________.解析:由题意知曲线上存在某点的导数值为1, 所以y ′=2ax +3-1x=1有正根,即2ax 2+2x -1=0有正根. 当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0.综上,a ≥-12.答案:⎣⎢⎡⎭⎪⎫-12,+∞ 4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围是________. 解析:设y =a ln x -1的切点为(x 0,y 0),求导y ′=ax,则切线的斜率为a x 0,所以公切线方程为y -(a ln x 0-1)=a x 0(x -x 0), 联立方程y =x 2-1可得x 2-a x 0x +a -a ln x 0=0, 由题意,可得Δ=⎝ ⎛⎭⎪⎫-a x 02-4(a -a ln x 0)=0, 则a =4x 20(1-ln x 0).令f (x )=4x 2(1-ln x )(x >0),则f ′(x )=4x (1-2ln x ),易知,函数f (x )=4x 2(1-ln x )在(0,e)上是增函数,在(e ,+∞)上是减函数, 所以函数f (x )=4x 2(1-ln x )的最大值是f (e)=2e , 则正实数a 的取值范围是(0,2e]. 答案:(0,2e]角度四:切线的综合应用5.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值. 解:(1)F ′(x )=f ′(x )-g ′(x )=mx +1-1x +2=m x +-1x +2(x >-1), 当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减.当m >0时,由F ′(x )<0,得-1<x <-1+1m,所以函数F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减;由F ′(x )>0,得x >-1+1m,所以函数F (x )在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.综上所述,当m ≤0时,函数F (x )在(-1,+∞)上单调递减,当m >0时,函数F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.(2)函数f (x )=m ln(x +1)在点(a ,m ln(a +1))处的切线方程为y -m ln(a +1)=ma +1(x-a ),即y =ma +1x +m ln(a +1)-maa +1. 函数g (x )=xx +1在点⎝ ⎛⎭⎪⎫b ,b b +1处的切线方程为y -bb +1=1b +2(x -b ),即y =1b +2x +b 2b +2.因为y =f (x )与y =g (x )的图象有且仅有一条公切线,即⎩⎪⎨⎪⎧m a +1=1b +2, ①m a +-ma a +1=b 2b +2, ②所以有唯一数对(a ,b ),满足这个方程组,由①得a +1=m (b +1)2,代入②消去a 整理得:2m ln(b +1)+2b +1+m ln m -m -1=0,关于b (b >-1)的方程有唯一的解,令h (b )=2m ln(b +1)+2b +1+m ln m -m -1, 则h ′(b )=2m b +1-2b +2=2[m b +-1]b +2, 方程组有解时,m >0,所以h (b )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增,所以h (b )min =h ⎝ ⎛⎭⎪⎫-1+1m =m -m ln m -1,因为b →+∞,h (b )→+∞,b →-1,h (b )→+∞, 所以只需m -m ln m -1=0.令p (m )=m -m ln m -1,则p ′(m )=-ln m 在m >0时为单调递减函数,且m =1时,p ′(m )=0.所以p (m )max =p (1)=0,所以m =1时,关于b (b >-1)的方程2m ln(b +1)+2b +1+m ln m -m -1=0有唯一解,此时a =b =0,公切线为y =x .[方法技巧]利用导数解决切线问题的方法(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.[典例] (1)(2018·东营模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈,2],则⎠⎛02f(x)d x 等于( )A.34 B.45 C.56D .不存在 (2)设f (x )=⎩⎨⎧1-x 2,x∈[-1,,x 2-1,x∈[1,2],则⎠⎛-12f (x )dx 的值为( )A.π2+43B.π2+3 C.π4+43D.π4+3 (3)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.[解析] (1)如图,⎠⎛02f (x )dx =⎠⎛01x 2dx +⎠⎛12(2-x )dx =13x 3⎪⎪⎪1+⎝⎛⎭⎪⎫2x -12x 2⎪⎪⎪21=13+⎝ ⎛⎭⎪⎫4-2-2+12=56. (2) ⎠⎛-12f (x )dx =⎠⎛-111-x 2dx +⎠⎛12(x 2-1)dx ,因为⎠⎛1-11-x 2d x 表示圆心在原点,半径为1的上半圆的面积,则⎠⎛-111-x 2dx =π2;⎠⎛12 (x 2-1)dx =⎝ ⎛⎭⎪⎫13x 3-x 21=43, 所以⎠⎛-12f (x )dx =π2+43.(3)封闭图形如图所示, 则⎠⎛ax dx =23x 32⎪⎪⎪a=23a 32-0=a 2,解得a =49. [答案] (1)C (2)A (3)49[方法技巧]求定积分的2种方法及注意事项(1)定理法运用微积分基本定理求定积分时要注意以下几点: ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; ③对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F′(x )=f (x )”检验积分的对错. (2)面积法根据定积分的几何意义可利用面积求定积分. [即时演练]1.(2018·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1解析:选C ⎠⎛01(2x +e x)d x =(x 2+e x )10=1+e 1-1=e .故选C .2.直线y =2x +3与抛物线y =x 2所围成封闭图形的面积为________. 解析:如图,由方程组⎩⎪⎨⎪⎧y =2x +3,y =x 2,可得x 1=-1,x 2=3,故所求图形面积为S =⎠⎛-13 [(2x+3)-x 2]dx =⎠⎛-13-1(2x +3)dx -⎠⎛-13x 2dx =(x 2+3x ) ⎪⎪⎪3-1-13x 3⎪⎪⎪3-1=323.答案:3233.如图,在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率为________.解析:由图知长方形OABC 的面积为e ;函数y =a x 过点(1,e ),则a =e ,所以曲线的方程为y =e x,A ,D 在直线y =1-x 上, 所以阴影部分的面积S =⎠⎛01(e x+x -1)dx =⎝ ⎛⎭⎪⎫e x +12x 2-x 10=e -32,所以在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率P =e -32e =1-32e.答案:1-32e1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′x =0=2,即a -1=2,所以a =3. 2.(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即x -y +1=0.答案:x -y +1=03.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.解析:y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点的横坐标为x 2),∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=x 2+-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案:1-ln 24.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1.又f (1)=a +2, ∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.(2015·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:∵y =x +ln x , ∴y ′=1+1x,y ′x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+a +x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 答案:8一、选择题1.若a =⎠⎛02x d x ,则二项式⎝⎛⎭⎪⎫x -a +1x 6展开式中的常数项是( )C .-540D .540解析:选C a =⎠⎛02xdx =12x ⎪⎪⎪20=2,则⎝ ⎛⎭⎪⎫x -3x 6展开式的通项T r +1=(-3)r C r 6x 6-2r ,令6-2r =0可得r =3,则常数项是T 4=(-3)3C 36=-540.2.(2018·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3D .y =-2x -2解析:选A ∵y=1-2x +2=x x +2, ∴y ′=x +2-x x +2=2x +2,y ′|x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1), 即y =2x +1.3.(2018·济南一模)已知曲线f (x )=ln x 的切线经过原点,则此切线的斜率为( )A .eB .-eC .1eD .-1e解析:选C 法一:∵f (x )=ln x ,x ∈(0,+∞), ∴f ′(x )=1x .设切点P(x 0,ln x 0),则切线的斜率为k =f ′(x 0)=1x 0=k OP =ln x 0x 0.∴ln x 0=1,∴x 0=e ,∴k =1x 0=1e.法二:(数形结合法):在同一坐标系下作出y =ln x 及曲线y =ln x 经过原点的切线,由图可知,切线的斜率为正,且小于1,故选C .4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴直线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1, 又因为y 0=12x 20+mx 0+72(m <0),解得m =-2,故选D.5.(2018·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,πB.⎣⎢⎡⎭⎪⎫2π3,πC .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝⎛⎦⎥⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π.6.已知曲线y =1e x+1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0D .4x -2y -1=0解析:选A y ′=-exe x+2=-1e x +1ex +2,因为e x >0,所以e x+1e x ≥2e x ×1ex =2(当且仅当e x =1e x ,即x =0时取等号),则e x+1ex +2≥4,故y ′=-1e x +1ex +2≥-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最大值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A .二、填空题7.若a 和b 是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg (ax 2+4x +4b)的值域为R 的概率为________.解析:由题意知⎩⎪⎨⎪⎧0<a <2,0<b <2所表示的平面区域是正方形,其面积为4.因为函数f (x )=lg(ax 2+4x +4b )的值域为R , 所以ax2+4x +4b 取遍所有的正数,则⎩⎪⎨⎪⎧a >0,Δ=16-16ab ≥0,化简可得⎩⎪⎨⎪⎧a >0,ab ≤1,如图所示,不等式⎩⎪⎨⎪⎧a >0,b >0,ab ≤1所表示的图形的面积S =2×12+⎠⎛2121ad a =1+ln a 212=1+2ln 2,所以所求事件的概率为1+2ln 24.答案:1+2ln 248.已知函数f (x )=e ax+bx (a <0)在点(0,f(0))处的切线方程为y =5x +1,且f (1)+f ′(1)=12.则a ,b 的值分别为________.解析:f (x )=e ax+bx ,那么f ′(x )=a e ax+b ,由⎩⎪⎨⎪⎧=5,+=12,得⎩⎪⎨⎪⎧a +b =5,a e a +b +b +e a=12,化简得(e a-2)(a +1)=0, 由a <0,得a =-1,b =6. 答案:-1,69.(2017·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.解析:∵f (x )=x ln x , ∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1⇔ln x 0+1=1⇔ln x 0=0⇔x 0=1,∴f (x 0)=1·ln 1=0, ∴P(1,0). 答案:(1,0)10.设过曲线f (x )=-e x-x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范围是________.解析:设曲线f (x )上任意一点A(x 1,y 1),曲线g(x )上存在一点B(x 2,y 2),f ′(x )=-e x -1,g ′(x )=m -3cos x .由题意可得f ′(x 1)g ′(x 2)=-1,且f ′(x 1)=-ex 1-1∈(-∞,-1),g ′(x 2)=m -3cos x 2∈[m -3,m +3].因为过曲线f (x )=-e x-x (e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,所以(0,1)⊆[m -3,m +3],所以m -3≤0,且m +3≥1,解得-2≤m≤3. 答案:[-2,3] 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞). 12.已知函数f (x )=12x 2-ax +(3-a )ln x ,a ∈R.(1)若曲线y =f (x )在点(1,f (1))处的切线与直线2x -y +1=0垂直,求a 的值; (2)设f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 1)+f (x 2)>-5. 解:(1)∵f ′(x )=x -a +3-a x =x 2-ax +3-ax,∴f ′(1)=4-2a ,由题意知4-2a =-12,解得a =94.(2)证明:由题意知,x 1,x 2为f ′(x )=0的两根, ∴⎩⎪⎨⎪⎧Δ=a 2--a ,a >0,3-a >0,∴2<a <3.又x 1+x 2=a ,x 1x 2=3-a , ∴f (x 1)+f (x 2)=12(x 21+x 22)-a (x 1+x 2)+(3-a )ln x 1x 2 =-12a 2+a -3+(3-a )ln(3-a ).设h (a )=-12a 2+a -3+(3-a )ln(3-a ),a ∈(2,3),则h ′(a )=-a -ln(3-a ),h ″(a )=-1+13-a =a -23-a>0,故h ′(a )在(2,3)上递增. 又h ′(2)=-2<0,a →3时,h ′(a )→+∞,∴∃a 0∈(2,3),当a ∈(2,a 0)时,h (a )递减,当a ∈(a 0,3)时,h (a )递增,∴h (a )min =h (a 0)=-12a 20+a 0-3+(3-a 0)·(-a 0)=12a 20-2a 0-3=12(a 0-2)2-5>-5,∴∀a ∈(2,3),h (a )>-5, 综上,f (x 1)+f (x 2)>-5.1.(2018·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D y =ln x ,x ∈(0,1)的导数y ′=1x>1,设切点为(t ,ln t ),则切线l 的方程为y =1tx +ln t -1,因为函数y =x 2的图象在点(x 0,x 20)处的切线l 的斜率为2x 0, 则切线方程为y =2x 0x -x 20,因为l 也与函数y =ln x ,x ∈(0,1)的图象相切, 则有⎩⎪⎨⎪⎧2x 0=1t ,x 20=1-ln t ,则1+ln 2x 0=x 20,x 0∈(1,+∞).令g (x )=x 2-ln 2x -1,x ∈(1,+∞), 所以该函数的零点就是x 0,则排除A 、B ; 又因为g ′(x )=2x -1x=2x 2-1x>0,所以函数g (x )在(1,+∞)上单调递增.又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0, 从而2<x 0< 3.2.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范围是________.解析:f ′(x )=3x 2,设x 1+x 2=t (|t |>2), 则φ(M ,N )=|3x 21-3x 22|x 1-x 22+x 31+2-x 32-2=|3x 21-3x 22|x 1-x 22[1+x 21+x 1x 2+x 222]=3|x 1-x 2|·|x 1+x 2||x 1-x 2|1+x 1+x 22-x 1x 2]2=3|x 1+x 2|1+x 1+x 22-1]2=3|t |1+t 2-2=3t 2+2t2-2.设g (x )=x +2x ,x >4,则g ′(x )=1-2x2>0,所以g (x )在(4,+∞)上单调递增,所以g (x )>g (4)=92.所以t 2+2t 2-2>52,所以0<φ(M ,N )<3105.答案:⎝⎛⎭⎪⎫0,3105高考研究课二函数单调性必考,导数工具离不了[全国卷5年命题分析][典例] (2016·山东高考节选)已知f (x )=a (x -ln x )+x2,a ∈R ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=ax 2-x -x3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a x -x 3⎝⎛⎭⎪⎫x - 2a ⎝⎛⎭⎪⎫x + 2a .①若0<a <2,则 2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫1, 2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0< 2a<1,当x ∈⎝ ⎛⎭⎪⎫0, 2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;。
2015高考数学(文)第二章函数、导数及其应用一轮复习题有解析
2015高考数学(文)第二章函数、导数及其应用一轮复习题有解析05限时规范特训A级基础达标1.2014•山东莱芜模拟]已知函数f(x)的定义域为3,6],则函数y=-的定义域为()A.32,+∞)B.32,2)C.(32,+∞)D.12,2)解析:由题意得3≤2x≤6,-⇒32≤x≤3,0答案:B 2.2014•武汉模拟]若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=()A.x-1B.x+1C.2x+1D.3x+3解析:∵2f(x)-f(-x)=3x+1,①将①中x换为-x,则有2f(-x)-f(x)=-3x+1,②①×2+②得3f(x)=3x+3,∴f(x)=x+1.答案:B3.2014•浙江金华]已知函数g(x)=1-2x,fg(x)]=1-x2x2(x≠0),则f(12)等于()A.1B.3C.15D.30解析:令1-2x=12,得x=14,∴f(12)=1-116116=15,故选C.答案:C4.2014•济南模拟]如右图,是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()解析:根据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D正确.答案:D5.2014•宁夏模拟]设函数f(x)=x2-4x+6,x≥0,x+6,xf(1)的解集是()A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)解析:画出分段函数的图象如图,令f(x)=f(1),得x=-3,1,3.所以当f(x)>f(1)时,必有x∈(-3,1)∪(3,+∞).故选A.答案:A6.2014•宁波联考]设集合A=0,12),B=12,1],函数f(x)=x+12,x∈A,-,x∈B,若x0∈A,且ff(x0)]∈A,则x0的取值范围是()A.(0,14]B.(14,12)C.(14,12]D.0,38]解析:∵x0∈A,∴f(x0)=x0+12∈B.∴ff(x0)]=f(x0+12)=2(1-x0-12)=1-2x0.又ff(x0)]∈A,∴0≤1-2x0解得14∴14答案:B7.2014•佛山模拟]f(x)=2x-+,f(x)的定义域是________.解析:由已知得2x-1≥0,2x+1>0,+,∴x≥12,x>-12,2x+1≠1.∴x≥12,∴f(x)的定义域为12,+∞).答案:12,+∞)8.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=________.解析:令x=y=0⇒f(0)=0;令x=y=1⇒f(2)=2f(1)+2=6;令x=2,y =1⇒f(3)=f(2)+f(1)+4=12;再令x=3,y=-3,得f(0)=f(3-3)=f(3)+f(-3)-18=0⇒f(-3)=18-f(3)=6.答案:69.2014•金版原创]已知函数f(x)=,则f{ff(a)]}(a解析:∵a1,∴f{ff(a)]}=f(3)=log133=-12.答案:-1210.已知函数f(x)=x2-4ax+2a+6,x∈R.(1)若函数的值域为0,+∞),求a的值;(2)若函数的值域为非负数集,求函数f(a)=2-a|a+3|的值域.解:f(x)=x2-4ax+2a+6=(x-2a)2+2a+6-4a2.(1)∵函数值域为0,+∞),∴2a+6-4a2=0.解得a=-1或a=32.(2)∵函数值域为非负数集,∴2a+6-4a2≥0.即2a2-a-3≤0,解得-1≤a≤32.∴f(a)=2-a|a+3|=2-a(a+3)=-(a+32)2+174.∴f(a)在-1,32]上单调递减.∴-194≤f(a)≤4.即f(a)值域为-194,4].11.2014•珠海模拟]甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y=f(x)的函数解析式.解:当x∈0,30],设y=k1x+b1,由已知得b1=0,30k1+b1=2,∴k1=115,b1=0,y=115x;当x∈(30,40)时,y=2;当x∈40,60]时,设y=k2x+b2,由已知得40k2+b2=2,60k2+b2=4,∴k2=110,b2=-2,y=110x-2.∴f(x)=115x,x∈0,30],2,x∈,,110x-2,x∈40,60]. 12.已知函数f(x)=x2-1,g(x)=x-1,x>0,2-x,x(1)求fg(2)]和gf(2)]的值;(2)求fg(x)]和gf(x)]的表达式.解:(1)由已知,g(2)=1,f(2)=3,∴fg(2)]=f(1)=0,gf(2)]=g(3)=2.(2)当x>0时,g(x)=x-1,故fg(x)]=(x-1)2-1=x2-2x;当x∴fg(x)]=x2-2x,x>0,x2-4x+3,x当x>1或x0,故gf(x)]=f(x)-1=x2-2;当-1∴gf(x)]=x2-2,x>1或xB级知能提升1.2014•赣州模拟]对于实数x,符号x]表示不超过x的最大整数.例如,π]=3,-1.08]=-2.如果定义函数f(x)=x-x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=13有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数解析:f(5)=5-5]=0,故A错误;因为f(13)=13-13]=13,f(43)=43-43]=13,所以B错误;函数f(x)不是减函数,D错误;故C正确.答案:C2.2014•临川一中模拟]对a,b∈R,记min{a,b}=a,a解析:y=f(x)是y=12x与y=-|x-1|+2两者中的较小者,数形结合可知,函数的最大值为1.答案:13.已知函数f(x)=e-x--是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在12,+∞)上恒成立,则a的取值范围是a>1;④对任意x1其中正确命题的所有序号是________.解析:作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在12,+∞)上的最小值为f(12)=2a×12-1=a-1,所以若f(x)>0在12,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1答案:①③④4.设函数f(x)=1,1≤x≤2,x-1,2(1)求函数h(a)的解析式;(2)画出函数y=h(x)的图象并指出h(x)的最小值.解:(1)由题意知g(x)=1-ax,1≤x≤2,--1,2当a此时g(x)max =g(3)=2-3a,g(x)min=g(1)=1-a,所以h(a)=1-2a;当a>1时,函数g(x)是1,3]上的减函数,此时g(x)min=g(3)=2-3a,g(x)max=g(1)=1-a,所以h(a)=2a-1;当0≤a≤1时,若x∈1,2],则g(x)=1-ax,有g(2)≤g(x)≤g(1);若x∈(2,3],则g(x)=(1-a)x-1,有g(2)因此g(x)min=g(2)=1-2a,而g(3)-g(1)=(2-3a)-(1-a)=1-2a,故当0≤a≤12时,g(x)max=g(3)=2-3a,有h(a)=1-a;当12综上所述,h(a)=1-2a,a1.(2)画出y=h(x)的图象,如图所示,数形结合可得h(x)min=h(12)=12.。
高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)
解 (1)由已知f′(x)=3 -a,x2 ∵f(x)在(-∞,+∞)上是单调增函数, ∴f′(x)=3 -ax≥2 0在(-∞,+∞)上恒成立, 即a≤3 x在2 x∈R上恒成立. ∵3 x≥2 0,∴只需a≤0. 又a=0时,f′(x)=3 ≥x20,f(x)= -1在x3R上是增函数, ∴a≤0. (2)由f′(x)=3 -ax≤2 0在(-1,1)上恒成立,得a≥3 在x∈x2(-1,1)上恒成立. ∵-1<x<1,∴3 <3,∴只需a≥3. 当a≥3时,f′(x)=x32 -a在x∈(-1,1)上恒有f′(x)<0, 即f(x)在(-1,1)上为x减2 函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.
学后反思 利用导数研究函数的单调性比用函数单调性的定义要方便, 但应注意f′(x)>0 [或f′(x)<0]仅是f(x)在某个区间上为增函数(或减函数)的充分条 件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应 是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区 间内都不恒等于0.这就是说, 函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0. 因此,在已知函数f(x)是增函数(或减函数)来求参数的取值范围时, 应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用 不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0, 若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0 [或f′(x)≤0]恒成立解出的参数的取值范围.
高考数学一轮复习 第三章 导数及其应用 1 第1讲 变化率与导数、导数的计算教学案
第三章导数及其应用知识点最新考纲变化率与导数、导数的计算了解导数的概念与实际背景,理解导数的几何意义.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+b)的导数).导数在研究函数中的应用了解函数单调性和导数的关系,能用导数求函数的单调区间.理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f(x)的导函数称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=c(c为常数) f′(x)=0f(x)=x n(n∈Q*)f′(x)=nx n-1(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)× (2)× (3)√ (4)× (5)× [教材衍化]1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sinx .2.(选修2-2P18A 组T6改编)曲线y =1-2x +2在点(-1,-1)处的切线方程为________.解析:因为y ′=2(x +2)2,所以y ′|x =-1=2.故所求切线方程为2x -y +1=0. 答案:2x -y +1=03.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3t(t 是时间,s 是位移),则该机器人在t =2时的瞬时速度为________.解析:因为s =t 2+3t ,所以s ′=2t -3t2,所以s ′|t =2=4-34=134.答案:134[易错纠偏](1)求导时不能掌握复合函数的求导法则致误; (2)不会用方程法解导数求值.1.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则f ′(x )=________. 解析:f ′(x )=[sin ⎝ ⎛⎭⎪⎫2x +π3]′=cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=2cos ⎝ ⎛⎭⎪⎫2x +π3. 答案:2cos ⎝⎛⎭⎪⎫2x +π32.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x ,f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 2导数的计算求下列函数的导数:(1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =3x e x -2x+e ;(4)y =ln(2x -5).【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2xln 2. (4)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5.[提醒] 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.已知f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B.因为f (x )=x (2 017+ln x ), 所以f ′(x )=2 017+ln x +1=2 018+ln x , 又f ′(x 0)=2 018, 所以2 018+ln x 0=2 018, 所以x 0=1.2.求下列函数的导数: (1)y =x n e x;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x .(3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,属中低档题.主要命题角度有:(1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程(或斜率)求参数值. 角度一 求切线方程(1)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.【解析】 (1)因为y ′=2x -1x2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1, 所以切线方程为y -2=x -1,即y =x +1. (2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0). 又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以切点为(1,0),所以f ′(1)=1+ln 1=1. 所以直线l 的方程为y =x -1. 【答案】 (1)y =x +1 (2)y =x -1 角度二 已知切线方程(或斜率)求切点坐标若曲线y =e-x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.【解析】 设P (x 0,y 0),因为y =e -x, 所以y ′=-e -x,所以点P 处的切线斜率为k =-e -x 0=-2, 所以-x 0=ln 2,所以x 0=-ln 2, 所以y 0=eln 2=2,所以点P 的坐标为(-ln 2,2). 【答案】 (-ln 2,2)角度三 已知切线方程(或斜率)求参数值(1)(2020·宁波调研)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( )A .2B .-1C .1D .-2(2)(2020·绍兴调研)若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a =________.【解析】 (1)依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.(2)依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0ax 0=2ln x 0+1,解得x 0=e ,a =2x 0=2e -12.【答案】 (1)C (2)2e -12(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线的切线方程需注意两点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解.1.(2020·杭州七校联考)曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2B .4e 2C .2e 2D .e 2解析:选D.因为y ′=12e 12x ,所以k =12e 12×4=12e 2,所以切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,所以所求面积为S =12×2×|-e 2|=e 2.2.已知函数f (x )=(x 2+ax -1)e x(其中e 是自然对数的底数,a ∈R ),若f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,则a =________.解析:f ′(x )=(x 2+ax -1)′e x +(x 2+ax -1)(e x )′=(2x +a )e x +(x 2+ax -1)e x =[x 2+(a +2)x +(a -1)]e x,故f ′(0)=[02+(a +2)×0+(a -1)]e 0=a -1.因为f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,故f ′(0)=1,即a -1=1,解得a =2.答案:23.(2020·台州高三月考)已知曲线f (x )=xn +1(n ∈N *)与直线x =1交于点P ,设曲线y=f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017的值为________.解析:f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1. 所以x 1·x 2·…·x 2 017=12×23×34×…×2 0162 017×2 0172 018=12 018.则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 01812 018=-1.答案:-1两条曲线的公切线若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【解析】 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x+ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1), 依题意⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2.【答案】 1-ln 2求两条曲线的公切线的方法(1)利用其中一曲线在某点处的切线与另一条曲线相切,列出关系式求解. (2)利用公切线得出关系式.设公切线l 在y =f (x )上的切点P 1(x 1,y 1),在y =g (x )上的切点P 2(x 2,y 2),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.1.已知函数f (x )=x 2-4x +4,g (x )=x -1,则f (x )和g (x )的公切线的条数为( ) A .三条 B .二条 C .一条D .0条解析:选A.设公切线与f (x )和g (x )分别相切于点(m ,f (m )),(n ,g (n )),f ′(x )=2x-4,g ′(x )=-x -2,g ′(n )=f ′(m )=g (n )-f (m )n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f (x )=8x 3-8x 2+1,f ′(x )=8x (3x -2),原函数在(-∞,0)上单调递增,在⎝ ⎛⎭⎪⎫0,23上单调递减,在⎝ ⎛⎭⎪⎫23,+∞上单调递增,极大值f (0)>0,极小值f ⎝ ⎛⎭⎪⎫23<0,故函数和x 轴有3个交点,方程8n 3-8n 2+1=0有三个解,故切线有3条.故选A.2.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=0[基础题组练]1.函数y =x 2cos x 在x =1处的导数是( ) A .0 B .2cos 1-sin 1 C .cos 1-sin 1D .1解析:选B.因为y ′=(x 2cos x )′=(x 2)′cos x +x 2·(cos x )′=2x cos x -x 2sin x ,所以y ′|x =1=2cos 1-sin 1.2.(2020·衢州高三月考)已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12D .2解析:选C.依题意得,f ′(x )=2x (x -t )+(x 2-4)=3x 2-2tx -4,所以f ′(-1)=3+2t -4=0,即t =12.3.(2020·温州模拟)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12 B .1C.32D .2解析:选B.因为x 1<x 2<0,f (x )=x 2+2x , 所以f ′(x )=2x +2,所以函数f (x )在点A ,B 处的切线的斜率分别为f ′(x 1),f ′(x 2), 因为函数f (x )的图象在点A ,B 处的切线互相垂直, 所以f ′(x 1)f ′(x 2)=-1. 所以(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,所以x 2-x 1=12[-(2x 1+2)+(2x 2+2)]≥-(2x 1+2)(2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32,x 2=-12时等号成立.所以x 2-x 1的最小值为1.故选B.4.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.5.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.6.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B. 2 C.22D. 3解析:选B.因为定义域为(0,+∞),令y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2.7.已知f (x )=ln x x 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.解析:因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2, g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x .答案:x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x8.(2020·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.解析:设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 答案:29.(2020·金华十校高考模拟)函数f (x )的定义域为R ,f (-2)=2 018,若对任意的x ∈R ,都有f ′(x )<2x 成立,则不等式f (x )<x 2+2 014的解集为________.解析:构造函数g (x )=f (x )-x 2-2 014,则g ′(x )=f ′(x )-2x <0,所以函数g (x )在定义域上为减函数,且g (-2)=f (-2)-22-2 014=2 018-4-2 014=0,由f (x )<x2+2 014有f (x )-x 2-2 014<0,即g (x )<0=g (-2),所以x >-2,不等式f (x )<x 2+2 014的解集为(-2,+∞).答案:(-2,+∞)10.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________. 解析:g ′(x )=⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2.由题图可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12.由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,故f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316. 答案:-31611.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18, 即切点坐标为(1,-14)或(-1,-18),切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.12.已知函数f (x )=ax +bx(x ≠0)在x =2处的切线方程为3x -4y +4=0. (1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.解:(1)由f (x )=ax +b x ,得f ′(x )=a -b x2(x ≠0). 由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎪⎨⎪⎧a -b 4=34,5-2⎝ ⎛⎭⎪⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝ ⎛⎭⎪⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20,曲线在P 处的切线方程为y -⎝⎛⎭⎪⎫x 0+1x 0=⎝ ⎛⎭⎪⎫1-1x 20(x -x 0).即y =⎝⎛⎭⎪⎫1-1x20x +2x 0.当x =0时,y =2x 0.即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎪⎫0,2x 0.由⎩⎪⎨⎪⎧y =⎝ ⎛⎭⎪⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪⎪⎪2x 0=2.即切线l 与l 1,l 2围成的三角形的面积为定值.[综合题组练]1.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.(2020·金华十校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D.令f (x )=x 2,f ′(x )=2x ,f (x 0)=x 20,所以直线l 的方程为y =2x 0(x -x 0)+x 20=2x 0x -x 20,因为l 也与函数y =ln x (x ∈(0,1))的图象相切,令切点坐标为(x 1,ln x 1),y ′=1x ,所以l 的方程为y =1x 1x +ln x 1-1,这样有⎩⎪⎨⎪⎧2x 0=1x 1,1-ln x 1=x 20,所以1+ln(2x 0)=x 20,x 0∈(1,+∞),令g (x )=x 2-ln(2x )-1,x ∈(1,+∞),所以该函数的零点就是x 0,又因为g ′(x )=2x -1x =2x 2-1x,所以g (x )在(1,+∞)上单调递增,又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0,从而2<x 0<3,选D.3.(2020·宁波四中高三月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上是凸函数的是________(把你认为正确的序号都填上).①f (x )=sin x +cos x ; ②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:①中,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎪⎫x +π4<0在区间⎝ ⎛⎭⎪⎫0,π2上恒成立;②中,f ′(x )=1x -2(x >0),f ″(x )=-1x 2<0在区间⎝⎛⎭⎪⎫0,π2上恒成立;③中,f ′(x )=-3x 2+2,f ″(x )=-6x 在区间⎝ ⎛⎭⎪⎫0,π2上恒小于0.④中,f ′(x )=e x +x e x ,f ″(x )=2e x +x e x =e x(x +2)>0在区间⎝⎛⎭⎪⎫0,π2上恒成立,故④中函数不是凸函数.故①②③为凸函数.答案:①②③4.(2020·浙江省十校联合体期末检测)已知函数f (x )=a e x+x 2,g (x )=cos (πx )+bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b=________,直线l 的方程为________.解析:f ′(x )=a e x+2x ,g ′(x )=-πsin (πx )+b ,f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a1-0=a ,即a =b =-1,则a +b =-2; 所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=05.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②-2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去).所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.④将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4. 6.(2020·绍兴一中月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9. ②由f ′(x )=12得-6x 2+6x +12=12, 解得x =0或x =1.在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科目数学年级高三班型一对一教师课时4/15 课题导数及其应用学习目标1.掌握常用函数的导数以及复合函数的求导;2.掌握导数的几何意义及导数与函数单调性的关系;3.利用导数求单调区间和极值,最值。
考点热点1.导数:(1)导数的定义如果函数)(xfy=在开区间),(ba内的每点处都有导数,此时对于每一个),(bax∈,都对应着一个确定的导数)(/xf,从而构成了一个新的函数)(/xf。
称这个函数)(/xf为函数)(xfy=在开区间内的导函数,简称导数,也可记作/y,即)(/xf=/y=xxfxxfxyxx∆-∆+=∆∆→∆→∆)()(limlim。
(2)求函数)(xfy=的导数)(/xf的一般步骤是:①求函数的改变量)()(xfxxfy-∆+=∆;②求平均变化率xxfxxfxy∆-∆+=∆∆)()(③取极限,得导数xyyx∆∆='→∆0lim。
(3)导数的几何意义:函数)(xfy=在点x处的导数)(xf'是曲线)(xfy=在),(yxP处的切线斜率,相应的切线方程是))((xxxfyy-'=-2.导数的求法及运算法则:(1)八种常见函数的导数公式①0='C(C为常数)②1()()n nx nx n Q-'=∈③xx cos)(sin='④xx sin)(cos-='⑤1(log)logxaa ex'=⑥xx1)(ln='⑦aaa xx ln)(='⑧xx ee=')((2)利用导数的运算法则:①'''()u v u v±=±②'''()uv u v uv=+③'''2()(0)u u v uvvv v-=≠(3)利用复合函数的求导法则设函数()u xϕ=在点x处有导数()xu xϕ''=,函数)(ufy=在点x处的对应点u处有导数()uy f u''=,则复合函数(())y f xϕ=在点x处有导数,且x u xy y u'''=⋅,或写作(())()()xf x f u xϕϕ'''=3.用导数研究函数的单调性(1)用导数证明函数的单调性12证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D ∩P,得函数的单调递增(减)区间。
一般地,函数()f x 在某个区间可导 ,'()f x >0 ⇒ ()f x 在这个区间是增函数; 一般地,函数()f x 在某个区间可导 ,'()f x <0 ⇒ ()f x 在这个区间是减函数; (3)单调性的应用(已知函数单调性)一般地,函数()f x 在某个区间可导,()f x 在这个区间是增(减)函数⇒'()f x ≥()≤0【注】①求函数的单调区间,必须优先考虑函数的定义域,然后解不等式'()f x >(<)0(不要带等号),最后求二者的交集,把它写成区间。
②已知函数的增(减)区间,应得到'()f x ≥(≤)0,必须要带上等号。
③求函数的单调增(减)区间,要解不等式'()f x >()<0,此处不能带上等号。
④单调区间一定要写成区间,不能写成集合或不等式;单调区间一般都写成开区间,不要写成闭区间;如果一种区间有多个,中间不能用“∪”连接,而要用“和”连接。
4.求函数的极值(1)设函数)(x f y =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的值都大(小),则称)(0x f 是函数)(x f y =的一个极大(小)值。
(2)求函数的极值的一般步骤先求定义域D ,再求导,再解方程1()0f x =(注意和D 求交集),最后列表确定极值。
一般地,函数在()f x 点0x 连续时,如果0x 附近左侧0)(>x f ',右侧0)(<x f ',那么)(0x f 是极大值。
一般地,函数在()f x 点0x 连续时,如果0x 附近左侧0)(<x f ',右侧0)(>x f ',那么)(0x f 是极小值。
(3)极值是一个局部概念。
(4)函数的极值点一定出现在区间内部,区间的端点不能成为极值点,而使函数取得最大(最小)值的点可能在区间的内部,也可能在区间的端点。
(5)一般地,连续函数)(x f 在点0x 处有极值是0)(0='x f 的充分非必要条件; (6)求函数的极值一定要列表!............ 5.用导数求函数的最值(1)设)(x f y =是定义在闭区间[a ,b]上的函数,)(x f y =在(a ,b )内有导数,可以这样求最值: ①求出函数在(a ,b )内的可能极值点,即方程0)(='x f 的根n x x x ⋯21,;②比较函数值)(),(b f a f 与)()(),(21n x f x f x f ⋯,其中最大的一个为最大值,最小的一个为最小值。
(2)如果是开区间(a ,b ),则必须通过求导,求函数的单调区间,最后确定函数的最值。
上课内容例题精讲:考点一:导数的概念及其几何意义1.设函数)(xf在),0(+∞内可导,且xx exef+=)(,则=')1(f。
2.设L为曲线xxyCln:=在点(1,0)处的切线.(1)求L的方程;(2)证明,除切点(1,0)外,曲线C在直线L的下方。
考点二:函数的单调性3.已知函数⎪⎩⎪⎨⎧++=,ln,2)(2><xxxaxxxf,其中a是实数,设))(,()),(,(2211xfxBxfxA为该函数图像上的两点,且21xx<.(1)指出)(xf的单调区间;(2)若函数)(xf的图像在点A,B处的切线互相垂直,且02<x,求12xx-的最小值;(3)若函数)(xf的图像在点A,B处的切线重合,求a的取值范围。
课堂笔记:344.设函数],0[,cos )(π∈+=x x ax x f . (1)讨论)(x f 的单调性;(2)设x x f sin 1)(+≤,求a 的取值范围。
5考点三:函数的极值与最值 5.36.7.已知函数x x x f ln )(2=. (1)求函数)(x f 的单调区间;(2)证明,对于任意的t >0,存在唯一的s 使)(s f t =;(3)设(2)中所确定的s 关于t 的函数为)(t g s =,证明:当2e t >时,有21ln )(ln 52<<t t g 。
68.已知函数2()1x f x e ax bx =---,其中,a b R ∈,⋯=2071828e 为自然对数的底数 (1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围。
7课堂练习:1.设曲线)1ln(+-=x ax y 在点(0,0)处的切线方程为x y 2=,则a= ( )3.2.1.0.D C B A2.设函数mxx f πsin 3)(=,若存在)(x f 的极值点0x 满足22020)]([m x f x <+,则m 的取值范围是 ( )),4()1,.(),2()2,.(),4()4,.(),6()6,.(+∞⋃--∞+∞⋃--∞+∞⋃--∞+∞⋃--∞D C B A3.若曲线x e y -=上点P 处的切线平行于直线012=+-y x ,则点P 的坐标是 。
4.设函数xbe x ae x f x x1ln )(-+=,曲线)(x f y =在点))1(,1(f 处的切线为2)1(+-=x e y .(1)求a ,b ;(2)证明:1)(>x f 。
5.6. 8。