高考数学第一轮复习导数概念和几何意义
最新高考一轮总复习《3.1 导数的概念、意义及运算》

∴切线方程为 y-(-2)=(302 -8x0+5)(x-2),
又切线过点 P(x0,03 -402 +5x0-4),
∴03 -402 +5x0-2=(302 -8x0+5)(x0-2),
整理得(x0-2)2(x0-1)=0,解得 x0=2 或 x0=1.
A.y=-2x
B.y=-x
C.y=2x
D.y=x
(方法一)∵f(x)=x3+(a-1)x2+ax,∴f'(x)=3x2+2(a-1)x+a.
又f(x)为奇函数,∴f(-x)=-f(x)恒成立,
即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f'(x)=3x2+1,∴f'(0)=1,
B.-ln 2
C.
D.2
2
函数 f(x)=ex+ae-x 的导函数是 f'(x)=ex-ae-x.
因为 f'(x)是奇函数,所以 f'(x)=-f'(-x),
即 ex-ae-x=-(e-x-aex),则 ex(1-a)=e-x(a-1),
所以(e2x+1)(1-a)=0,解得 a=1,
所以 f'(x)=ex-e-x.
于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
3.已知切线方程(斜率)求参数的值(取值范围)的关键是能利用函数的导数
等于切线斜率列出方程.
对点训练2
(1)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的
高考数学第一轮基础复习 导数的概念及运算课件

f1--2x2-x f1=-1,
即 y′|x=1=-1,
则 y=f(x)在点(1,f(1))处的切线斜率为-1,故选 B.
答案:B
(文)若
f
′(x0)=2,则lim k→0
f x0-k-f x0 的 值为 2k
________;
解析:令-k=Δx,则 k=-Δx,
∴原式=lim
Δx→0
fx0+Δx-fx0 -2Δx
●命题趋势 (1)求导数及切线方程. (2)用导数研究函数的单调性,求函数的极值与最值. (3)已知函数的单调性或值域等讨论字母参数. (4)导数的综合应用. (5)(理)定积分与微积分基本定理的应用.
●备考指南 1.熟练掌握导数的定义及运算法则 主要包括理解导数的定义及几何意义,熟记求导公 式、导数的四则运算法则、复合函数求导法则,并能运 用上述公式与法则进行求导计算. 导数的几何意义是重 点必考内容,要熟练掌握求解曲线在某点或经过某点的 切线问题.
(3)函数 y=f(x)在点 x0 处的导数 f ′(x0)就是导函数 f ′(x)在点 x=x0 处的函数值,即 f ′(x0)=f ′(x)|x=x0.
3.运用复合函数的求导法则 y′x=y′u·u′x,应注 意以下几个问题
(1)分清楚复合函数的复合关系是由哪些基本函数复 合而成,适当选定中间变量;
+Δx)-f(x0),则当
Δx≠0
时,商fx0+Δx-fx0= Δx
Δy Δx
.
称作函数 y=f(x)从 x0 到 x1 的平均变化率.
2.(1)平均速度
设物体运动路程与时间的关系是 s=f(t),在 t0 到 t0
+ Δt 这 段 时 间 内 , 物 体 运 动 的 平 均 速 度 是 v0 =
高考数学一轮复习导数的概念及其意义、导数的运算

)
A.y=3x+1
B.y=2x+1
5
C.y= x+1
D.y=x+1
4
答案:A
2 x+1 −2x
x= 2 +ex,则f′(0)=3,
+e
x+1 2
x+1 2
解析:由题设,f′(x)=
而f(0)=1,故在(0,f(0))处的切线方程为y-1=3x,则y=3x+1.
故选A.
(2)已知函数f(x)=x ln x.若直线l过点(0,-1),且与曲线y=f(x)相切,
(2)[f(x)g(x)]′=________________.
f ′ x g x − f x g′ x
′
g x 2
(3)
=________________(g(x)≠0).
cf′(x)
(4)[cf(x)]′=________(c为常数).
f(x)
g(x)
5.复合函数的导数
设 u = g(x) 在 x 处 可 导 , 则 复 合 函 数 y = f(g(x)) 在 x 处 可 导 , 且 y′ =
x-y-1=0
则直线l的方程为________________.
解析:点(0,-1)不在曲线f(x)=x ln x上,设切点坐标为(x0,y0).
因为f′(x)=1+ln x,所以直线l的方程为y+1=(1+ln x0)x.
y0 = x0 ln x0
由ቊ
,
y0 + 1 = 1 + ln x0 x0
x0 = 1,
e
x
与曲线y=ln (-x)相切于点(x2,ln (-x2))(x2<0),则此时切线方程为y-ln (-x2)=
高三一轮复习导数的概念、几何意义及导数的计算 (1)

第十四课时 导数的概念、几何意义及导数的计算考纲要求:1.导数的概念(A) 2.导数的几何意义(B) 3.导数的运算(B)知识梳理:1.导数的概念(1)函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数. 2.导数公式及运算法则(1)(2)①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );③⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( )(3)曲线的切线不一定与曲线只有一个公共点.( )(4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)(3x )′=3x ln 3.( )(6)⎝⎛⎭⎫e x +cos π4′=e x .( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√2.曲线y =sin x +e x 在点(0,1)处的切线方程是________.解析:∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.答案:2x -y +1=03.求下列函数的导数:(1)y =x n e x ;(2)y =x 3-1sin x. 答案:(1)y ′=e x (nx n -1+x n ).(2)y ′=3x 2sin x -(x 3-1)cos x sin 2x.[典题1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x; (3)y =tan x ;(4)y =3x e x -2x +e ;解析: (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12, ∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12. (2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2= (ln 3+1)·(3e)x -2x ln 2.小结:导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.[典题2](1)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________. 解析:(1)f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.(2)由题意得f ′(x )=x +2f ′(2 016)+2 016x, 所以f ′(2 016)=2 016+2f ′(2 016)+2 0162 016, 即f ′(2 016)=-(2 016+1)=-2 017.答案:(1)3 (2)-2 017注意:在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.练习:1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________.解析:∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx .又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2.答案:-22.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.答案:212导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,且主要有以下几个命题角度:角度一:求切线方程[典题3](1)曲线y =e x -ln x 在点(1,e)处的切线方程为________.(2)设曲线y =e x +12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =________. (3)已知函数f (x )=x 3-4x 2+5x -4.①求曲线f (x )在点(2,f (2))处的切线方程;②求经过点A (2,-2)的曲线f (x )的切线方程.解析:(1)由于y ′=e -1x,所以y ′x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)∵与直线x +2y -1=0垂直的直线斜率为2,∴f ′(0)=e 0+12a =2,解得a =2. (3)①∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.②设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.答案:(1)(e -1)x -y +1=0 (2)2注意:注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.角度二:求切点坐标[典题4] 设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析: y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)小结:已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .角度三:求参数的值[典题5](1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.(2)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:(1)∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧ m =a ,m =1,即a =1, ∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1.又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1.(2)∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1.又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.(3)法一:∵y =x +ln x ,∴y ′=1+1x,y ′x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧ x 0=-12,a =8.答案:(1)1 (2)1 (3)8小结:(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.总结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.注意:1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.课后作业:1.曲线y =e x 在点A (0,1)处的切线斜率为________.解析:由题意知y ′=e x ,故所求切线斜率k =e x x =0=e 0=1.答案:12.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 答案:-3π3.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于________.解析:∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a=-1,∴a =-1. 答案:-14.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________. 解析:设切点坐标为(x 0,ln x 0),则1x 0=12,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =12x +b 上,∴ln 2=1+b ,即b =ln 2-1. 答案:ln 2-15.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为________.解析:因为定义域为(0,+∞),所以y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 答案:26.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.解析:f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.答案:e7.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=08.在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x 上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1,又∵点M 在第二象限,∴x =-1,∴y =(-1)3-(-1)=0,∴M 点的坐标为(-1,0).答案:(-1,0)9.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0). 答案:(-∞,0)10.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278. 答案:27811.函数f (x )=e x +x 2+x +1与g (x )的图象关于直线2x -y -3=0对称,P ,Q 分别是函数f (x ),g (x )图象上的动点,则|PQ |的最小值为________.解析:因为f (x )与g (x )的图象关于直线2x -y -3=0对称,所以当f (x )与g (x )在P ,Q 处的切线与2x -y -3=0平行时,|PQ |的长度最小.f ′(x )=e x +2x +1,令e x +2x +1=2,得x =0,此时P (0,2),且P 到2x -y -3=0的距离为5,所以|PQ |min =2 5.答案:2512.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交,且在交点处有相同的切线,则a =________,切线方程为________.解析:f ′(x )=12x,g ′(x )=a x (x >0), 由已知得⎩⎪⎨⎪⎧x =a ln x ,12x=a x ,解得a =e 2,x =e 2, ∴两条曲线交点的坐标为(e 2,e),切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e (x -e 2),即x -2e y +e 2=0.答案:e 2x -2e y +e 2=013.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标. 解:(1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y +6=13(x -2),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,y 0=x 30+x 0-16,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, ∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,得切点坐标(-2,-26),k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26).14.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直.∴(2x 0-2)·(-2x 0+a )=-1,即4x 20-2(a +2)x 0+2a -1=0,①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52. 15.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧ k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)

专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

1 3
,
0
,C
0,
1 4
,则S△BOC=
1 2
×
1 3
×
1 4
=
1 24
.
综上,△BOC的面积为 4 或 1 .
3 24
考向二 两曲线的公切线问题
1.(2023届贵州遵义新高考协作体入学质量监测,11)若直线y=kx+b是曲线 y=ex+1的切线,也是y=ex+2的切线,则k= ( ) A.ln 2 B.-ln 2 C.2 D.-2 答案 C
4.(2019课标Ⅲ,文7,理5,5分)已知曲线y=aex+xln x在点(1,ae)处的切线方程 为y=2x+b,则 ( )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 答案 D
D.a=e-1,b=-1
5.(2021新高考Ⅰ,7,5分)若过点(a,b)可以作曲线y=ex的两条切线,则 ( )
解析 由题意可知y'=2cos x-sin x,则y'|x=π=-2.所以曲线y=2sin x+cos x在点 (π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,故选C.
答案 C
例2 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线
y=ln(x+1)的切线,则b=
,即f
'(x0)=
lim
x0
y x
=
. lim
x0
f
( x0
x)
f
(x0 )
x
注意:f '(x)与f '(x0)的区别与联系:f '(x)是一个函数,f '(x0)是函数f '(x)在x0处
2023年高考数学(文科)一轮复习——导数的概念及运算

第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。
高考数学(导数)第一轮复习

高考数学(导数)第一轮复习资料知识小结一.导数的概念与运算⒈导数的概念:⑴曲线的切线;⑵瞬时速度;⑶导数的概念及其几何意义.○1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数)(x f Y =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即:x x f x x f x f x ∆-∆+=→∆)()(l i m )(0000/()()000l i m x x x f x f x x --=→ ○2函数)(x f y =的导数)('x f ,就是当0→∆x 时,函数的增量y ∆与自变量的增量x ∆的比xy ∆∆的极限,即 xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(lim lim )('00. ○3函数)(x f y =在点0x 处的导数的几何意义,就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率.⒉常用的导数公式:⑴0'=C (C 为常数); ⑵1)'(-=n n nx x (Q n ∈);⑶x x cos )'(sin =; ⑷x x sin )'(cos -=;⑸*x x x 22sec cos 1)'(tan ==; ⑹*x xx 22csc sin 1)'(cot -==; ⑺x x e e =)'(; ⑻a a a x x ln )'(=; ⑼x x 1)'(ln =; ⑽e xx a a log 1)'(log =.⒊导数的运算法则:⑴两个函数四则运算的导数:①'')'(v u v u ±=±; ②'')'(uv v u uv +=; ③)0(''2'≠-=⎪⎭⎫ ⎝⎛v v uv v u v u . ⑵复合函数的导数:x u x u y y '·''=.二.导数的应用1、函数的单调性(1)如果非常数函数y =)(x f 在某个区间内可导,那么若)('x f ≥0)(x f ⇔为增函数;若)('x f ≤0⇔)(x f 为减函数.(2)若)('x f ≡0则)(x f 为常数函数.2、函数的极值(1)极值定义如果函数)(x f 在点0x 附近有定义,而且对0x 附近的点,都有)(x f <)(0x f 我们就说)(0x f 是函数的一个极大值,记作极大值y =)(0x f ;)(x f 在点0x 附近的点,都有)(x f >)(0x f 我们就说)(0x f 函数的一个极小值,记作极小值y =)(0x f ;极大值与极小值统称为极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 变化率与导数、导数的运算【2014年高考会这样考】1.利用导数的几何意义求曲线在某点处的切线方程.2.考查导数的有关计算,尤其是简单的函数求导.【复习指导】本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导.基础梳理1.函数y =f (x )从x 1到x 2的平均变化率函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1. 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx .2.函数y =f (x )在x =x 0处的导数(1)定义称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx= li m Δx →0f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx. (2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).3.函数f (x )的导函数称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式若f (x )=c ,则f ′(x )=0;若f (x )=x α(α∈R ),则f ′(x )=αx α-1;若f (x )=sin x ,则f ′(x )=cos x ;若f (x )=cos x ,则f ′(x )=-sin x ;若f (x )=a x (a >0,且a ≠1),则f ′(x )=a x ln_a ;若f (x )=e x ,则f ′(x )=e x ;若f (x )=log a x (a >0,且a ≠1),则f ′(x )=1x ln a ;若f (x )=ln x ,则f ′(x )=1x .5.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 6.复合函数的求导法则复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.一个区别曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 两种法则(1)导数的四则运算法则.(2)复合函数的求导法则.三个防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.要正确理解直线与曲线相切和直线与曲线只有一个交点的区别.3.正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.双基自测1.下列求导过程中①⎝ ⎛⎭⎪⎫1x ′=-1x 2;②(x )′=12x;③(log a x )′=⎝ ⎛⎭⎪⎫ln x ln a ′= 1x ln a;④(a x )′=(eln a x )′=(e x ln a )′=e x ln a ln a =a x ln a 其中正确的个数是().A .1B .2C .3D .4答案 D2.(人教A 版教材习题改编)函数f (x )=(x +2a )(x -a )2的导数为().A .2(x 2-a 2)B .2(x 2+a 2)C .3(x 2-a 2)D .3(x 2+a 2)解析 f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).答案 C3.(2011·湖南)曲线y =sin x sin x +cos x-12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为(). A .-12 B.12C .-22D.22解析 本小题考查导数的运算、导数的几何意义,考查运算求解能力. y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x,把x =π4代入得导数值为12.答案 B4.(2011·江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为().A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解析 令f ′(x )=2x -2-4x =2(x -2)(x +1)x>0,利用数轴标根法可解得-1<x <0或x >2,又x >0,所以x >2.故选C.答案 C5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=______;li m Δx →0f (1+Δx )-f (1)Δx=________(用数字作答).答案 2 -2考向一 导数的定义【例1】►利用导数的定义求函数f (x )=x 3在x =x 0处的导数,并求曲线f (x )=x 3在x =x 0处切线与曲线f (x )=x 3的交点.[审题视点]正确理解导数的定义是求解的关键.解f ′(x 0)=lim x →x 0f (x )-f (x 0)x -x 0=lim x →x 0x 3-x 30x -x 0=lim x →x 0 (x 2+xx 0+x 20)=3x 20.曲线f (x )=x 3在x =x 0处的切线方程为y -x 30=3x 20·(x -x 0), 即y =3x 20x -2x 30,由⎩⎨⎧y =x 3,y =3x 20x -2x 30, 得(x -x 0)2(x +2x 0)=0,解得x =x 0,x =-2x 0.若x 0≠0,则交点坐标为(x 0,x 30),(-2x 0,-8x 30);若x 0=0,则交点坐标为(0,0).利用定义求导数的一般过程是:(1)求函数的增量Δy ;(2)求平均变化率Δy Δx ;(3)求极限li m Δx →0Δy Δx. 【训练1】利用导数的定义证明奇函数的导数是偶函数,偶函数的导数是奇函数. 证明 法一 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x )f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx则f ′(-x )=li mΔx →0f (-x +Δx )-f (-x )Δx =li m Δx →0f (x -Δx )-f (x )-Δx=f ′(x ) 因此f ′(x )为偶函数,同理可证偶函数的导数是奇函数.法二 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x ),即f (x )=-f (-x )因此f ′(x )=[-f (-x )]′=- [f (-x )]′=f ′(-x )则f ′(x )为偶函数同理可证偶函数的导数是奇函数.考向二 导数的运算【例2】►求下列各函数的导数:(1)y =x +x 5+sin x x 2; (2)y =(x +1)(x +2)(x +3);(3)y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (4)y =11-x +11+x; [审题视点]先把式子化为最简式再进行求导.解 (1)∵y =x 12+x 5+sin x x 2=x -32+x 3+sin x x 2,∴y ′=⎝ ⎛⎭⎪⎫x -32′+(x 3)′+(x -2sin x )′ =-32x -52+3x 2-2x -3sin x +x -2cos x .(2)法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)·(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.(3)∵y =sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x , ∴y ′=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x . (4)y =11-x +11+x =1+x +1-x (1-x )(1+x )=21-x , ∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. (1)熟记基本初等函数的导数公式及四则运算法则是正确求导的基础.(2)必要时对于某些求导问题可先化简函数解析式再求导.【训练2】求下列函数的导数:(1)y =x n e x ;(2)y =cos x sin x ;(3)y =e x ln x ;(4)y =(x +1)2(x -1).解 (1)y ′=nx n -1e x +x n e x =x n -1e x (n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x .(3)y ′=e x ln x +e x ·1x =e x ⎝ ⎛⎭⎪⎫1x +ln x . (4)∵y =(x +1)2(x -1)=(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=3x 2+2x -1.考向三 求复合函数的导数【例3】►求下列复合函数的导数.(1)y =(2x -3)5;(2)y =3-x ;(3)y =sin 2⎝ ⎛⎭⎪⎫2x +π3;(4)y =ln(2x +5). [审题视点]正确分解函数的复合层次,逐层求导.解 (1)设u =2x -3,则y =(2x -3)5,由y =u 5与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x .由y =u 12与u =3-x 复合而成.y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u -12=-123-x =3-x 2x -6. (3)设y =u 2,u =sin v ,v =2x +π3,则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3=2sin ⎝ ⎛⎭⎪⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y x ′=y u ′·u x ′y ′=12x +5·(2x +5)′=22x +5. 由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.【训练3】求下列函数的导数:(1)y =x 2+1; (2)y =sin 22x ;(3)y =e -x sin 2x; (4)y =ln 1+x 2.解 (1)y ′=12 x 2+1·2x =x x 2+1, (2)y ′=(2sin 2x )(cos 2x )×2=2sin 4x(3)y ′=(-e -x )sin 2x +e -x (cos 2x )×2=e -x (2cos 2x -sin 2x ).(4)y ′=11+x 2·121+x2·2x =x 1+x 2. 规范解答6——如何求曲线上某一点的切线方程【问题研究】利用导数的几何意义求函数在某一点的坐标或某一点处的切线方程是高考常常涉及的问题.这类问题最容易出现的错误就是分不清楚所求切线所过的点是不是切点而导致错误.,【解决方案】解这类问题的关键就是抓住切点.看准题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”,然后求某点处的斜率,用点斜式写出切线方程.【示例】►(本题满分12分)(2010·山东)已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.(1)求出在点(2,f (2))处的斜率及f (2),由点斜式写出切线方程;(2)求f ′(x ),再对a 分类讨论.[解答示范] (1)当a =-1时,f (x )=ln x +x +2x -1,x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),(1分)因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1.又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2,即x -y +ln 2=0.(3分)(2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞).(4分)令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞),所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;(6分) ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a -1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减;(7分)b .当0<a <12时,1a -1>1>0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝ ⎛⎭⎪⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;(9分)c .当a <0时,由于1a -1<0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.(11分)综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,函数f (x )在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,函数f (x )在⎝ ⎛⎭⎪⎫1,1a -1上单调递增, 函数f (x )在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减.(12分) 求解切线问题的关键是切点坐标,无论是已知切线斜率还是切线经过某一点,切点坐标都是化解难点的关键所在.。