导数的概念及其几何意义教案
导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义一、导数的定义和基本概念1. 导数的定义导数是微积分学中一个非常重要的概念,它描述了函数在某一点附近的变化率。
在数学上,对于给定的函数f(x),它在某一点x0处的导数可以用极限的概念来定义,即:\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x} \]其中,f'(x0)表示函数f(x)在点x0处的导数。
2. 导数的基本概念根据导数的定义可以知道,导数可以理解为函数图像在某一点的切线的斜率,也就是函数在该点的瞬时变化率。
导数的概念是微积分的基础,它在物理、经济、生物等领域有着广泛的应用。
二、导数的几何意义1. 切线和切线斜率在几何意义上,导数可以理解为函数图像在某一点的切线的斜率。
对于函数f(x),在点x0处的切线斜率即为该点处的导数值f'(x0)。
通过求导可以获得函数曲线在任意点的切线斜率,从而更好地理解函数图像在各个点的变化趋势。
2. 导数与函数图像的关系导数还可以帮助我们理解函数曲线的凹凸性、极值点以及拐点等性质。
对于函数f(x),如果在某一点的导数值为0,那么这个点可能是函数的极值点或者拐点。
通过导数,我们可以更直观地理解函数的整体形态和特性。
三、深入理解导数的意义1. 导数的局部性导数反映了函数在某一点附近的变化情况,是一种局部性的量。
通过导数,我们可以得知函数在某一点处的瞬时变化率,从而对函数的局部特性有更深入的理解。
2. 导数与积分的关系在微积分中,导数和积分是密切相关的。
导数描述了函数的瞬时变化率,而积分则描述了函数在一定区间内的累积效应。
导数和积分是微积分学中最重要的两个概念,它们相互补充,共同构成了微积分学的核心内容。
结语:导数作为微积分学中的重要概念,在数学和应用领域都有着广泛的意义。
通过深入理解导数的概念及其几何意义,我们可以更好地理解函数图像的变化规律,为后续的微积分学习打下扎实的基础。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。
2. 掌握导数的计算方法。
3. 能够应用导数解决实际问题,如速度、加速度等。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。
2. 难点:导数的计算方法和在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。
2. 使用多媒体课件辅助教学。
五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。
2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。
3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。
4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。
5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。
6. 练习:布置练习题,让学生巩固导数的概念和计算方法。
7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。
8. 作业:布置作业,巩固所学内容。
六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,加强讲解和练习。
七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。
鼓励学生积极参与讨论,提高解决问题的能力。
八、课时安排本节课安排2课时,共计45分钟。
九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。
2. 导数在其他学科中的应用,如物理、化学等。
六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。
2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。
3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。
导数的概念教案及说明

导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。
2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。
3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。
4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。
5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。
教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。
2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。
3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。
教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。
教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。
第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。
人教A版选修2《导数的几何意义》教案及教学反思

人教A版选修2《导数的几何意义》教案及教学反思一、教师教学设计1.1 教学目标1.理解导数的定义及几何意义;2.掌握导数的概念、符号和实质;3.能够利用导数求一元函数的单调性和极值;4.能够应用导数求解相关最值问题。
1.2 教学内容导数的概念及几何意义1.3 教学重点1.导数的概念的理解;2.导数的几何意义的掌握。
1.4 教学难点1.导数的符号的理解;2.导数的实质的理解。
1.5 教学方法1.讲授法:讲解导数的定义及几何意义,并通过实例演示导数的计算方法;2.案例法:通过一些简单的案例,帮助学生理解导数的概念;3.组织讨论法:通过讨论和合作,帮助学生更好地掌握导数的概念和几何意义。
1.6 教学过程第一步:导入导数的概念1.在黑板上写出导数的定义;2.带领学生探讨“速度”和“斜率”之间的关系。
第二步:导数的符号及实质1.介绍导数的符号及意义;2.帮助学生理解导数的实质。
第三步:导数的几何意义1.通过实际图形,帮助学生理解导数的几何意义;2.分组讨论,让学生自己发现导数的几何意义。
第四步:导数的应用1.通过实例演示如何应用导数求解单调性和极值问题;2.让学生结合实际应用场景,自己解决相关最值问题。
1.7 教学评价1.通过讨论和合作,学生能够更好地掌握导数的概念和几何意义;2.学生能够熟练地运用导数,求解一元函数的单调性和极值;3.学生能够应用导数求解相关最值问题。
二、教学反思本节课使用了讲授法、案例法和组织讨论法,让学生更好地理解了导数的概念和几何意义。
在实践中,我发现不同的学生适合不同的教学方法。
一些学生更适合案例法,因为这可以让他们通过具体案例更深入地理解导数的概念。
另一些学生更适合组织讨论法,因为他们更喜欢合作学习,并通过讨论和交流来理解概念。
此外,通过案例和实例分析的模式,学生的学习兴趣得到了增强。
在处理实际问题时,学生能够更快地反应和解决问题。
另外,导数的公式计算也是学生较难掌握的部分。
为了更好地帮助学生掌握计算步骤,我在教学过程中设计了许多具体例子,并兼顾训练学生的能力,即教师既要根据学生的实际情况进行启发式讲解,也要有目的地培养学生的计算能力。
导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义导数是微积分学中的一个基本概念,它不仅具有重要的理论意义,而且在实际应用中也有着广泛的用途。
本文将通过深入的理论探讨和几何意义的解释,帮助读者全面理解导数的概念及其应用。
一、导数的概念导数是函数的一种基本性质,它描述了函数在某一点上的变化率。
具体地说,设函数y=f(x),在某一点x=a处有定义,若存在极限lim_[h→0] (f(a+h)-f(a))/h ,那么这个极限就称为函数f(x)在点a处的导数,记作f'(a)或dy/dx|_(x=a)。
从定义中可以看出,导数表示了函数在某一点上的瞬时变化率,也即函数的斜率。
导数的绝对值越大,表示函数在该点上的变化越剧烈;导数为零表示函数在该点上没有变化;导数为正表示函数在该点上单调递增;导数为负表示函数在该点上单调递减。
二、导数的几何意义导数的几何意义可以通过理解切线的概念来解释。
对于一个函数,取其中一点P(x,y),在这一点上作一条切线,使得切线与曲线只有一个公共点P。
那么这条切线的斜率就是函数在点P处的导数。
通过这种解释,我们可以把导数理解为函数曲线在某一点上的局部近似线性化描述。
切线的近似线性特征使得我们可以使用直线的性质来研究函数曲线的性质。
我们可以通过判断切线的斜率的正负来确定函数的单调性;通过判断切线与x轴的交点来确定函数的根的存在性等等。
三、导数的应用导数在实际应用中具有广泛的用途。
下面列举几个典型的应用场景:1. 曲线的拟合与插值:通过函数的导数可以获得曲线的斜率信息,进而进行曲线的拟合和插值,从而更好地描述和预测曲线的变化。
2. 最优化问题:很多最优化问题可以通过导数的求解来解决。
求函数在某一范围内的最大值或最小值,我们可以通过求解导数为零的位置来得到答案。
3. 物理学中的速度和加速度:在物理学中,速度和加速度是描述物体的运动的重要概念。
通过对位移和时间的关系进行导数运算,我们可以得到速度和加速度的函数表达式,从而更好地分析物体的运动规律。
导数的概念及其几何意义教案

§2 导数的概念及其几何意义第四课时 导数的几何意义习题课一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。
二、教学重点:曲线上一点处的切线斜率的求法教学难点:理解导数的几何意义三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。
(二)、探究新课例1、在曲线34xy =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1;(2)垂直于直线2x -16y +1=0;(3)倾斜角为135°。
解:设点坐标为(0x ,0y ),则202002020202020)(48)()(484)(4x x x x x x x x x x x x x x x x x y ∆+∆--=∆∆+∆-∆-=∆-∆+=∆∆ ∴当Δx 趋于0时,30400088)(x x x x f -=-='。
(1)∵切线与直线y =x +1平行。
∴1)(0='x f ,即1830=-x , ∴20-=x ,10=y 。
即P (―2,1)。
(2)∵切线与直线2x -16y +1=0垂直, ∴1)162(·)(0-=--'x f ,即181·830-=-x ,∴10=x ,40=y 。
即P (―1,4)。
(3)∵切线倾斜角为135°,∴1135tan )(00-=='x f ,即1830-=-x , ∴20=x ,10=y 。
即P (2,1)。
例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。
解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x xx x x x x x x x x x y ∆+∆+=∆∆+∆+∆=∆+-+∆+=∆∆ 当Δx 趋于0时, 2003)(x x f =',由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ①又过(1,1)点的切线的斜率111030--+=x x k ② ∴由①②得:130302-=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。
《导数的概念及其几何意义》教学设计
《导数的概念及其几何意义》教学设计课题:导数的概念及其几何意义教材分析:微积分是人类思维的伟大成果之一,是人类经历了2000多年的智慧成果,开创了数学向近代数学过渡的新时期,其中牛顿和莱布尼茨功不可没,他们各自独立创立了微积分,单凭这一项成就,就足以奠定两人科学史上的伟大地位。
而导数的概念是微积分核心概念之一,它具有极其丰富的实际背景和广泛应用。
导数的概念及其几何意义一课是在学生已经学习了解了一些实际问题的平均变化率的基础上对于瞬时变化率的确切的再认识,同时也是高中数学与大学数学衔接的重要内容章节。
考虑到教材对于本节的安排过于支离,而且缺乏典型的实际情境问题的分析引入,因此我整合教材内容,从实际问题中抽象出导数概念后,再回到实际问题中去,趁热打铁进一步研究导数的几何意义。
因此,本节课主要内容是抽象概括导数的一般概念以及发现学习导数的几何意义。
教学设计上是紧紧围绕一个问题:跳水运动员的瞬时速度问题,以提出问题,形成问题串,然后合作、交流、分析问题,进而解决问题的方式展开教学。
教学目标:1.知识与技能:抽象概括并理解导数的概念,发现并学习导数的几何意义。
2.过程与方法:体会瞬时变化率,归纳形成导数概念。
观察函数曲线的变化趋势,发现形成导数的几何意义。
3.情感态度价值观:学习的过程中养成数学抽象和数学建模的核心素养,渗透不断逼近和以直代曲的数学思想,以有限认识无限,体会量变和质变的辩证关系,感受数学思想的无限魅力。
教学重点:导数的概念以及导数的几何意义。
教学难点:导数的概念以及导数的几何意义。
教学过程:【复习回顾,创设情境】:回顾什么是平均变化率?情境1、吹气球的时候,随着气球的不断膨胀,吹起来,会越来越难,这是怎么回事?怎样用数学知识解释这一现象?情境2、巍峨的珠穆朗玛峰,攀登珠峰的队员两幅不同的陡峭状态的图片,当陡峭程度不同时,登山运动员的感受程度是不一样的,如何用数学反映山势的陡峭程度,给我们的登山运动员一些有益的技术参考?情境3、观看跳水视频,运动员从10米高台跳水时,从腾空到进入水面的过程中,设运动员相对于水面的高度h与起跳后的时间t存在函数关系为。
数学组导数的概念及其几何意义教案
数学组导数的概念及其几何意义教案
一、教学目标:
1.了解导数的概念及求导的方法;
2.理解导数的几何意义。
二、教学内容:
2.导数的求法;
三、教学重点:
五、教学方法:
1.讲解法;
2.图示法;
3.举例法。
六、教学过程:
1.开场导入
教师可以先询问学生对导数概念的初步认识,引导学生思考。
导数的概念是指函数的变化率。
当我们讨论函数$f(x)$在某一点$x_0$处的导数时,实际上是在研究函数$f(x)$在这一点上的变化率。
导数用符号$f'(x_0)$表示。
(1)极限法
$$f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$
(2)定义法
(3)微分法
$$f'(x)=\frac{dy}{dx}$$
导数的几何意义是函数图像在某点的切线斜率。
我们可以通过切线的斜率来判断函数在某一点上的变化率,从而了解函数的性质。
七、扩展应用
导数是微积分的重要概念,它不但有着广泛的应用,而且可以帮助我们更加深入地了解各种数学问题。
在研究曲线运动、函数极值、微分方程等方面,导数都是必不可少的工具。
八、课堂小结
在本节课中,我们学习了导数的概念及其求法,同时还了解了导数的几何意义。
导数作为微积分的核心概念,在现代经济学、物理学、生物学、优化等许多领域都有着广泛的应用。
高中数学一对一教案 导数的概念及几何意义
教学内容导数的概念及几何意义教学目标1、了解导数的概念2、理解导数的几何意义,并由此求切线的方程3、掌握基本初等函数的导数公式和导数的运算法则教学重、难点 重点:函数导数的计算和导数的几何意义的应用。
难点:导数几何意义的应用扫清障碍1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率.2、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率. 曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为:()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =. 特别的,若质点运动的位移S 是时间t 的函数,则(),()S t v v t a ''==。
4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()limx f x x f x f x y x∆→+∆-''==∆5、基本初等函数的导数公式②求出函数在点0x 处的导数0()f x '得到曲线在点00(,())x f x 的切线的斜率k,即0()k f x '=; ③利用点斜式写出切线方程并化简.变式练习:1.(2009江西卷理)设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .4B .14-C .2D .12-2.已知函数3()f x x =的切线的斜率等于1,则切线有( )A .1条B .2条C .3条D .不确定3.(11年全国理)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( )A .13B .12C .23D .14.曲线2y x =在点P 处的切线斜率为1,则点P 的坐标为_________。
5.1.2 导数的概念及其几何意义 教学设计
5.1.2《导数的几何意义》教学设计一、教材分析:本节课是《普通高中教科书数学》(人民教育出版社、课程教材研究所A 版教材)选择性必修第二册中第5章5.1.2节,它是学习了平均变化率,瞬时变化率基础上,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容,导数的几何意义学习为常见函数的导数计算、研究函数的应用的基础。
因此,导数的几何意义有承前启后的重要作用。
本节课不仅能帮助学生更好地理解导数的概念,并且能让学生认识导数是刻画函数的单调性、变化快慢和极值等性质最有效的工具,是本章的关键内容. 二、教学目标:1. 知识与技能:(1)使学生了解导数的几何意义;(2)体会“数形结合、以直代曲”的数学思想方法。
2. 过程与方法:渗透“逼近”思想,激发学生的学习兴趣,培养学生不断发现、探究新知识的精神.3. 情感与价值:通过揭示割线与切线之间的内在联系,对学生进行辩证唯物主义教育,引导学生从有限中认识无限. 三、教学重点、难点:重点:导数的概念,导数的几何意义. 难点:导数的概念,曲线切线概念.三、教学过程设计 (一)旧知回顾1. 高台跳水运动员的速度设高台跳水运动员起跳高度h 与时间t 的函数为)(t h s =,则0t 到t 的平均速度为,t t h t t h v ∆-∆+=)()(00而在0t 时刻的瞬时速度为.)()(000lim t t h t t h t ∆-∆+→∆2. 抛物线的切线的斜率 设抛物线解析式为)(x f y =,,,))((000x f x P ,,))((00x x f x x P ∆+∆+则割线P P 0的斜率为,x x f x x f k ∆-∆+=)()(00而在,,))((000x fx P 处切线的斜率为.)()(000limx x f x x f x ∆-∆+→∆3. 导数的概念对于函数)(x f y = ,设自变量x 从0x 变化到x x ∆+0 ,相应地,函数值y 就从)(0x f 变化到)(0x x f ∆+,x 的变化量为x ∆,y 的变化量为)()(00x f x x f -∆+,我们把比值xy ∆∆,即,x x f x x f ∆-∆+)()(00叫做函数)(x f y =从0x 到x x ∆+0的平均变化率.当0→∆x 时,平均变化率x y ∆∆无限接近一个确定的值,即xy∆∆有极限,则称 )(x f y =在0x x =处可导,并把这个确定的值叫做)(x f y =在0x x =处的导数(也称瞬时变化率),记作:)('0x f 或0|'x x y = ,即.)()(lim lim)('00000x x f x x f x y x f x x ∆-∆+=∆∆=→∆→∆(二)新知学习Δx )-f (x 0)导数)('0x f 表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在0x x =附近的变化情况.那么导数)('0x f 平均变化率xy∆∆表示什么? xx f x x f x y Q P PQ ∆-∆+=∆∆=)()(000表示割线P P 0的斜率.当点 ))(,(x f x P 沿着曲线无限接近于点))(,(00x f x P 割线P P 0称为曲线 )(x f y =在 0x x =的切线.割线P P 0的斜率00)()(x x x f x f k --=当 0→-=∆x x x在0x x =的导数)('0x f ,x x f x x f x f k x ∆-∆+==→∆)()(lim)('00000导数的几何意义:)('x f 是)(x f y =函数在0x x =处切线T P 0的斜率.0P 附近的曲线,将0P 附近的曲线不.因此,在0P 附近曲线可以用点0P 处的切线T P 0近例 1 高台跳水运动中运动员的重心相对于水面的高度随时间变化的函数118.49.4)(2++-=t t t h的图象.根据图象,请描述、比较曲线)(t h 在210t t t t ,,=附近的变化情况.x处的切线斜率,刻画曲线在上述三个时刻附近的变化情况.(1)当0t t= 时,曲线)(t h 在0t t =处的切线0l 平行于t 轴,0)('0=t h 在0t t =附近曲线比较平坦;(2)当1t t =时,曲线h(t)在1t t = 处的切线1l 的斜率在1t t =附近单调递减, 下降缓慢;(3)当2t t = 时,曲线h(t)在2t t= 处的切线2l 的斜率在2t t =附近单调递减,但下降迅速.例2 如图是人体血管中药物浓度)(t f c = (单位:mg/mL) 随时间t(单位:min)变化的函数图象.根据图象,估计 min 8.06.04.02.0,,,=t 时,血管中药物浓度的瞬时变化率(精确到0.1).解:设血管中某一时刻药物浓度的瞬时变化率,就是药物浓度f (t )在此时刻的导数,从图象看,它表示曲线f (t )在此处切线的斜率.作t = 0.8处切线,并在切线上取两点,如()0.910.7,则此刻切线的斜率,4.17.00.191.048.0-≈--=k .4.1)8.0('-≈f三、课堂总结导数的概念对于函数)(x f y = ,设自变量x 从0x 变化到x x ∆+0 ,相应地,函数值y 就从)(0x f 变化到)(0x x f ∆+,x 的变化量为x ∆,y 的变化量为)()(00x f x x f -∆+,我们把比值xy ∆∆,即,x x f x x f ∆-∆+)()(00叫做函数)(x f y =从0x 到x x ∆+0的平均变化率.当0→∆x 时,平均变化率x y ∆∆无限接近一个确定的值,即xy∆∆有极限,则称 )(x f y =在0x x =处可导,并把这个确定的值叫做)(x f y =在0x x =处的导数(也称瞬时变化率),记作:)('0x f 或0|'x x y = ,即.)()(lim lim)('00000x x f x x f x y x f x x ∆-∆+=∆∆=→∆→∆四、作业教材第70页,习题5.1复习巩固 1,2,3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 导数的概念及其几何意义
第四课时 导数的几何意义习题课
一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。
二、教学重点:曲线上一点处的切线斜率的求法
教学难点:理解导数的几何意义
三、教学方法:探析归纳,讲练结合
四、教学过程
(一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。
(二)、探究新课
例1、在曲线34x
y =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1;
(2)垂直于直线2x -16y +1=0;
(3)倾斜角为135°。
解:设点坐标为(0x ,0y ),则
202002020202020)
(48)()(484)(4x x x x x x x x x x x x x x x x x y ∆+∆--=∆∆+∆-∆-=∆-∆+=∆∆ ∴当Δx 趋于0时,30
400088)(x x x x f -=-='。
(1)∵切线与直线y =x +1平行。
∴1)(0='x f ,即1830
=-x , ∴20-=x ,10=y 。
即P (―2,1)。
(2)∵切线与直线2x -16y +1=0垂直, ∴1)16
2(·)(0-=--'x f ,即181·830-=-x ,
∴10=x ,40=y 。
即P (―1,4)。
(3)∵切线倾斜角为135°,
∴1135tan )(00-=='x f ,即1830
-=-
x , ∴20=x ,10=y 。
即P (2,1)。
例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。
解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x x
x x x x x x x x x x y ∆+∆+=∆∆+∆+∆=∆+-+∆+=∆∆ 当Δx 趋于0时, 2003)(x x f =',
由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ①
又过(1,1)点的切线的斜率1
11030--+=x x k ② ∴由①②得:130302
-=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。
例3、如图,它表示跳水运动中高度随时间变化的函数 2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况.
解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况.
(1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线
比较平坦,几乎没有升降.
(2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近
曲线下降,即函数2() 4.9 6.510h x x x =-++在1t t =附近单调递减.
(3) 当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<,所以,在2t t =附近
曲线下降,即函数2() 4.9 6.510h x x x =-++在2t t =附近单调递减. 从图3.1-3可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线在1t 附近比在2t 附近下降的缓慢.
(三)、小结:利用导数的几何意义求曲线)(x f y =在0x x =处切线方程的步骤:
(1)已知曲线的切点),(00y x P ①求出函数)(x f y =在点0x 处的导数)(0x f ';②根据直线的点斜式方程,得切线方程为))((000x x x f y y -'=-。
(2)过曲线外的点),(11y x P ①设切点为),(00y x ,求出切点坐标;②求出函数)(x f y =在点0x 处的导数)(0x f ';③根据直线的点斜式方程,得切线方程为))((000x x x f y y -'=-。
(四)、练习:练习册30P :7、8.
(五)、作业:练习册30P :5、6、9、10
五、教后反思:。