3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)
教学设计:3.1.3 导数的几何意义

3.1.3 导数的几何意义【教学目标】 知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径.(2) 借助两个类比的动画,从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线.(3) 依据割线与切线的变化联系,数形结合探究函数)(x f 在0x x =处的导数0()f x '的几何意义,使学生认识到导数0()f x '就是函数)(x f 的图象在0x x =处的切线的斜率.即:()()xx f x x f x f x ∆-∆+=→∆)(lim0000/=曲线在0x x =处切线的斜率在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法.过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力.(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高.(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知.情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处.在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展. 【教学重点与难点】重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法.难点:发现、理解及应用导数的几何意义. 【学法指导】通过设计环环相扣的思考问题,引导学生主动地参与探究活动,体验学习的乐趣,教师在这个过程中不打断学生的思路,学生可以根据学案超前完成活动,期望有能力的学生走在老师的前面,同时,学生也可以根据需要寻求老师和同学的帮助,以更好地在课堂上完成学习任务.使学生充分经历“探索感知——讨论归纳——发现新知——应用新知解释现象”这一完整的探究活动,以获得理智和情感体验,让学生感受到数学知识的产生是水到渠成的.学生自主探索、动手实践、合作交流的学习方式,体现在整个教学过程中. 【数学知识线索】【教学流程】平均变化率瞬时变化率 导 数割线的斜率切线的斜率割 线切 线逼 近导数的几何意义 函数的增减性应 用数形结合类 比【教学过程】教 学 过 程设 计 意 图 一、创设情境、导入新课1.回顾旧知、引出研究的问题:前面我们学习了函数在0x x =处的导数0()f x '就是函数在该点处的瞬时变化率......那么: 问:(1) 求导数0()f x '的步骤有哪几步? 生:第一步:求平均变化率()00()f x x f x y x x+∆-∆=∆∆; 第二步:求瞬时变化率()0000()()lim x f x x f x f x x∆→+∆-'=∆.(即0x ∆→,平均变化率趋近..于的确定常数....就是该点导数..) (2)观察函数()y f x =的图象,平均变化率()00()f x x f x y x x+∆-∆=∆∆ 在图形中表示什么?老师引导学生回忆联系本节课的旧知识,下面探究导数的几何意义也是依据导数概念的形成,寻求解决问题的途径.教师板书,便于学生数形结合探究导复习旧知,自然引出研究问题动画类比、知识迁移,获得切线新定义数形结合,学生探索获得导数的几何意义通过例题和练习,巩固知识,加深对导数的认识生:平均变化率表示的是割线nPP的斜率.师:这就是平均变化率.....(.y x∆∆).的几何意义.....,那么瞬时变化率(limxyx∆→∆∆)在图中又表示什么呢?今天我们就来探究导数的几何意义.教师引导学生观察割线与切线是否有某种内在联系呢? 生:先感知后发现,当0x ∆→,随着点B 沿着圆逼近点A ,割线AB 无限趋近于点A 处的切线.◆把割线逼近切线的结论从圆推广到一般曲线,可得:多媒体显示【动画2】:动态演示教材上点00(,())n P x x f x x +∆+∆沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势图.师:类比【动画1】,当点00(,())n P x x f x x +∆+∆沿着曲线()f x 趋近于点00(,())P x f x 时,即0x ∆→,研究割线n PP 的变化趋势.学生观察【动画2】,类比得出一般曲线的切线定义:当点00(,())n P x x f x x +∆+∆沿着曲线()f x 逼近点00(,())P x f x 时,即0x ∆→,割线n PP 趋近于确定的位置,这个确定位置上的直线PT 称为点P 处的切线.突破研究的难点:0x ∆→,割线n PP →点P 处的切线 那么:0x ∆→,割线的斜率→?与导数0()f x '又有何关系呢?学生自选A 或B 组题目进行下面的探究活动.2.数形结合,探究导数的几何意义结合【动画2】的变化过程,学生思考下面的问题,探究导数的几何意义.分层自选(A)、(B)中的一组.【探究一(A)】1.已知曲线上两点0000(,()),(,())n x x P x f x P x f x +∆+∆: (1)根据切线定义可知:0x ∆→,割线n PP 趋近于切线PT .那么割线n PP 的斜率n k 与切线PT 的斜率k 又有何关系?纳和总结并深入体会知识间的联系.三、探索小结、重点讲评1.获得导数的几何意义◆学生快速探究活动后,展示研究成果,教师重点讲评: 割线n PP 的斜率是0000()()()n f x x f x k x x x +∆-=+∆-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即 0000()()lim ()x f x x f x k f x x∆→+∆-'==∆切线PT 的斜率k 即为函数在0x x =处的导数. 导数的几何意义:00000()()()lim x f x x f x f x x x k x∆→+∆-'===∆曲线在处的切线的斜率师:由导数的几何意义,我们可以解决哪些问题? 生:已知某点处的导数或者切线的斜率可以求另外一个量. 问:切线y kx b =+中,如果0k >,则切线有怎样的变化趋势?如果0k <呢?反之,由切线的变化趋势,能否确定斜率的情况?生:0k >,则切线呈上升趋势;0k <,则切线呈下降趋势.由切线的变化趋势可以得出切线的斜率情况,也即该点处的导数情况.2.了解以直代曲思想把点P 附近函数的图象放大,引导学生理解以直代曲思想是指某点附近一个很小的研究区域内,曲线与切线的变化趋势基本一致,故可由曲线上某点处的切线近似代替这一点附近的曲线.借助实物投影仪,展示学习成果,学生经历了完整的探究过程后,教师的讲评就可以有针对性和详略,学生也可以结合自己探究的体会更好地建构知识.突破导数的几何意义这个学习重点.复习一次函数的增减性,为后面利用导数研究函数的增减性埋下伏笔.通过将曲线一点PPP师:在某点附近一个很小的研究区域内,曲线与切线的变化趋势有何关系?如果切线的斜率为正,则该点附近曲线的增减情况怎样?生:点P附近,曲线和该点处的切线的增减变化情况一致.如果切线的斜率为正,则该点附近曲线呈上升趋势.处的局部“放大、放大、再放大”的直观方法,形象而逼真地再现“以直代曲”思想.渗透用导数的几何意义研究函数的增减性至此突破学习重点和难点,用时约15分钟四、知识应用、巩固理解1.导数几何意义的应用例题:如图,它表示跳水运动中高度随时间变化的函数105.69.4)(2++-=ttth的图象.(1)(2)优生可在完成【探索一】后提前进行知识的应用.要求学生动脑(审题),动手(画切线),动口(讨论),体会利用导数的几何意义及运用导数来研究函数在某点附近的单调性,渗透“数形结合”的思想方法,运用以直代曲的思想方法.t O5.00.1【探究二(A)】1.用图形体现3.3)1(/-=h ,6.1)5.0(/=h 的几何意义.2.导数值的正负,反应该点附近的曲线有何变化趋势? 3.请描述、比较曲线)(t h 在210,,t t t 附近增(减)以及增(减)快慢的情况.在43,t t 附近呢?分析:附近:瞬时..,增减:变化率...,即研究函数在该点处的瞬时变化率,也就是导数.可借助切线的变化趋势得到导数的情况.生:作出曲线在这些点处的切线,在0t 处切线平行于x 轴,即0()0h t '=,说明在0t 时刻附近变化率为0,函数几乎没有增减;在12,t t 作出切线,切线呈下降趋势,即12()0,()0h t h t ''<<,函数在点附近单调递减.曲线在2t 附近比在1t 附近下降得更快,则是因为12|()||()|h t h t ''<.【探究二(B)】htO3t4t 0t1t 2t【探究二(B)】1.运用导数的几何意义,描述)(t h 在210,,t t t 附近增(减)以及增(减)快慢的情况.在43,t t 附近呢?2. 如何用导数研究函数的增减?小结:附近:瞬时..,增减:变化率...,即研究函数在该点处的瞬时变化率,也就是导数.导数的正负即对应函数的增减.作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具.同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性.都反应了导数是研究函数增减、变化快慢的有效工具.例题变式1:函数32y x =+上有一点00(,)x y ,求该点处的导数0()f x ',并由此解释函数的增减情况.0000000()()()lim3()2(32)lim 3x x f x f x x f x x x x x x∆→∆→'=+∆-∆+∆+-+==∆解:函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增.(此时任意点处的切线就是直线本身,斜率就是变化率)例题变式2:下图是函数()y f x =的图象,请回答下面的问题:【探究三(A)】1.请指出函数的单调区间,并用导数的几何意义说明.生:单调区间有:[52),[2,1),[1,3),[3,5]---,作出区间内一系列的曲线的切线,发现切线呈现一致的上升或下降的趋势,即切线的斜率一致为正或负,所以导数值在单调区间内恒正或恒负,对应函数单调递增或递减. 【探究三(B)】1.请指出函数的单调区间,并用导数的几何意义说明. 答案同上2.根据上题的结论,研究某点处的导数值、切线的斜率和函数的单调性之间有何关系?生:从数的角度:导数正负对应函数的增减,。
课件14:3.1.3 导数的几何意义

2.设 f′(x0)=0,则曲线 y=f(x)在点(x0,f(x0))处的切线( )
A.不存在
B.与 x 轴平行或重合
C.与 x 轴垂直
D.与 x 轴斜交
解析:f′(x0)=0,说明曲线 y=f(x)在点(x0,f(x0))处的切线斜率 为 0,所以与 x 轴平行或重合.
答案:B
3.在曲线 y=x2 上切线倾斜角为π4的点是(
切线方程. 解:由 y=13x3,得 y′=
ΔΔyx=
13(x+Δx)3-13x3 Δx
=13
3x2Δx+3x(Δx)2+(Δx)3 Δx
1 =3
[3x2+3xΔx+(Δx)2]=x2,y′|x=3=32=9,
即曲线在 P(3,9)处的切线的斜率等于 9.
由直线的点斜式方程可得,
所求切线方程为 y-9=9(x-3),
)
A.(0,0)
B.(2,4)
C.41,116
D.21,14
解析:因为 y=x2,所以 k=y′=
ΔΔyx=
(x+Δx)2-x2 Δx
=
(2x+Δx)=2x,所以 2x=tanπ4=1,
所以 x=12,则 y=14.
答案:D
4. 若函数 f(x)在点 A(1,2)处的导数是-1,那么曲线 y=f(x) 在点 A 处的切线方程是________. 解析:切点为(1,2),k=-1, 所以切线方程为 y-2=-1×(x-1) 即:x+y-3=0.
解析:(1)直线与曲线公共点的个数不是切线的本质特征,直 线是曲线切线时,直线可能与曲线有两个以上的交点,正确.(2) 与曲线有且只有一个交点的直线不一定是曲线的切线,如直线 x=1 与抛物线 y=x2 有且只有一个公共点,但 x=1 不是抛物 线 y=x2 的切线,不正确.(3)f′(x0)是一个数值,不是变数,而 f′(x)是关于 x 的一个函数,正确.(4)求 f′(x0)时,可先求 f′(x), 再求 f′(x0),故(4)错误. 答案:(1)√ (2)× (3)√ (4)×
高中数学选修1-1优质学案:3.1.3 导数的几何意义

3.1.3 导数的几何意义[学习目标] 1.了解导函数的概念;了解导数与割线斜率之间的关系.2.理解曲线的切线的概念;理解导数的几何意义.3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.知识点一导数的几何意义函数y=f(x)在点x=x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).知识点二函数的导函数当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)是x的一个函数,称f′(x)是f(x)的导函数(简称导数).f′(x)也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.题型一 已知过曲线上一点求切线方程例1 若曲线y =x 3+3ax 在某点处的切线方程为y =3x +1,求a 的值. 解 ∵y =x 3+3ax .∴y ′=lim Δx →0(x +Δx )3+3a (x +Δx )-x 3-3axΔx =lim Δx →03x 2Δx +3x (Δx )2+(Δx )3+3a Δx Δx =lim Δx →0[3x 2+3x Δx +(Δx )2+3a ]=3x 2+3a . 设曲线与直线相切的切点为P (x 0,y 0), 结合已知条件,得⎩⎪⎨⎪⎧3x 20+3a =3,x 30+3ax 0=y 0=3x 0+1, 解得⎩⎨⎧a =1-322,x 0=-342,∴a =1-322. 反思与感悟 一般地,设曲线C 是函数y =f (x )的图象,P (x 0,y 0)是曲线C 上的定点,由导数的几何意义知k =lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx ,继而由点与斜率可得点斜式方程,化简得切线方程.跟踪训练1 求过曲线y =1x 在点⎝⎛⎭⎫2,12处的切线方程. 解 因为lim Δx →0f (2+Δx )-f (2)Δx =lim Δx →012+Δx -12Δx= lim Δx →0-12(2+Δx )=-14.所以这条曲线在点⎝⎛⎭⎫2,12处的切线斜率为-14,由直线的点斜式方程可得切线方程为y -12=-14(x -2),即x +4y -4=0.题型二 求过曲线外一点的切线方程例2 已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解 y ′=lim Δx →0ΔyΔx=lim Δx →0[2(x +Δx )2-7]-(2x 2-7)Δx =lim Δx →0 (4x +2Δx )=4x . 由于点P (3,9)不在曲线上.设所求切线的切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求的切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得9-(2x 20-7)=4x 0(3-x 0). 解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.反思与感悟 若题中所给点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程. 跟踪训练2 求过点A (2,0)且与曲线y =1x 相切的直线方程.解 易知点(2,0)不在曲线上,故设切点为P (x 0,y 0),由y ′|0x x =x =x 0=lim Δx →01x 0+Δx -1x 0Δx =-1x 20, 得所求直线方程为y -y 0=-1x 20(x -x 0).由点(2,0)在直线上,得x 20y 0=2-x 0,再由P (x 0,y 0)在曲线上,得x 0y 0=1,联立可解得x 0=1,y 0=1,所求直线方程为x +y -2=0. 题型三 求切点坐标例3 在曲线y =x 2上过哪一点的切线, (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)与x 轴成135°的倾斜角.解 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx =2x ,设P (x 0,y 0)是满足条件的点. (1)因为切线与直线y =4x -5平行, 所以2x 0=4,x 0=2,y 0=4, 即P (2,4)是满足条件的点.(2)因为切线与直线2x -6y +5=0垂直, 所以2x 0·13=-1,得x 0=-32,y 0=94,即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)因为切线与x 轴成135°的倾斜角,所以其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14,即P ⎝⎛⎭⎫-12,14是满足条件的点. 反思与感悟 解答此类题目时,所给的直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意[解析]几何知识的应用,如直线的倾斜角与斜率的关系,直线互相平行或垂直等. 跟踪训练3 已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0? 解 设点的坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2.∴ΔyΔx=4x 0+2Δx . 当Δx 无限趋近于零时,ΔyΔx 无限趋近于4x 0.即f ′(x 0)=4x 0.(1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1,该点为(1,3). (2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2,该点为(2,9).计算切线与坐标轴围成的图形的面积求关于曲线的切线与坐标轴围成的图形的面积问题常见的题型有三类:(1)曲线的一条切线与两坐标轴围成的图形的面积.此类问题比较简单,只要求出切线方程与两坐标轴的交点,即可计算.(2)求通过曲线外一点引曲线的两条切线,两切线与坐标轴围成的图形的面积. 解决这类问题的关键仍然是求出两条切线的方程与坐标轴的交点坐标. (3)求两曲线交点处的两条切线与坐标轴围成的图形的面积.其解题步骤为: ①求两曲线的交点坐标; ②求交点处两条切线的切线方程; ③求两切线与坐标轴的交点坐标; ④依据数形结合的思想计算图形的面积.例4 已知曲线y =1x和y =x 2.求两曲线交点处的两条切线与y 轴所围成的三角形的面积.解 由⎩⎪⎨⎪⎧y =1x ,y =x 2,解得⎩⎪⎨⎪⎧x =1,y =1.即两曲线的交点坐标为(1,1). 曲线y =1x 在点(1,1)处的切线的斜率为k 1=f ′(1)=lim Δx →011+Δx -1Δx =lim Δx →0-11+Δx =-1, 所以曲线y =1x 在点(1,1)处的切线方程为y =-x +2.同理,曲线y =x 2在点(1,1)处的切线的斜率为 k 2=lim Δx →0(1+Δx )2-12Δx =lim Δx →0 (2+Δx )=2, 故曲线y =x 2在点(1,1)处的切线方程为y =2x -1.如图所示,两切线分别与y 轴交于点(0,2)和(0,-1),其与y 轴所围成的三角形的面积为S =12×3×1=32.1.已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为( ) A.4B.16C.8D.2 [答案] C[解析] f ′(2)=lim Δx →0f (2+Δx )-f (2)Δx=lim Δx →02(2+Δx )2-8Δx=lim Δx →0 (8+2Δx )=8,即斜率k =8. 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A.a =1,b =1 B.a =-1,b =1 C.a =1,b =-1 D.a =-1,b =-1[答案] A[解析] 由题意,知k =y ′|x =0=lim Δx →0(0+Δx )2+a (0+Δx )+b -b Δx =1,∴a =1. 又(0,b )在切线上,∴b =1,故选A.3.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为( ) A.30°B.45°C.135°D.165° [答案] B[解析] ∵y =12x 2-2,∴y ′=lim Δx →012(x +Δx )2-2-⎝⎛⎭⎫12x 2-2Δx=lim Δx →012(Δx )2+x ·Δx Δx=lim Δx →0⎝⎛⎭⎫x +12Δx =x . ∴y ′|x =1=1.∴点P ⎝⎛⎭⎫1,-32处切线的斜率为1,则切线的倾斜角为45°. 4.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. [答案] (3,30)[解析] 设点P (x 0,2x 20+4x 0), 则f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →02(Δx )2+4x 0·Δx +4Δx Δx =4x 0+4, 令4x 0+4=16得x 0=3,∴P (3,30).5.曲线y =2x 2+1在点P (-1,3)处的切线方程为________________. [答案] 4x +y +1=0[解析] Δy =2(Δx -1)2+1-2×(-1)2-1 =2(Δx )2-4Δx , ΔyΔx=2Δx -4, lim Δx →0Δy Δx =lim Δx →0(2Δx -4)=-4, 由导数几何意义知,曲线y =2x 2+1在点(-1,3)处的切线的斜率为-4,切线方程为y =-4x -1,即4x +y +1=0.1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=limΔx→0f(x0+Δx)-f(x0)=f′(x0),物理意义是运动物体在某一时刻的瞬时速度.Δx2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.。
高中数学_3.1.3 导数的几何意义教学设计学情分析教材分析课后反思

3.1.3导数的几何意义高二数学人教B版教材(选修1-1)一、教材分析本节课选自人教B版选修1-1第三章3.1.3导数的几何意义。
教材通过数形结合的方法,演示了割线斜率到切线斜率的变化过程,用形象直观的逼近方法定义了切线,引出了导数的几何意义,适合学生的认知规律,在学生学习中有着明确的学习方法指引,通过本节课的学习,学生们进一步认识了“逼近思想”在数学中的应用。
例题设计难度适中,既有简单求解切线斜率、切点的题目,又有求切线方程题型。
例题设计了“在一点处”型和“过一点”型的切线方程,可以培养学生思维全面严谨、分类讨论的能力。
二、教学目标知识与技能:理解导数的几何意义、熟练掌握求切点及函数“在一点处”型、“过一点”型的切线斜率的求法。
过程与方法:让学生体会割线斜率到切线斜率的过程,熟练掌握数形结合、分类讨论等数学思想方法。
情感态度与价值观:能够从生活中抽象出数学问题,在学习中养成积极探究,合作分享的学习态度。
通过认真训练,达到举一反三、融会贯通的目的。
三、重点、难点导数几何意义的理解与应用,“过一点”型的切线斜率的求解过程。
突出重点方法:“抓三线、突重点”,即(一)知识技能线:实例引入→抽象为数学问题→动态演示→形成概念;(二)过程与方法线:具体到抽象、数形结合、分类讨论的应用;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度.教学难点:导数的几何意义,从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。
从知识本身特点来看,导数的几何意义是在平均变化率、瞬时速度与导数的基础上结合切线斜率再生成的一个知识点。
特别是在求“在一点处”型、“过一点”型的切线斜率,这是学生的难点,刚开始接触,好多学生可能不理解。
突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。
《3.1.3导数的几何意义》教学案3

《导数的几何意义》导学案教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数.教学重难点:函数切线的概念,切线的斜率,导数的几何意义.教学过程:情景导入:如图,曲线C 是函数y =f (x )的图象,P (x 0,y 0)是曲线C 上的任意一点,Q (x 0+Δx ,y 0+Δy )为P 邻近一点,PQ 为C 的割线,PM //x 轴,QM //y 轴,β为PQ 的倾斜角. .tan ,,:β=∆∆∆=∆=x y y MQ x MP 则合作探究:探究任务:导数的几何意义问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化趋是什么?y x∆∆请问:是割线PQ 的什么?新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线割线的斜率是:n k =____________.当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x ∆→+∆-'==∆ 新知:函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()limx f x x f x f x x∆→+∆-'=∆ 精讲精练:例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min )变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1).有效训练练1. 求双曲线1y x =在点1(,2)2处的切线的斜率,并写出切线方程. 练2. 求2y x =在点1x =处的导数.反思总结函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ∆→+∆-'=∆.。
高中数学人教B版选修1-1第三章《3.1.3 导数的几何意义》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版选修1-1第三章《3.1.3 导数的几何意义》优质课公开课教案教师资格证面试试讲教案
1教学目标
(一)知识与技能目标:
1、理解切线的定义以及平均变化率的几何意义;
2、掌握导数的几何意义,并能熟练运用该知识点解决相应习题。
(二)过程与方法目标:
1、通过数形结合理解平均变化率的几何意义;
2、从幻灯片中动感的观察出一定点的割线逐渐变成切线的过程,充分理解导数的几何意义。
(三)情感态度与价值观目标:
通过对问题的逐渐深入的讨论,激发学生的求知欲和问题探究的热情,提高学生对数学的兴趣以及积极的数学学习态度。
2学情分析
学生在学习导数的几何意义之前,已经掌握了平均变化率和瞬时变化率的概念,本节课学生可以通过图像来感受平均变化率的意义,再通过幻灯片动画放映来理解导数的几何意义。
3重点难点
重点:通过图像来理解平均变化率以及瞬时变化率的几何意义,以及利用导数的几何意义来求曲线在某点处的切线方程;
难点:理解导数的几何意义。
4教学过程
4.1第一学时
教学活动
1【导入】复习导入
1、回想初中所学圆的切线定义(与一个圆只有一个公共点的直线叫做圆的切线)。
2、复习平均变化率的公式。
3、复习瞬时变化率(导数)的公式。
导数的几何意义优秀教学设计

《导数的几何意义》教学设计【教材分析】本节课选自高中数学人教A版选修1-1第三章《导数及其应用》中的3.1.3《导数的几何意义》第一课时。
导数是微积分的核心概念之一,它为研究函数提供了有效的方法。
教材从形的角度即割线入手,用形象直观的“逼近”方法,通过观察发现、思考归纳的方式定义了切线,获得导数的几何意义。
通过本节的学习,可以帮助学生进一步理解导数的定义,渗透数形结合、以直代曲的思想方法,体会导数是研究函数的单调性、函数值变化快慢等性质的有效工具。
【教学目标】知识与技能:了解平均变化率与割线之间、瞬时变化率与切线之间的关系,通过函数的图象理解并掌握导数的几何意义。
利用导数的几何意义会求曲线上某点处的切线方程。
过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。
情感态度与价值观:通过分组讨论、合作探究、各组积分制等多种教学形式,培养学生的合作意识及竞争意识,提高学生的积极性。
体会类比、数形结合、以直代曲、从特殊到一般的思想方法。
【教学重点与难点】教学重点:导数的几何意义及利用导数的几何意义会求曲线上某点处的切线方程。
教学难点:发现、理解导数的几何意义,进一步理解导数的概念,渗透以直代曲的思想方法。
【指导思想】树立以学生发展为本的思想。
通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,为学生提供自主探索和动手操作的机会,鼓励他们创新思考,亲身参与知识的形成过程,从而解决问题。
【教学方法】本节课以一个物体做直线运动为主线,对具体的由浅入深的问题进行分析引导,依据建构主义教学原理,从数的角度即平均变化率与瞬时变化率的关系和形的角度即割线与切线的关系,用形象直观的“逼近”方法,通过类比、从特殊到一般,逐步渗透从有限到无限,量变到质变,把新的知识化归到学生原有的认知结构中去。
【学法指导】在本节课中,学生对具体的问题进行逐步解决,经过探索、观察几何画板的动态演示、对比分析、自己发现结论的学习方法,以培养学生逻辑思维能力、自学能力、动手实践能力和探索精神,并渗透了辩证唯物主义认识论和方法论的教育。
导数的几何意义教案及说明

导数的几何意义教案及说明教案章节:一、导数的定义;二、导数的计算;三、导数的应用;四、导数与曲线的切线;五、导数与函数的单调性一、导数的定义1. 教学目标:理解导数的定义,掌握导数的几何意义。
2. 教学内容:引入导数的概念,解释导数的几何意义,举例说明导数表示曲线的切线斜率。
3. 教学步骤:a. 引入导数的概念,解释导数表示函数在某一点的瞬时变化率。
b. 解释导数的几何意义,即导数表示曲线的切线斜率。
c. 举例说明导数表示曲线的切线斜率,通过图形演示导数的变化。
4. 教学练习:a. 练习计算函数在某一点的导数。
b. 练习根据导数的几何意义,确定曲线的切线斜率。
二、导数的计算1. 教学目标:掌握导数的计算方法,能够计算常见函数的导数。
2. 教学内容:介绍导数的计算方法,包括常数函数、幂函数、指数函数、对数函数的导数。
3. 教学步骤:a. 介绍导数的计算方法,包括常数函数的导数为0,幂函数的导数按幂次降次,指数函数的导数为自身,对数函数的导数为1/x。
b. 举例说明常见函数的导数计算,包括正弦函数、余弦函数、绝对值函数等。
4. 教学练习:a. 练习计算常见函数的导数。
b. 练习根据导数的计算结果,分析函数的单调性。
三、导数的应用1. 教学目标:理解导数在实际问题中的应用,掌握导数的基本应用方法。
2. 教学内容:介绍导数在实际问题中的应用,包括速度、加速度、优化问题等。
3. 教学步骤:a. 介绍导数在速度和加速度中的应用,解释速度是位置关于时间的导数,加速度是速度关于时间的导数。
b. 举例说明导数在优化问题中的应用,通过导数找到函数的最大值和最小值。
4. 教学练习:a. 练习根据导数计算速度和加速度。
b. 练习使用导数解决优化问题。
四、导数与曲线的切线1. 教学目标:理解导数与曲线的切线的关系,掌握求解切线方程的方法。
2. 教学内容:解释导数与曲线的切线的关系,介绍求解切线方程的方法。
3. 教学步骤:a. 解释导数与曲线的切线的关系,即导数表示曲线的切线斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3导数的几何意义
教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数.
教学重难点:函数切线的概念,切线的斜率,导数的几何意义
教学过程:
情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角.
.tan ,
,:β=∆∆∆=∆=x y y MQ x MP 则
展示目标:见学案
检查预习:见学案
合作探究:探究任务:导数的几何意义
问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化
趋是什么?
y x
∆∆请问:是割线PQ 的什么?
新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C
在点P 处的切线
割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数
就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x
∆→+∆-'==∆ 新知:
函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.
即k =000()()()lim x f x x f x f x x
∆→+∆-'=∆ 精讲精练:
例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.
解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况.
(1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。
例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)
有效训练
练1. 求双曲线1y x =在点1(,2)2
处的切线的斜率,并写出切线方程. 练2. 求2y x =在点1x =处的导数. 反思总结 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ∆→+∆-'=∆。