高考数学一轮复习导数答题技巧

合集下载

高考数学一轮复习导数答题技巧

高考数学一轮复习导数答题技巧

高考数学一轮复习导数答题技巧
导数是微积分中的重要基础概念,下面是整理的
高考数学一轮复习导数答题技巧,希望对大家有帮助。

一、专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合
1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题
的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考数学一轮复习导数答题技巧就为大家分享到这里,更多精彩内容请关注高考数学答题技巧栏目。

高考数学导数解题技巧

高考数学导数解题技巧

高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。

以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。

具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。

2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。

例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。

3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。

线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。

乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。

链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。

5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。

通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。

以上是一些常见的高考数学导数解题技巧。

通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。

高考数学导数解题技巧及方法

高考数学导数解题技巧及方法

高考数学导数解题技巧1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值,函数单调性,应用题,与三角函数或向量结合。

高考数学导数中档题是拿分点1.单调性问题研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。

由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在_0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时,在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是,函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。

高中数学导数定义解题技巧

高中数学导数定义解题技巧

高中数学导数定义解题技巧导数是高中数学中的一个重要概念,它是微积分的基础,也是解决各种数学问题的关键。

在解题过程中,正确理解和应用导数的定义是至关重要的。

本文将介绍一些高中数学中常见的导数定义解题技巧,并通过具体例子进行说明,帮助高中学生和他们的父母更好地掌握这些技巧。

1. 导数的定义首先,我们来回顾一下导数的定义。

对于函数f(x),在点x处的导数定义为:f'(x) = lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗其中,lim表示极限,h表示自变量x的增量。

这个定义可以理解为函数在某一点的瞬时变化率。

2. 利用导数的定义求导数在解题过程中,有时需要利用导数的定义来求函数的导数。

例如,对于函数f(x) = x^2,我们可以利用导数的定义来求它在任意点x处的导数。

根据导数的定义,我们有:f'(x) = lim┬(h→0)⁡〖((x+h)^2-x^2)/h〗展开计算后,得到:f'(x) = lim┬(h→0)⁡(2x+h)由于极限运算中h趋于0时,2x+h的变化可以忽略不计,所以最终结果为:f'(x) = 2x这说明函数f(x) = x^2的导数为2x。

3. 利用导数的定义解决极限问题导数的定义还可以用来解决一些极限问题。

例如,求函数f(x) = sinx在x = 0处的导数。

根据导数的定义,我们有:f'(0) = lim┬(h→0)⁡〖(sin(0+h)-sin0)/h〗展开计算后,得到:f'(0) = lim┬(h→0)⁡(sinh)/h利用极限的性质,我们可以得到:f'(0) = lim┬(h→0)⁡(sinh)/h = lim┬(h→0)⁡sinh = sin0 = 0这说明函数f(x) = sinx在x = 0处的导数为0。

4. 利用导数的定义解决最值问题导数的定义还可以用来解决一些最值问题。

例如,求函数f(x) = x^2在区间[0, 1]上的最大值。

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。

2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。

对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。

比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。

2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。

比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2025年高考数学一轮复习课件第三章一元函数的导数及其应用-专题突破7导数的综合应用

2025年高考数学一轮复习课件第三章一元函数的导数及其应用-专题突破7导数的综合应用
并且从左到右的三个交点的横坐标成等差数列.
【拆解】
分类
第一问
第二问
参考赋分
6分
6分
难易
中上

返回至目录
续表
①总体看,题目为指数型函数与对数型函数的最值及图象交点问题,实际考
查利用导数研究函数零点问题.
②第一问是根据函数单调性求最值问题,根据最小值相等可求.注意分类讨
审题
要点
论.
③第二问是构造新函数利用零点个数解决问题.根据(1)可得当 > 1时,
所以函数 在 0,1 上单调递增,在 1, +∞ 上单调递减, 的最大值为 1 = 1.
所以 ≤ 1,即实数的取值范围是(−∞, 1].
返回至目录
考点三 利用导数研究函数零点
例3 已知函数 = − e + ,讨论函数 零点的个数.
解:′ = 1 − e .
返回至目录
第一问
在基础性的层次上考查
数学运算学科素养,和
.
2
e −1
恒成立.

− 1 + 1 > 0 ,所以′ = e ⋅ > 0,所以 在 0, +∞ 上单调
递增.
所以 > 0 = 0,所以ℎ′ > 0,所以ℎ 在 0, +∞ 上单调递增.
由洛必达法则,知 lim+ ℎ =
→0
e −1
lim
→0+
e − = 的解的个数、 − ln = 的解的个数均为2,构建新函数
= − ,利用导数可得该函数只有一个零点且可得 , 的
大小关系,根据存在直线 = 与曲线 = , = 有三个不同的交点

掌握高考数学中的导数与极限运算技巧有哪些关键点

掌握高考数学中的导数与极限运算技巧有哪些关键点

掌握高考数学中的导数与极限运算技巧有哪些关键点导数与极限是高考数学中的重要内容,对于理工科考生来说尤其重要。

掌握导数与极限运算的关键点能够帮助考生提高解题效率,下面将介绍几个关键点。

一、理解导数的定义导数是描述函数在某一点的变化率的指标。

在掌握导数运算的关键点之前,我们需要先理解导数的定义。

导数的定义是函数的极限,即函数在某一点的导数等于该点处函数的极限。

这个定义非常重要,理解了这个定义之后才能更好地应用导数进行运算。

二、掌握导数基本运算法则在高考数学中,常见的导数基本运算法则有常数倍法则、和差法则、乘积法则、商法则等。

掌握这些法则是解题的基础,可以帮助考生更快速地求导数。

以乘积法则为例,乘积的导数等于一项的导数乘以另一项,再加上另一项的导数乘以一项,即(d(uv)/dx = u'v + uv')。

熟练掌握这些法则能够帮助考生迅速解题。

三、学会运用导数的性质导数具有一些特殊的性质,掌握这些性质可以简化计算过程。

比如,导数的和的导数等于各项导数的和,导数的差的导数等于各项导数的差,导数的幂的导数等于指数乘以底数的导数等等。

掌握这些性质可以在解题过程中灵活运用,提高解题效率。

四、了解常见的导数公式在高考数学中,有一些常见的函数的导数公式是需要掌握的,比如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

熟悉这些公式能够帮助考生更快地求出函数的导数。

需要注意的是,在使用这些公式时,要注意各种函数的复合运算,灵活运用链式法则。

五、熟练掌握极限运算的技巧极限是导数的基础,因此对极限运算的技巧的掌握也是非常重要的。

在高考数学中,常见的极限运算技巧有利用夹逼定理、利用等价无穷小、利用洛必达法则等。

熟练掌握这些技巧可以帮助考生更快地求解极限问题,尤其是在计算极限时遇到不确定型的问题。

综上所述,掌握高考数学中的导数与极限运算技巧的关键点主要包括理解导数的定义、掌握导数基本运算法则、学会运用导数的性质、了解常见的导数公式以及熟练掌握极限运算的技巧。

高中数学一轮复习之函数之导数求和之倒序相加与错位相减法

高中数学一轮复习之函数之导数求和之倒序相加与错位相减法

高中数学一轮复习之函数之导数求和之倒序相加与错位相减法引言在高中数学的研究中,函数是一个非常重要的概念,而导数则是函数中的一种重要工具。

本文将介绍函数的导数求和的两种方法,即倒序相加法和错位相减法。

函数的导数求和之倒序相加法倒序相加法是一种常用的方法,用于计算函数的导数的和。

具体步骤如下:1. 首先,找到函数的导数表达式,并按照x的幂次从高到低的顺序列出。

2. 然后,将每个导数的表达式从高到低的顺序相加,并化简。

3. 最后,得到函数的导数的和。

例如,对于函数f(x) = 3x^3 + 2x^2 - 5x + 1,求其导数的和的过程如下:1. 求导数:f'(x) = 9x^2 + 4x - 5。

2. 将导数的表达式按照x的幂次从高到低的顺序相加:9x^2 + 4x - 5。

3. 化简得到函数的导数的和:9x^2 + 4x - 5。

函数的导数求和之错位相减法错位相减法是另一种常用的方法,用于计算函数的导数的和。

具体步骤如下:1. 首先,找到函数的导数表达式,并按照x的幂次从高到低的顺序列出。

2. 然后,将相邻导数的表达式相减。

3. 最后,得到函数的导数的和。

例如,对于函数f(x) = 3x^3 + 2x^2 - 5x + 1,求其导数的和的过程如下:1. 求导数:f'(x) = 9x^2 + 4x - 5。

2. 将相邻导数的表达式相减:(9x^2 - 4x) + (4x - 5)。

3. 化简得到函数的导数的和:9x^2 - 5。

结论函数的导数求和是高中数学中的重要内容。

本文介绍了倒序相加法和错位相减法这两种常用的方法。

通过这些方法,我们可以得到函数的导数的和,进一步理解函数的性质和变化规律。

在数学一轮复中,掌握这些方法对于应对考试和解决实际问题都具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学一轮复习导数答题技巧
导数是微积分中的重要基础概念,下面是查字典数学网整理的
2019高考数学一轮复习导数答题技巧,希望对大家有帮助。

一、专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合
1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行
了证明。

3.要能正确求导,必须做到以下两点:
要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现
代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

2019高考数学一轮复习导数答题技巧就为大家分享到这里,更多精彩内容请关注高考数学答题技巧栏目。

相关文档
最新文档