高三数学理一轮复习典型题专项训练:导数及其应用

合集下载

高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章  导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。

高考数学一轮复习导数及其应用多选题复习题含答案

高考数学一轮复习导数及其应用多选题复习题含答案

高考数学一轮复习导数及其应用多选题复习题含答案一、导数及其应用多选题1.关于函数()2ln f x x x=+,下列判断正确的是( )A .2x =是()f x 的极大值点B .函数yf xx 有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD 【分析】对于A ,利用导数研究函数()f x 的极值点即可; 对于B ,利用导数判断函数y f xx 的单调性,再利用零点存在性定理即得结论;对于C ,参变分离得到22ln xk x x <+,构造函数()22ln x g x x x=+,利用导数判断函数()g x 的最小值的情况;对于D ,利用()f x 的单调性,由()()12f x f x =得到1202x x <<<,令()211x t t x =>,由()()12f x f x =得21222ln t x x t t-+=,所以要证124x x +>,即证2224ln 0t t t -->,构造函数即得. 【详解】A :函数()f x 的定义域为0,,()22212x f x x x x-'=-+=,当()0,2x ∈时,0f x,()f x 单调递减,当()2,x ∈+∞时,0fx,()f x 单调递增,所以2x =是()f x 的极小值点,故A 错误.B :()2ln y f x x x x x=-=+-,22221210x x y x x x -+'=-+-=-<,所以函数在0,上单调递减.又()112ln1110f -=+-=>,()221ln 22ln 210f -=+-=-<,所以函数yf xx 有且只有1个零点,故B 正确.C :若()f x kx >,即2ln x kx x +>,则22ln x k x x <+.令()22ln x g x x x=+,则()34ln x x xg x x-+-'=.令()4ln h x x x x =-+-,则()ln h x x '=-,当()0,1∈x 时,()0h x '>,()h x 单调递增,当()1,∈+∞x 时,()0h x '<,()h x 单调递减,所以()()130h x h ≤=-<,所以0g x ,所以()22ln x g x x x=+在0,上单调递减,函数无最小值,所以不存在正实数k ,使得()f x kx >恒成立,故C 错误. D :因为()f x 在()0,2上单调递减,在2,上单调递增,∴2x =是()f x 的极小值点.∵对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则1202x x <<<. 令()211x t t x =>,则21x tx =,由()()12f x f x =,得121222ln ln x x x x +=+, ∴211222ln ln x x x x -=-,即()2121212ln x x x x x x -=,即()11121ln t x t x tx -=⋅,解得()121ln t x t t -=,()2121ln t t x tx t t-==,所以21222ln t x x t t-+=.故要证124x x +>,需证1240x x +->,需证22240ln t t t -->,需证2224ln 0ln t t tt t-->. ∵211x t x =>,则ln 0t t >, ∴证2224ln 0t t t -->.令()()2224ln 1H t t t t t =-->,()()44ln 41H t t t t '=-->,()()()414401t H t t t t-''=-=>>,所以()H t '在1,上是增函数.因为1t →时,()0H t '→,则()0H t '>,所以()H t 在1,上是增函数.因为1t →时,()0H t →,则()0H t >,所以2224ln 0ln t t tt t-->, ∴124x x +>,故D 正确. 故选:BD . 【点睛】关键点点睛:利用导数研究函数的单调性、极值点,结合零点存在性定理判断A 、B 的正误;应用参变分离,构造函数,并结合导数判断函数的最值;由函数单调性,应用换元法并构造函数,结合分析法、导数证明D 选项结论.2.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误. 【详解】()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x ,由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确; 对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确. 故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.3.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD 【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e,化简得222(4)(2)1>(2)f f e e e f >+-,所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确, 故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.4.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.5.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()x h x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.6.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x-'=, (]0,x π∈, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减, 当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间(]0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >, 所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确;对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,所以()()sin xg x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确.故选:ACD. 【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin xf x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.7.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x -'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立, 即1ln x a x +≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln x t x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增;当1x >时,()0t x '<,此时函数()t x 单调递减. 所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-, 由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2x m x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点,当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误.故选:AC.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.8.若方程()2110x m x -+-=和()120x m e x -+-=的根分别为()1212,x x x x <和3x ,()434x x x <,则下列判断正确的是( )A .3201x x <<<B .1310x x -<<C .(),1m ∈-∞-D.1112x ⎛⎫-∈- ⎪ ⎪⎝⎭ 【答案】ABD【分析】根据题意将问题转化为,1x ,2x 和3x ,4x 分别是y m =与11y x x =--和12x x y e -=-交点的横坐标,再用导数研究函数11y x x =--和12x x y e -=-的单调性与取值情况,作出函数图象,数形结合即可解决问题.【详解】解:由题,1x ,2x 和3x ,4x 分别是11m x x =--和12x x m e -=-的两个根, 即y m =与11y x x =--和12x x y e -=-交点的横坐标. 对于函数11y x x =--,定义域为{}0x x ≠,21'10y x=+>,所以函数在(),0-∞和()0,∞+上单调递增,且1x =时,1y =-; 对于函数12x xy e -=-,11'x x y e--=,所以函数在(),1-∞上单调递增,在()1,+∞单调递减,且当,2x y →+∞→-,0x =时,2y =-,1x =时,1y =-; 故作出函数11y x x =--,12x x y e-=-的图像如图所示, 注意到:当()0,1x ∈时,11122x x x x x e ---<-<-, 由图可知,3201x x <<<,()2,1m ∈--, 从而()11112,1x x --∈--,解得11,12x ⎛⎫-∈- ⎪ ⎪⎝⎭, 所以选项AD 正确,选项C 错误,又121310x x x x -=<<.故选:ABD .本题考查利用导数研究函数的零点问题,考查化归转化思想与数形结合思想,是中档题.。

2020届高考一轮复习理科数学(人教版)练习:第20讲 导数的实际应用及综合应用

2020届高考一轮复习理科数学(人教版)练习:第20讲 导数的实际应用及综合应用

第20讲导数的实际应用及综合应用1.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.(1)因为当x=5时,y=11,所以a5-3+10(5-6)2=11,解得a=2.(2)由(1)知该商品每日的销售量y=2x-3+10(x-6)2(3<x<6),所以该商场每日销售该商品所获得的利润f(x)=[2x-3+10(x-6)2](x-3)=2+10(x-3)(x-6)2(3<x<6),所以f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).当x变化时,f(x),f′(x)的变化情况如下表:x (3,4) 4 (4,6)f′(x)+0 -f(x) 单调递增极大值42 单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点,所以当x=4时,f(x)max=42.答:当销售价格定为4元/千克时,商场每日销售该商品所获得的利润最大.2.请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.(1)根据题意,有S=4×2x×22(60-2x)=-8(x-15)2+1800(0<x<30).所以x =15时,包装盒侧面积S 最大. (2)根据题意,有 V =(2x )2×22(60-2x )=22x 2(30-x )(0<x <30). 所以V ′=62x (20-x ).当0<x <20时,V ′>0,V 单调递增; 当20<x <30时,V ′<0,V 单调递减. 所以当x =20时,V 取极大值,也是最大值.此时,包装盒的高与底面边长的比值为22(60-2x )2x=12,即x =20时,包装盒容积V (cm 3)最大,此时包装盒的高与底面边长的比值为12.3.(2017·全国卷Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.(1)f (x )的定义域为(0,+∞). 设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0. 因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x .当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增.所以x =1是g (x )的极小值点,故g (x )≥g (1)=0. 综上,a =1.(2)由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x .设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈(0,12)时,h ′(x )<0;当x ∈(12,+∞)时,h ′(x )>0.所以h (x )在(0,12)上单调递减,在(12,+∞)上单调递增.又h (e -2)>0,h (12)<0,h (1)=0,所以h (x )在(0,12)上有唯一零点x 0,在[12,+∞)上有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈(0,12)得f (x 0)<14.因为x =x 0是f (x )在(0,1)上的最大值点, 由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.4.(2018·华南师大附中模拟)函数f(x)=x 2+m ln (1+x).(1)讨论f(x)的单调性;(2)若函数f(x)有两个极值点x 1,x 2,且x 1<x 2,求证:2f(x 2)>-x 1+2x 1ln 2.f(x)的定义域是(-1,+∞),f′(x)=2x 2+2x +m1+x,(1)由题设知,1+x>0,令g(x)=2x 2+2x +m ,这是开口向上,以x =-12为对称轴的抛物线,g(-12)=-12+m ,①当g(-12)≥0,即m ≥12时,g(x)≥0,即f′(x)≥0在(-1,+∞)上恒成立.②当g(-12)<0,即m<12时,由g(x)=2x 2+2x +m =0得x =-12±1-2m 2,令x 1=-12-1-2m 2,x 2=-12+1-2m2, 则x 1<-12,x 2>-12.1)当g(-1)≤0即m ≤0时,x 1<-1,故在(-1,x 2)上,g(x)<0,即f′(x)<0,在(x 2,+∞)上,g(x)>0,即f′(x)>0.2)当g(-1)>0时,即0<m<12时,x (-1,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)g(x)>0 + 0 - 0 + f′(x)>0 + 0 - 0 + f(x)递增递减递增综上:m ≤0时,f(x)在(-1,-12+1-2m 2)上单调递减,在(-12+1-2m2,+∞)上单调递增;0<m<12时,f(x)在(-12-1-2m 2,-12+1-2m 2)上单调递减,在(-1,-12-1-2m2)和(-12+1-2m2,+∞)上单调递增; m ≥12时,f(x)在(-1,+∞)上单调递增.(2)证明:若函数f(x)有两个极值点x 1,x 2,且x 1<x 2, 则必是0<m<12,g(0)>0,则-1<x 1<-12<x 2<0,且f(x)在(x 1,x 2)上递减,在(-1,x 1)和(x 2,+∞)上递增,则f(x 2)<f(0)=0, 因为x 1,x 2是g(x)=2x 2+2x +m =0的两个不等实根,所以⎩⎪⎨⎪⎧x 1+x 2=-1,x 1x 2=m2,即x 1=-1-x 2,m =2x 1x 2, 所以若证2f(x 2)>-x 1+2x 1ln 2成立,只需证2f(x 2 ) = 2x 22 + 2m ln (1 + x 2 ) = 2x 22 + 4x 1 x 2 ln (1 + x 2 )=2x 22 -4(1 + x 2 )x 2 ln (1 + x 2 ) >-(-1-x 2)+2(-1-x 2)ln 2 =1+x 2-2(1+x 2)ln 2.即证2x 22 -4(1 + x 2 )x 2 ln (1 + x 2 )-(1+x 2)(1-2ln 2)>0对-12<x 2<0恒成立, 设φ(x)=2x 2-4(1+x)x ln (1+x)-(1+x)(1-2ln 2)(-12<x<0),φ′(x)=-4(1+2x)ln (1+x)+ln 4e,当-12<x<0时,1+2x>0,ln (1+x)<0,ln 4e>0,故φ′(x)>0,故φ(x)在(-12,0)上递增,故φ(x)>φ(-12)=2×14-4×12×(-12)×ln 12-12×(1-2ln 2)=0,所以2x 22 -4(1 + x 2 )x 2 ln (1 + x 2 )-(1+x 2)(1-2ln 2)>0对-12<x 2<0恒成立, 所以2f(x 2)>-x 1+2x 1ln 2.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

高三数学一轮复习(函数、导数及其应用)单元练习题 新人教版 试题

高三数学一轮复习(函数、导数及其应用)单元练习题 新人教版 试题

2012版高三数学一轮精品复习学案:函数、导数及其应用导数【高考目标定位】一、变化率与导数、导数的计算 1、考纲点击(1)了解导数概念的实际背景 (2)理解导数的几何意义;(3)能根据导数定义求函数y=c,y=x,y=x 2,y=x 3,y=1x,y ; (4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数。

2、热点提示(1)导数的几何意义是高考考查的重点内容,常以选择题、填空题的形式出现,有时也出现在解答题中;(2)导数的运算每年必考,一般不单独考查,在考查导数应用研究的同时考查导数的运算。

二、导数在研究函数中的应用与生活中的优化问题 1、考纲点击(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);(2)了解函数在某点取得极值域的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。

(3)会利用导数解决某些实际问题。

2、热点提示(1)在高考中,重点考查利用导数研究函数的单调性,求单调区间、极值、最值,以及利用导数解决生活中的优化问题。

有时在导数与解析几何、不等式、平面向量等知识交汇点处命题。

(2)多以解答题的形式出现,属中、高档题目。

【考纲知识梳理】一、变化率与导数、导数的计算 1、函数y=f(x)从x 1到x 2的平均变化率函数y=f(x)从x 1到x 2的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,21()()y f x f x ∆=-则平均变化率可表示为y x∆∆。

2、函数y=f(x)在x=x 0处导数 (1)定义称函数y=f(x)在x=x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为y=f(x)在x=x 0处导数,记作 0000000()()()|,()lim limx x x x f x x f x yf x y f x x x =∆→∆→+∆-∆'''==∆∆或即 (2)几何意义函数f(x)在点x 处的导数0()f x '的几何意义是在曲线y=f(x)上点(0x ,0()f x ')处的切线的斜率。

高考数学一轮复习导数及其应用多选题练习题及答案

高考数学一轮复习导数及其应用多选题练习题及答案

高考数学一轮复习导数及其应用多选题练习题及答案一、导数及其应用多选题1.已知偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式中不成立的是( )A34f ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭B34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()04f π⎛⎫>- ⎪⎝⎭ D.63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭【答案】ABC 【分析】 构造函数()()cos f x g x x =,结合导数和对称性可知()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,即可得23643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可判断ABD 选项,由()04g g π⎛⎫< ⎪⎝⎭可判断C 选项.【详解】因为偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>, 所以构造函数()()cos f x g x x =,则()()2cos sin ()0cos f x x f x x g x x'+'=>, ∴()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,32333cos 3f g g f πππππ⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭∴-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4444cos 4f g g πππππ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,666cos 6f g f ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭== ⎪ ⎪⎝⎭⎝⎭,由函数单调性可知643g g g πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 对于AB,4343f f ππππ⎛⎫⎛⎫⎛⎫<=- ⎪ ⎪⎛⎫-= ⎪⎝⎭⎝⎭⎝ ⎪⎭⎭⎝,故AB 错误; 对于C ,()04g g π⎛⎫<⎪⎝⎭,()044f ππ⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,故C 错误;对于D 263f fππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 正确; 故选:ABC. 【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,解题的关键是利用已知条件构造对应的新函数()()cos f x g x x=,利用导数研究函数的单调性,从而比较大小,考查学生的逻辑推理能力与转化思想,属于较难题.2.下列不等式正确的有( )A 2ln 3<B .ln π<C .15<D .3ln 2e <【答案】CD 【分析】构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.3.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD 【分析】 用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.4.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是( ) A .若0a ≤,则函数()f x 没有极值 B .若0a >,则函数()f x 有极值C .若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D .若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断. 【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=, 当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值, 又当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞, ∴()f x 有且只有一个零点,当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增, ∴当1x a=时,()f x 取得极小值,同时也是最小值, ∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭, 当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞, 当1ln 0a +=,即1a e=时,()f x 有且只有一个零点; 当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点, 综上可知ABD 正确,C 错误. 故选:ABD . 【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0xe f x e ex-'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.6.已知()2sin x f x x x π=--.( )A .()f x 的零点个数为4B .()f x 的极值点个数为3C .x 轴为曲线()y f x =的切线D .若()12()f x f x =,则12x x π+=【答案】BC 【分析】首先根据()0f x '=得到21cos xx π-=,分别画出21xy π=-和cos y x =的图像,从而得到函数的单调性和极值,再依次判断选项即可得到答案. 【详解】()21cos xf x x π'=--,令()0f x '=,得到21cos xx π-=.分别画出21xy π=-和cos y x =的图像,如图所示:由图知:21cos xx π-=有三个解,即()0f x '=有三个解,分别为0,2π,π. 所以(),0x ∈-∞,()21cos 0xf x x π'=-->,()f x 为增函数,0,2x π⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=--<,()f x 为减函数,,2x ππ⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=-->,()f x 为增函数,(),x π∈+∞,()21cos 0xf x x π'=--<,()f x 为减函数.所以当0x =时,()f x 取得极大值为0,当2x π=时,()f x 取得极小值为14π-,当x π=时,()f x 取得极大值为0,所以函数()f x 有两个零点,三个极值点,A 错误,B 正确.因为函数()f x 的极大值为0,所以x 轴为曲线()y f x =的切线,故C 正确. 因为()f x 在(),0-∞为增函数,0,2π⎛⎫⎪⎝⎭为减函数, 所以存在1x ,2x 满足1202x x π<<<,且()()12f x f x =,显然122x x π+<,故D 错误.故选:BC 【点睛】本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.7.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞ 故选:ACD【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

高三数学一轮复习典型题专项训练:导数及其应用

高三数学一轮复习典型题专项训练:导数及其应用

高三数学一轮复习典型题专项训练导数及其应用一、选择、填空题1、(2018全国I 卷高考题)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =2、(2017全国I 卷高考题)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O ,D 、E 、F 为元O 上的点,DBC △,ECA △,FAB △分别是一BC ,CA ,AB 为底边的等腰三角形,沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱锥.当ABC △的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______.3、(2016全国I 卷高考题)函数xex y -=22在[﹣2,2]的图像大致为( )4、(广州市2018高三一模)设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()22f x f x x +-=,当0x <时,()12f x x '+<,若()()121f a f a a +-++≤,则实数a的最小值为 A .12-B .1-C .32-D .2-5、(广州市2018高三上期末调研)已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为A .ln 2B .1C .1ln 2-D .1ln 2+6、(广州市2018高三上期末调研)对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x ∈R ,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()2e 1xf x x =--;()()3ln 1,0,0;2,x x f x x x ⎧-+≤⎪= ⎨>⎪⎩ ()411,0,2120,0.xx x f x x ⎛⎫+≠ ⎪-⎝⎭=⎧⎪=⎨⎪⎩则其中是“偏对称函数”的函数个数为 A .0B .1C .2D .37、(广州市海珠区2018届高三综合测试(一))已知函数)(ln )(ax x x x f -=有两个极值点,则实数a 的取值范围是A .)21,0(B .)1,0(C .)0,(-∞D .)21,(-∞8、(惠州市2018届高三4月模拟考试)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()21x x f x e-=,则对任意m R ∈,函数()()0f f x m -=的根的个数至多为( )(A) 3 (B) 4 (C) 6 (D) 99、(惠州市2018届高三第三次调研)已知函数()()f x x R ∈满足(1)1f =,()f x 的导数1'()2f x <, 则不等式221()22x f x <+的解集是( ) A.(,1)(1,)-∞-⋃+∞ B. (,2)(2,)-∞-⋃+∞ C. (1,)+∞ D. (2,)+∞10、(惠州市2018届高三第三次调研)已知函数()(0)1xf x x x=>+,设()f x 在点(,())(n f n n ∈N *)处的切线在y 轴上的截距为n b ,数列{}n a 满足:112a =,1()(*)n n a f a n N +=∈,在数列2n nn b a a λ⎧⎫+⎨⎬⎩⎭中,仅当5n =时,2n n nb a a λ+取最小值,则λ的取值范围是( ) A.(11,9)-- B. ( 5.5, 4.5)-- C. (4.5,5.5) D. (9,11)11、(汕头市2018届高三第一次(3月)模拟)已知()f x 、()g x 都是定义域为R 的连续函数.已知:()g x 满足:①当0x >时,'()0g x >恒成立;②R x ∀∈都有()()g x g x =-.()f x 满足:①R x ∀∈都有(3)(3)f x f x +=-;②当[3,3]x ∈-时,3()3f x x x =-. 若关于x 的不等式2g[()](2)f x g a a ≤-+对33[23,23]22x ∈---恒成立,则a 的取值范围是A .RB . 133133[,]2424--+ C .[0,1] D .(,0][1,)-∞+∞U 12、(韶关市2018届高三调研)已知函数321()(0)2f x ax x x =+>在点(1,(1))f 处的切线的斜率为2,'1()()g x f x =('()f x 是()f x 的导函数),若执行如图所示的程序框图,输出的结果20172018s >,则判断框中应填 ( )A. 2018n ≤B. 2017n ≤C. 2018n >D. 2017n >13、(珠海市2017届高三上期末)7、(珠海市2017届高三上学期期末)已知定义域为R 的函数 f (x )的导函数为'()f x ,且满足'()f x - 2 f (x )>4,若 f (0)=-1,则不等式2()2xf x e +> 的解集为A .(0,+∞)B .(-1,+∞)C .(-∞,0)D .(-∞,-1)14、(东莞市2017届高三上学期期末)已知函数 f (x ) =x 3 +ax 2 +bx + c 有两个极值点,则关于x 的方程的不同实根个数可能为A. 3, 4,5 B .4,5, 6 C. 2, 4,5 D .2,3, 415、(佛山市2017届高三教学质量检测(一))已知函数c bx ax x x f +++=23)(,c b a b ax x x g ,,(23)(2++=是常数),若)(x f 在)1,0(上单调递减,则下列结论中:①0)1()0(≤⋅f f ;②0)1()0(≥⋅g g ;③b a 32-有最小值.正确结论的个数为( ) A .0 B .1 C .2 D .3二、解答题1、(2018全国I 卷高考题)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.2、(2017全国I 卷高考题)已知函数()()2e 2e x x f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.3、(2016全国I 卷高考题)已知函数2)1()2()(-+-=x a e x x f x有两个零点 (1)求a 的取值范围(2)设1x ,2x 是)(x f 的两个零点,证明:221<+x x4、(广州市2018高三一模)已知函数()ln 1f x ax x =++. (1)讨论函数()x f 零点的个数;(2)对任意的0>x ,()2e xf x x ≤恒成立,求实数a 的取值范围.5、(广州市2018高三二模)已知函数()f x =e 2xx ax --.(1)若函数()f x 在R 上单调递增,求a 的取值范围;(2)若1a =,证明:当0x >时,()2ln 2ln 2122f x ⎛⎫>-- ⎪⎝⎭.参考数据: e 2.71828≈,ln 20.69≈.6、(广州市2018高三上期末调研)已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,e ex x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b 的取值范围.7、(广州市海珠区2018届高三综合测试(一))已知函数()ln af x x x=+. (Ⅰ) 若函数()f x 有零点, 求实数a 的取值范围; (Ⅱ) 证明: 当2a e≥时, ()->xf x e .8、(惠州市2018届高三4月模拟考试)已知函数()()()2R x f x ax x a e a -=++∈. (1)若0a ≥,函数()f x 的极大值为3e,求实数a 的值; (2)若对任意的0a ≤,()()ln 1f x b x ≤+在[)0,x ∈+∞上恒成立, 求实数b 的取值范围.9、(惠州市2018届高三第三次调研)已知0t >,设函数323(1)()312t f x x x tx +=-++, (1)存在()00,2x ∈,使得()0f x 是()f x 在[]0,2上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[)0,x ∈+∞恒成立时,m 的最大值为1,求t 的取值范围.10、(惠州市2018届高三第一次调研) 已知函数x ax x x f ln 2)(2+-=(其中a 是实数). (1)求)(x f 的单调区间;(2)若设320)1(2<<+a e e ,且)(x f 有两个极值点1x 212,()x x x <,求)()(21x f x f -取值范围.(其中e 为自然对数的底数). 11、(揭阳市2018届高三学业水平(期末)考试)已知函数1ln )1()(--+=ex x ax x f (a 为实数). (Ⅰ)若1--=ex y 是曲线)(x f 的条切线,求a 的值; (Ⅱ)当e a ≤<0时,试判断函数)(x f 的零点个数.12、(汕头市2018届高三第一次(3月)模拟)已知函数()2ln f x x x =-222x ax a +-+,其中0>a .(1)设)(x g 是)(x f 的导函数,讨论)(x g 的单调性;(2)证明:存在)1,0(∈a ,使得0)(≥x f 恒成立,且0)(=x f 在区间),1(+∞内有唯一解.13、(韶关市2018届高三调研)已知函数2()ln(1)f x x a x =++有两个不同的极值点.(1)求实数a 的取值范围;(2)设()f x 两个极值点为21,x x ,且21x x <,求证:21()10ln 22f x x <<-+.14、(深圳市2018届高三第二次(4月)调研)已知函数()axf x xe =.(其中常数 2.71828e =…,是自然对数的底数) (1)求函数()f x 的极值;(2)当1a =时,若()ln 1f x x bx --≥恒成立,求实数b 的取值范围.15、(深圳市宝安区2018届高三9月调研)已知函数()2ln ax x x x f -=,()()x f x g '=(1)若12a ≥,试判断函数()x g 的零点个数;(2)若函数()x f 在定义域内不单调且在()2+∞,上单调递减,求实数a 的取值范围。

高考数学一轮复习导数及其应用多选题测试试题含答案

高考数学一轮复习导数及其应用多选题测试试题含答案

高考数学一轮复习导数及其应用多选题测试试题含答案一、导数及其应用多选题1.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.2.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.3.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.4.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x -'=, (]0,x π∈,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以()f x 在区间(]0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >,所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确;对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,所以()()sin xg x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确. 故选:ACD. 【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin xf x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.5.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin xf x x =+,()e cos xf x x '+=,()e sin xf x x '=-',当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立,所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=,()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()π,-+∞不存在零点,故D 错误.故选:AC. 【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.6.函数()ln f x x x =、()()f x g x x'=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥ 【答案】AD 【分析】对A ,根据()ln f x x x =,得到()()ln 1f x xg x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性. 【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、, ()2ln xg x x-'=, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭, 故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确; 对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点, 即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+, 要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<. 故要满足题意,则102a <<,故错误; 对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立, 即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确.故选:AD.【点睛】本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.7.已知0a >,0b >,下列说法错误的是( )A .若1a b a b ⋅=,则2a b +≥B .若23a b e a e b +=+,则a b >C .()ln ln a a b a b -≥-恒成立D .2ln a a bb e e-<恒成立 【答案】AD【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln 1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误. 【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b +=此时1+→a b ,故A 错误.B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确 C. ()ln ln ln1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a b b a ,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e; 所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误. 故选:AD【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.8.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果. 【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=, 因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确;C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n n a a +->,则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>, 所以112n n n a a a ++>,所以D 错误.故选:AB.【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.。

高考一轮复习之导数综合运用.doc

高考一轮复习之导数综合运用.doc

课时3 导数综合运用一、课前预习:1、设函数()f x 在0x x =处有导数,且1)()2(lim 000=∆-∆+→∆xx f x x f x ,则0()f x '=( )A 、1B 、0C 、 2D 、212、设()f x '是函数()f x 的导函数,()y f x '=的图象如下图(1)所示,则()y f x =的图A 、B 、C 、D 、3、若曲线3y x px q =++与x 轴相切,则,p q 之间的关系满足( )A 、22()()032pq += B 、23()()023p q += C 、2230p q -=D 、2230q p -=4、已知函数23()2f x ax x =-的最大值不大于16,又当11[,]42x ∈时,1()8f x ≥,则a =5、若对任意3,()4,(1)1x R f x x f '∈==-,则()f x =四、例题分析: 例1、若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.(1)例2、已知函数3()f x ax cx d =++(0)a ≠是R 上的奇函数,当1x =时()f x 取得极值2-, (1)求()f x 的单调区间和极大值;(2)证明对任意12,(1,1)x x ∈-,不等式12|()()|4f x f x -<恒成立.例3、设函数321()532a b f x x x x -=+++(,,0)a b R a ∈>的定义域为R ,当1x x =时,取得极大值;当2x x =时取得极小值,1||2x <且12||4x x -=. (1) 求证:120x x >;(2) 求证:22(1)164b a a -=+; (3) 求实数b 的取值范围.五、课后作业: 姓名1、函数3223125y x x x =--+在[0,3]上的最大值与最小值分别是 ( ) A 、5、15-B 、5、4C 、4-、15-D 、5、16-2、关于函数762)(23+-=x x x f ,下列说法不正确的是 ( ) A 、在区间(,0)-∞内,)(x f 为增函数 B 、在区间(0,2)内,)(x f 为减函数 C 、在区间(2,)+∞内,)(x f 为增函数 D 、在区间(,0)(2,)-∞+∞内,)(x f 为增函数3、设)(x f 在0x x =处可导,且000(3)()lim1x f x x f x x ∆→-∆-=∆,则)(0x f '等于 ( )A 、1B 、13-C 、3-D 、314、设对于任意的x ,都有0)(),()(0≠-=-'-=-k x f x f x f ,则0()f x '= ( )A 、kB 、k -C 、k 1D 、k1-5、一物体运动方程是)/8.9(3120022s m g gt s =+=,则3=t 时物体的瞬时速度为6、已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值; (2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.7、某工厂生产某种产品,已知该产品的月产量x (吨)与每吨的价格P (元/吨)之间的关系为21242005P x =-,且生产x 吨的成本为50000200R x =+元,问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)8、已知1,0b c >->,函数()f x x b =+的图象与函数2()g x x bx c =++的图象相切,(1)求,b c 的关系式(用c 表示b );(2)设函数()()()F x f x g x =在(,)-∞+∞内有极值点,求c 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学理一轮复习典型题专项训练导数及其应用一、填空、选择题1、(通州区2019届高三上学期期中)曲线21xy e-=+在点()0,2处的切线方程为2、(通州区2019届高三上学期期中)设函数()xf x x a=-,若()f x 在()1,+∞单调递减,则实数a 的取值范围是 .3、(朝阳区2019届高三上学期期中)已知函数()y f x =满足下列条件: ①定义域为R ;②函数()y f x =在(0,1)上单调递增;③函数()y f x =的导函数()y f x '=有且只有一个零点, 写出函数()f x 的一个表达式 .4、(海淀区2019届高三上学期期中)已知函数ln ,,(),.x x a f x x a x<≤⎧⎪=⎨>⎪⎩e 0(Ⅰ) 若函数()f x 的最大值为1,则____;a = (Ⅱ)若函数()f x 的图象与直线ay =e只有一个公共点,则a 的取值范围为____. 5、(房山区2019届高三上学期期末)设函数2,,()24,.x x a f x x x x a ⎧=⎨-->⎩≤① 若0a =,则()f x 的极小值为 ;② 若存在m 使得方程()0f x m -=无实根,则a 的取值范围是 . 6、(海淀区2019届高三上学期期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的是A.函数()f x 的值域与()g x 的值域相同B.若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点C.把函数()f x 的图像向右平移2π个单位,就可以得到函数()g x 的图像 D.函数()f x 和()g x 在区间(,4π-)4π上都是增函数7、若直线0kx y k --=与曲线e x y =(e 是自然对数的底数)相切,则实数k =________. 8、曲线2xy x e =+在0x =处的切线与两坐标轴围成的三角形面积为 . 9、在平面直角坐标系中,曲线21xy e x =++在x =0处的切线方程是 . 10、曲线()23f x x x=+在点()()1,1f 处的切线方程为 . 11、已知函数33323+++=x x ax y 在1=x 处取得极值,则=a __________. 12、若曲线f (x )=在点(1,a )处的切线平行于x 轴,则a =13、直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45,则___.t =二、解答题1、(海淀区2018届高三上学期期中考试)已知函数()(1)ln af x x a x x=-+-,其中0a >. (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值.(其中e 是自然对数的底数)2、(石景山2018届高三上学期期末考试)已知函数ln()()x a f x x-=. (Ⅰ)若1a = ,确定函数()f x 的零点;(Ⅱ)若1a =-,证明:函数()f x 是(0,)+∞上的减函数;(Ⅲ)若曲线()y f x =在点(1,(1))f 处的切线与直线0x y -=平行,求a 的值.3、(朝阳区2019届高三上学期期中)已知函数32()231f x mx x =-+ (m ∈R ). (Ⅰ)当 1m =时,求()f x 在区间[1,2]-上的最大值和最小值; (Ⅱ)求证:“1m >”是 “函数()f x 有唯一零点”的充分而不必要条件.4、(海淀区2019届高三上学期期中)已知函数32()1f x x x ax =++-.(Ⅰ) 当a =-1时,求函数()f x 的单调区间; (Ⅱ) 求证:直线y ax =-2327是曲线()y f x =的切线; (Ⅲ)写出a 的一个值,使得函数()f x 有三个不同的零点(只需直接写出数值).5、(朝阳区2019届高三上学期期末)已知函数2()e (1)(0)2xmf x x x m =-+≥. (Ⅰ)当0m =时,求函数()f x 的极小值; (Ⅱ)当0m >时,讨论()f x 的单调性;(Ⅲ)若函数()f x 在区间(),1-∞上有且只有一个零点,求m 的取值范围.6、(大兴区2019届高三上学期期末)已知函数()ln f x a x =. (Ⅰ)若曲线()y f x =在1x =处的切线方程为210x y -+=,求a 的值; (Ⅱ)求函数()y f x =在区间[1,4]上的极值.7、(东城区2019届高三上学期期末)已知函数2()e 2x f x ax x x =--.(Ⅰ) 当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ) 当0x >时,若曲线()y f x =在直线y x =-的上方,求实数a 的取值范围.8、(通州区2019届高三上学期期末)已知函数()2ln f x a x ax =-,其中0a >.(Ⅰ)求()f x 的单调区间;(Ⅱ)设()2g x x m =-,若曲线()y f x =,()y g x =有公共点P ,且在点P 处的切线相同,求m的最大值.9、(西城区2019届高三一模)设函数2()e 3x f x m x =-+,其中∈m R . (Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅱ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.10、(延庆区2019届高三一模) 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行.(Ⅰ)求a 的值; (Ⅱ)令()()f x g x x=,求函数()g x 的单调区间.11、(房山区2019届高三一模)已知函数()221()ln (1).2f x mx x x mx m =-+≤ (Ⅰ)当0m =时,求曲线()y f x =在1x =处的切线方程; (Ⅱ)若函数()f x 的图象在x 轴的上方,求m 的取值范围.12、(大兴区2019届高三一模)已知函数()e x f x a =图象在0x =处的切线与函数()ln g x x =图象在1x =处的切线互相平行.(Ⅰ)求a 的值;(Ⅱ)设()()()h x f x g x =-,求证:()2h x >.13、(丰台区2019届高三一模)已知函数3211()(2)e 32x f x x ax ax =--+.(Ⅰ)当0a =时,求函数()f x 的单调区间;(Ⅱ)当e a ≤时,求证:1x =是函数()f x 的极小值点.14、(海淀区2019届高三一模) 已知函数2()ln(1)f x x x ax =+-. (I)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0a <时,求证:函数()f x 存在极小值; (Ⅲ)请直接写出函数()f x 的零点个数.15、(怀柔区2019届高三一模)已知函数()ln ()=-∈f x x ax a R . (Ⅰ)当2=a 时,求()f x 在点(1,(1))f 处的切线方程;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()0f x <,求a 的取值范围.16、(昌平区2019届高三5月综合练习(二模))已知()()211e 2x f x x ax =--. (I)若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a 的值;(II)若()f x 在0x =处取得极大值,求a 的取值范围.17、(朝阳区2019届高三第二次(5月)综合练习(二模)) 已知函数22()(24)ln 4f x ax x x ax x =+--(a ∈R ,且0a ≠). (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()f x 的极小值为1a,试求a 的值.18、(东城区2019届高三5月综合练习(二模))已知函数()sin f x x x =+. (Ⅰ)求曲线()y f x =在点(,())22f ππ处的切线方程;(Ⅱ)若不等式()cos f x ax x ≥在区间π[0,]2上恒成立,求实数a 的取值范围.19、(房山区2019届高三第二次模拟)已知函数21()2sin +1,()cos 2f x x xg x x m x =-=+. (Ⅰ)求曲线()y f x =在0x =处的切线方程; (Ⅱ)求()f x 在(0,)π上的单调区间;(Ⅲ)当1m >时,证明:()g x 在(0,)π上存在最小值.20、(丰台区2019届高三5月综合练习(二模))已知函数2()ln (21)1()f x x ax a x a =+-++≥0.(Ⅰ)当0a =时,求函数()f x 在区间[1,)+∞上的最大值;(Ⅱ)函数()f x 在区间(1,)+∞上存在最小值,记为()g a ,求证:1()14g a a<-. .21、(海淀区2019届高三5月期末考试(二模))设函数()ln ,f x x a R =∈.(I )若点()1,1在曲线()y f x =上,求在该点处曲线的切线方程; (II )若()f x 有极小值2,求a .参考答案:一、选择、填空题1、220x y +-= 2.(]0,13、2y x =(或3y x =等) 4、4; (0,e)] 5、6、C7、2e 8、239、32y x =+ 10、40x y -+= 11、-3 12、12 13、14二、解答题1、解:(Ⅰ)当2a =时,2()3ln f x x x x =--,2(1)(2)'()x x f x x --=,………………1分 此时,(1)1f =-,'(1)0f =,……………………2分故曲线()y f x =在点(1,(1))f 处的切线方程为1y =-.……………………3分 (Ⅱ)()(1)ln af x x a x x=-+-的定义域为(0,)+∞……………………4分 221(1)()'()1a a x x a f x x x x +--=-+=……………………5分令'()0f x =得,x a =或1x =……………………6分① 当01a <≤时,对任意的1x <<e ,'()0f x >,()f x 在[1,]e 上单调递增…………7分()(1)1f x f a ==-最小…………………… 8分②当1a <<x(1,)a a(,)a e'()f x -0 +()f x↘极小↗……………………10分()()1(1)ln f x f a a a a ==--+⋅最小……………………11分② 当a ≥e 时,对任意的1x <<e ,'()0f x <,()f x 在[1,]e 上单调递减…………12分()()(1)af x f a ==-+-e e e最小…………………… 13分2、解:(Ⅰ)当1a = 时,则ln(1)()x f x x -=…… 1分定义域是(1,)+∞,令ln(1)x x -=……………2分 ln(1)0,2x x -==是所求函数的零点. ……………3分(Ⅱ)当1a =-时,函数()f x 的定义域是(1,0)(0,)-⋃+∞, ………4分所以2ln(1)1'()xx x f x x-++=,…………5分令()ln(1)1xg x x x =-++,只需证:0x >时,()0g x ≤. ……………6分又2211'()0(1)1(1)xg x x x x =-=-<+++, 故()g x 在(0,)+∞上为减函数, …………… 7分 所以()(0)ln10g x g <=-=, …………… 8分 所以'()0f x <,函数()f x 是(0,)+∞上的减函数. ……………9分(Ⅲ)由题意知,1'()|1x f x ==,且2ln()'()xx a x a f x x---=, ………… 10分 所以1'(1)ln(1)11f a a =--=-,即有ln(1)01aa a--=-, ……………11分令()ln(1)1at a a a=---,1a <,则211'()0(1)1t a a a =+>--, 故()t a 是(,1)-∞上的增函数,又(0)0t =,因此0是()t a 的唯一零点, 即方程ln(1)01aa a--=-有唯一实根0,所以0a =. ……………13分 3、解:(Ⅰ)2()666(1)f x mx x x mx '=-=-, 当1m =时,()6(1)f x x x '=-,当x 在[1,2]-内变化时,(),()f x f x '的变化如下表:当[1,2]x ∈-时,max ()5f x =;min ()4f x =-. …………………….5分 (Ⅱ)若1m >,1()6()f x mx x m'=-. 当x 变化时,(),()f x f x '的变化如下表:3221()2311f m m m m m =⋅-⋅+=-+,因为1,m >所以201m <<.即1()0f m>. 且22()(23)10f m m m -=--+<,所以()f x 有唯一零点. 所以“1m >”是“()f x 有唯一零点”的充分条件.又2m =-时,当x 变化时,(),()f x f x '的变化如下表:又113()10224f -=-+>,(0)0f >,(3)0f <. 所以此时()fx 也有唯一零点.从而“1m >”是“()f x 有唯一零点”的充分不必要条件. …………………….13分 4、5、解:(Ⅰ) 当0m =时:()(1)e xf x x '=+,令()0f x '=解得1x =-,又因为当(),1x ∈-∞-,()0f x '<,函数()f x 为减函数;当()1,x ∈-+∞,()0f x '>,函数()f x 为增函数.所以,()f x 的极小值为1(1)ef -=-. .…………3分 (Ⅱ)()(1)(e )xf x x m '=+-.当0m >时,由()0f x '=,得1x =-或ln x m =.(ⅰ)若1e m =,则1()(1)(e )0e xf x x '=+-≥.故()f x 在(),-∞+∞上单调递增; (ⅱ)若1em >,则ln 1m >-.故当()0f x '>时,1ln x x m <->或;当()0f x '<时,1ln x m -<<.所以()f x 在(),1-∞-,()ln ,m +∞单调递增,在()1,ln m -单调递减. (ⅲ)若10em <<,则ln 1m <-.故当()0f x '>时,ln 1x m x <>-或; 当()0f x '<时,ln 1m x <<-.所以()f x 在(),ln m -∞,()1,-+∞单调递增,在()ln ,1m -单调递减. .…………8分(Ⅲ)(1)当0m =时,()e xf x x =,令()0f x =,得0x =.因为当0x <时,()0f x <, 当0x >时,()0f x >,所以此时()f x 在区间(),1-∞上有且只有一个零点.(2)当0m >时:(ⅰ)当1e m =时,由(Ⅱ)可知()f x 在(),-∞+∞上单调递增,且1(1)0ef -=-<,2(1)e 0e f =->,此时()f x 在区间(),1-∞上有且只有一个零点.(ⅱ)当1em >时,由(Ⅱ)的单调性结合(1)0f -<,又(ln )(1)0f m f <-<,只需讨论(1)e 2f m =-的符号:当1ee 2m <<时,(1)0f >,()f x 在区间()1-∞,上有且只有一个零点; 当e2m ≥时,(1)0f ≤,函数()f x 在区间()1-∞,上无零点.(ⅲ)当10e m <<时,由(Ⅱ)的单调性结合(1)0f -<,(1)e 20f m =->,2(ln )ln 022m mf m m =--<,此时()f x 在区间(),1-∞上有且只有一个零点.综上所述,e02m ≤<. .…………13分6、解:(Ⅰ)因为()ln f x a x =,所以()af x x'-, 所以1(1)2f a '=-. ……2分 因为()y f x =在1x =处的切线方程为210x y -+=. 所以1122a -=, ……3分 解得0a =. ……4分(Ⅱ)因为()ln f x a x =,[1,4]x ∈,所以()af x x'-=, ……2分 ①当21a ≤,即12a ≤时,()0f x '≥在[1,4]恒成立,所以()y f x =在[1,4]单调递增;所以()y f x =在[1,4]无极值; ……4分 ②当22a ≥,即1a ≥时,()0f x '≤在[1,4]恒成立,所以()y f x =在[1,4]单调递减,所以()y f x =在[1,4]无极值; ……6分 ③当122a <<,即112a <<时, ……7分 ,(),()x f x f x '变化如下表:……8分因此,()f x 的减区间为2(1,4)a ,增区间为2(4,4)a .所以当24x a =时,()f x 有极小值为22ln(2)a a a -,无极大值.……9分7、解:(Ⅰ) 当1a =时,2()e 2xf x x x x =--,所以()e (1)22xf x x x '=+--,(0)1f '=-. 又因为(0)0f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为y x =-. .................4分(Ⅱ)当0x > 时,“曲线()y f x =在直线y x =-的上方”等价于“2e 2x ax x x x -->-恒成立”,即0x >时e 10x a x -->恒成立, 由于e 0x >,所以等价于当0x >时,1e xx a +>恒成立. 令1(),0e x x g x x +=≥,则()exxg x -'=. 当0x ≥时,有()0.g x '≤ 所以g (x )在区间[0,)+∞单调递减.1(0)1()[0,)0,1ex x g g x x +=+∞><故是在区间上的最大值从而对任意恒成立., 综上,实数a 的取值范围为[1,)+∞. .............................13分 8、解:(Ⅰ)()f x 的定义域为()0+∞,. ……………………………………………1分()()2a a x a f x a x x-'=-=()0a >.………………………………………………2分令()0f x '=,得x a =. ………………………………………………3分 当(0,)x a ∈时,()0f x '>;当(,)x a ∈+∞时,()0f x '<.所以()f x 的单调递增区间为(0,)a ,单调递减区间为(,)a +∞; ……………………5分(Ⅱ)设点P 的横坐标为00(0)x x >,则()2000ln f x a x ax =-,()200g x x m =-.因为2()a f x a x '=-,()2g x x '=,所以200()a f x a x '=-,00()2g x x '=.…………6分 由题意得22000200ln 2a x ax x m a a x x ⎧-=-⎪⎨-=⎪⎩①②,. …………………………………7分 由②得02ax =或0x a =-(舍). …………………………………………8分所以223ln 42a m a a =-()0a >. …………………………………………9分设223()ln 0)42th t t t t =->(,则1()14ln 0)22t h t t t '=->()(. …………………………………………10分令()0h t '=,得142t e =. …………………………………………11分 当1402t e <<时,()0h t '>,()h t 单调递增;当 142t e >时,()0h t '<,()h t 单调递减. 所以()h t 在0∞(,+)的最大值为1142(2)2h e e =,即m 的最大值为122e . …………………………………………13分 9、解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e()3e 3xx m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 2分此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 3分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增. …………… 5分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……………… 6分(Ⅱ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……………… 8分对函数()g x 求导,得223()e xx x g x -++'=. ……………… 9分由()0g x '=,解得11x =-,23x =. ……………… 10分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以()g x 在(2,1)--,(3,4)上单调递减,在(1,3)-上单调递增. …………… 11分又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)eg g =>-, 所以当4132e e m -<<或36e m =时,直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点. ……… 13分 10、解:(Ⅰ)()ln()f x x a =+ 1()f x x a'∴=+ ………1分 1(1)1f a '∴=+………2分()f x 在点(1,(1))f 处的切线与直线20x y -=平行1112a ∴=+ 解得 1a = ………4分 (Ⅱ)由(Ⅰ)可知ln(1)()x g x x+=………5分 函数()g x 的定义域是(1,0)(0,)-⋃+∞, ………6分所以2ln(1)1'()xx x g x x-++=,…………7分令()ln(1)1xh x x x =-++, …………8分 又2211'()(1)1(1)xh x x x x =-=-+++,…………9分(1,0)x ∴∀∈-有()0h x '>恒成立故()h x 在(1,0)-上为增函数, 由()(0)ln10h x h <=-=,所以函数()g x 是(1,0)-上单调递减. …………… 11分(0,)x ∴∀∈+∞有()0h x '<恒成立故()h x 在(0,)+∞上为减函数,由()(0)ln10h x h <=-=, 所以函数()g x 是(0,)+∞上单调递减. …………… 13分 综上,()g x 在 (1,0)- 和 (0,)+∞ 单调递减11、(Ⅰ)当0m =时,()ln f x x x =-,'()ln 1f x x =-- 所以(1)0f =,'(1)1f =-所以曲线()y f x =在1x =处的切线方程是:1y x =-+ ……………4分 (Ⅱ)“函数()f x 的图象在x 轴的上方”,等价于“0x >时,()0f x >恒成立” 由()221()ln 2f x mx x x mx =-+得 ()()()'()21ln 2121ln 1f x mx x mx mx x =-+-=-+……………5分①当0m ≤时,因为()1102f m =≤, 不合题意 ……………6分 ②当01m <≤时,令'()0f x =得1211,2e x x m == 显然112em > ……………7分 令'()0f x >得10e x <<或12x m >;令'()0f x <得11e 2x m<< 所以函数()f x 的单调递增区间是110,,,e 2m ⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭,单调递减区间是11,e 2m ⎛⎫⎪⎝⎭,……………10分当10e x ⎛⎫∈ ⎪⎝⎭,时,20mx x -<,ln 0x < 所以()221()ln 02f x mx x x mx =-+> ……………11分只需1111ln 02428f m m m m ⎛⎫=-+>⎪⎝⎭所以m > 1m <≤ ……………13分12、解:(Ⅰ)由()e x f x a =,得()e x f x a '=,所以(0)f a '=.……1分由()ln g x x =,得1()g x x'=,所以(1)1g '=.……2分由已知(0)(1)f g ''=,得1a =.……3分 经检验,1a =符合题意.……4分(Ⅱ)()()()e ln x h x f x g x x =-=-,0x >,1()e x h x x '=-,设1()e x x xϕ=-,……1分 则21()e 0x x x ϕ'=+>,所以()x ϕ在区间(0,)+∞单调递增,……3分 又(1)e 10ϕ=->,1()202ϕ=<,……4分所以()x ϕ在区间(0,)+∞存在唯一零点,设零点为0x ,则01(,1)2x ∈,且001e x x =.……5分当0(0,)x x ∈时,()0h x '<;当0(,)x x ∈+∞,()0h x '>. 所以,函数()h x 在0(0,)x 递减,在0(,)x +∞递增,……6分 000001()()e ln ln ≥x h x h x x x x =-=-,……7分 由001e x x =,得00ln x x =- 所以0001()2≥h x x x =+,……8分 由于01(,1)2x ∈,0()2h x >从而()2h x >,命题得证.……9分13、解:(Ⅰ)因为0a =,R x ∈所以()(2)e xf x x =-,故()(1)e xf x x '=-,令()0f x '>,得1x >,所以单调递增区间为(1,)+∞; 令()0f x '<,得1x <,所以单调递区间为(,1)-∞.(Ⅱ)由题可得()(1)(e )xf x x ax '=--.① 当0a ≤时,对任意(0,+)x ∈∞,都有e 0x ax ->恒成立, 所以当01x <<时,()0f x '<;当1x >时,()0f x '>. 所以函数()f x 在1x =处取得极小值,符合题意.② 当0e a <≤时,设g()=e xx ax -,依然取(0,+)x ∈∞.则g ()=e xx a '-,令g ()=0x ',得=ln x a ,所以g()x 在(0,ln )a 上单调递减,在区间(ln ,)a +∞上单调递增, 所以min g()(ln )(1ln )x g a a a ==-.因为0e a <≤,所以min ()(1ln )0g x a a =-≥(当且仅当=e a 时,等号成立,此时1x =). 所以对任意(0,1)(1,)x ∈+∞,都有e 0x ax ->恒成立.所以当01x <<时,()0f x '<;当1x >时,()0f x '>. 所以函数()f x 在1x =处取得极小值,符合题意.综上①②可知:当e a ≤时1x =是函数()f x 的极小值点.14、解:(Ⅰ)2()ln(1)f x x x ax =+-的定义域为{|1}x x >-因为2(0)0ln(01)00f a =+-⋅=所以切点的坐标为(0,0) 因为()ln(1)+21xf x x ax x '=+-+ 0(0)ln(01)+20001f a '=+-⋅=+ 所以切线的斜率0k =,所以切线的方程为0y = (Ⅱ)方法一:令()()ln(1)21xg x f x x a x x '==++-+ 211()+21(1)g x a x x '=-++ 因为1x >-且0a <, 所以101x >+,210(1)x >+,20a -> 从而得到()0g x '>在(1,)-+∞上恒成立 所以()0f x '>在(1,)-+∞上单调递增且(0)0f '=, 所以x ,'()f x ,()f x 在区间(1,)-+∞ 的变化情况如下表:所以0x =时,()f x 取得极小值,问题得证 方法二:因为()ln(1)21xf x x a x x '=++-+ 当0a <时,当0x <时, ln(1)0,0,201xx a x x +<<-<+,所以()0f x '< 当0x >时, ln(10,0,201xx a x x +>>->+,所以()0f x '> 所以x ,'()f x ,()f x 在区间(1,)-+∞ 的变化情况如下表:所以0x =时,函数()f x 取得极小值,问题得证 (Ⅲ)当0a ≤或1a =时,函数()f x 有一个零点当0a >且1a ≠时,函数()f x 有两个零点15、解:(Ⅰ)当2a =时,因为(ln 2f xx x =-), 所以112'(2xf x x x-=-=). f ’(1)= -1, f(1)= -2, 所以()f x 在点(1,(1))f 处的切线方程是x+y+1=0------------------------------------5分 (Ⅱ)函数()f x 的定义域是{0}>x x ,因为11'(axf x a x x-=-=), (ⅰ) 当a 0≤时,f ()x '>0恒成立,所以f (x )在(0,+∞)单调递增,又因为(1)0=-≥f a ,不合题意,舍.(ⅱ)当0a >时,当10x a <<时,'()0f x >,函数(f x )在1(0,)a 上单调递增;当1x a>时,'()0f x <,函数(f x )在1(,)a+∞单调递减.所以函数(f x )在1x a =时,取得最大值11(ln 1f a a=-).因为对于任意(0,)x ∈+∞,都有()0f x <,所以只需令1(0f a <),即1ln 10a-<,即1ea >.所以当a 的取值范围是1(,)e +∞----------------------------------------------13分16、解:(I)因为()()211e 2x f x x ax =--,()f x 的定义域为(,)-∞+∞,所以()'e xf x x ax =-.()'1e .f a =-由题设知()'0f x =,即e 0,a -=解得e a =. 此时e(1)02f =-≠. 所以a 的值为e . ….5分(II )由(I)得()'e (e )x xf x x ax x a =-=-.① 若1a >,则当(,0)x ∈-∞时,0,e 1,e 0,x x x a <<-<所以'()0f x >;当(0,ln )x a ∈时,ln 0,e e 0,x a x a a >-<-=所以'()0f x <.所以()f x 在0x =处取得极大值.② 若1a ≤,则当(0,1)x ∈时,0x >,e e 10x x a -≥->, 所以'()0f x >.所以0不是f (x )的极大值点.综上可知,a 的取值范围是(1,+∞). ….13分 17、解:由题意可知()4(1)ln f x ax x '=+,(0,)x ∈+∞. (Ⅰ)(1)0f '=,(1)4f a =--,所以曲线()y f x =在点(1,(1))f 处的切线方程为4y a =--. ………….3分(Ⅱ)①当1a <-时,x 变化时(),()f x f x '变化情况如下表:此时13()ln()f a a a a a -=+-=,解得1ea =->-,故不成立. ②当1a =-时,()0f x '≤在(0,)+∞上恒成立,所以()f x 在(0,)+∞单调递减. 此时()f x 无极小值,故不成立.③当10a -<<时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=,解得2a =-+2a =--.因为10a -<<,所以2a =-.④当0a >时,x 变化时(),()f x f x '变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=,解得2a =-+或2a =-.综上所述2a =-+. ………….13分 18、解: (Ⅰ)因为()sin f x x x =+,所以()1cos f x x '=+,()12f π'=,()122f ππ=+, 所以曲线()y f x =在点(,())22f ππ处的切线方程为 1.y x =+ ..................5分 (Ⅱ)因为[0,]2x π∈,所以sin 0x ≥,cos 0x ≥,当0a ≤时,()sin 0f x x x =+≥恒成立,cos 0ax x ≤恒成立, 所以不等式()cos f x ax x ≥在区间[0,]2π上恒成立.当0a >时,设()()cos sin cos g x f x ax x x x ax x =-=+-,()1cos cos sin 1(1)cos sin g x x a x ax x a x ax x '=+-+=+-+,若01a <≤,(1)cos 0a x -≥,sin 0ax x ≥, 所以()0g x '>在区间[0,]2π上恒成立;若12a <≤,110a -≤-<,1(1)cos 0a x +-≥,sin 0ax x ≥, 所以()0g x '>在区间[0,]2π上恒成立;所以()g x 在区间[0,]2π上单调递增,min ()(0)0,g x g ==所以当2a ≤时,不等式()cos f x ax x ≥在区间[0,]2π上恒成立;当2a >时,令()()1(1)cos sin h x g x a x ax x '==+-+, ()(21)sin cos h x a x ax x '=-+,()0h x '>在区间[0,]2π上恒成立,所以()g x '在区间[0,]2π上单调递增,min ()(0)20g x g a ''==-<,max ()()1022a g x g ππ''==+>,所以存在0[0,]2x π∈,使得0()0g x '=.当00x x <<时,()0g x '<,()g x 单调递减; 当02x x π<<时,()0g x '>,()g x 单调递增; 当0x x =时,()0g x '=,()g x 取得极小值;而(0)0g =,所以0()0g x <,所以不等式()0g x ≥在区间[0,]2π上不能恒成立,所以不等式()cos f x ax x ≥在区间[0,]2π上恒成立时实数a 的取值范围是(,2].-∞..............14分19、Ⅰ)因为()2sin 1f x x x =-+,所以'()12cos f x x =-则(0)1f =,'(0)1f =-,所以切线方程为1y x =-+ ……………………4分 (Ⅱ)令'()0f x =,即1cos 2x =,()0,x ∈π,得3x π= 当x 变化时,'(),()f x f x 变化如下:所以函数()f x 的单调递减区间为(0,)3,单调递增区间为(,)3π…………………8分 (Ⅲ)因为21()cos 2g x x m x =+,所以'()sin g x x m x =- 令'()()sin h x g x x m x ==-,则'()1cos h x m x =- ……………9分 因为1m >, 所以1(0,1)m∈ 所以'()1cos 0,h x m x =-=即1cos x m =在()0,π内有唯一解0x当()00,x x ∈时,'()0h x <,当()0,x x π∈时,'()0h x >,所以()h x 在()00,x 上单调递减,在()0,πx 上单调递增. ……………11分 所以0()(0)0h x h <=,又因为()0h ππ=>所以()sin h x x m x =-在0(,)(0,)x ππ⊆内有唯一零点1x……………12分当()10,x x ∈时,()0h x < 即'()0g x <,当()1,x x π∈时,()0h x > 即'()0g x >, ……………13分所以()g x 在()10,x 上单调递减,在()1,πx 上单调递增. 所以函数()g x 在1x x =处取得最小值 即1m >时,函数()g x 在()0,π上存在最小值 ……………………………………14分20、解:(Ⅰ)当0a =时,()ln 1f x x x =-+,则1()1f x x'=-, ………………2分 因为[1,)x ∈+∞,所以()0f x '≤. ………………3分 所以()f x 在区间[1,)+∞上单调递减, ………………4分 所以()f x 区间[1,)+∞上最大值为(1)0f =. ………………5分(Ⅱ)由题可知1()2(21)f x ax a x'=+-+ 22(21)1ax a x x-++=(21)(1)ax x x--=. ………………6分①当0a =时,由(Ⅰ)知,函数()f x 在区间(1,)+∞上单调递减,所以函数()f x 无最小值,此时不符合题意; ………………7分②当12a ≥时,因为(1,)x ∈+∞,所以210ax ->.此时函数()f x 在区间(1,)+∞上单调递增,所以函数()f x 无最小值,此时亦不符合题意; ………………8分③当102a <<时,此时112a <.函数()f x 在区间1(1,)2a 上单调递减,在区间1(,)2a +∞上单调递增,所以min 111()()ln 224f x f a a a ==-, ………………9分即11()ln24g a a a =-. 要证1()14g a a <-,只需证当102a <<时,1()104g a a-+<成立. 即证111ln10(0)222a a a -+<<<, ………………10分 设12t a=,()ln 1(1)h t t t t =-+> ………………11分由(Ⅰ)知()(1)0h t h <= ………………12分即1()104g a a -+<成立. 所以1()14g a a <-. ………………13分21、解:(I )因为点()1,1在曲线()y f x =上,所以1a =,()ln f x x=------------------------------------------1分又()1f x x'=-=,------------------------------------------3分 所以()112f '=-------------------------------------------4分在该点处曲线的切线方程为()1112y x -=--即230x y +-=------------------------------------------5分(II )定义域为()0,+∞,()1f x x '==--------------------------------------6分 讨论:(1)当0a ≤时,()0f x '<此时()f x 在()0,+∞上单调递减,所以不存在极小值------------------------------8分 (2)当0a >时,令()=0f x '可得24=x a------------------------------------------9分所以()f x 在240,a ⎛⎫ ⎪⎝⎭上单调递减,在24,a ⎛⎫+∞ ⎪⎝⎭上单调递增----------------------11分 所以()24=f x f a ⎛⎫⎪⎝⎭极小值=242ln a -,所以242lna -=2解得()2a =舍负------------------------------------------13分。

相关文档
最新文档