七年级数学下册《5.1轴对称现象》教学设计(新版)北师大版
七年级数学下册第五章生活中的轴对称5.1轴对称现象作业设计(新版)北师大版

5.1 轴对称现象一.选择题(共1小题)1.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()(第1题图)A.1次B.2次C.3次D.4次二.填空题(共6小题)2.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.(第2题图)3.如图,是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在从剩余的13个白色小正方形中选出一个涂成黑色,使涂成黑色的四个小正方形所构成的图形是轴对称图形,则这样的白色小正方形有个.(第3题图)4.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点.(P1至P4点)(第4题图)5.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.(第5题图)6.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是(填出所有符合要求的小正方形的标号)(第6题图)7.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.(第7题图)三.解答题(共5小题)8.对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).(第8题图)9.已知:如图所示,在四边形ABCD中,AD=BC,∠DAB=∠CBA.(1)试判断AB与CD的位置关系,并说明理由;(2)四边形ABCD是轴对称图形吗?试说明理由.(第9题图)10.如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC 是轴对称图形吗?并说明你的理由.(第10题图)11.△ABC的三边长分别为:AB=2a2﹣a﹣7,BC=10﹣a2,AC=a,(1)求△ABC的周长(请用含有a的代数式来表示);(2)当a=2.5和3时,三角形都存在吗?若存在,求出△ABC的周长;若不存在,请说出理由;(3)若△ABC与△DEF成轴对称图形,其中点A与点D是对称点,点B与点E是对称点,EF=4﹣b2,DF=3﹣b,求a﹣b的值.12.如图,表示把长方形纸片ABCD沿对角线BD进行折叠后的情况,图中有没有轴对称图形?有没有关于某条直线成轴对称的图形.(第12题图)参考答案一.1.D二.2.(,) 3.4 4.P2 5.3 6.2,3,4,5,7 7. D,4 三.8.解:性质:从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.从角看:筝形只有一组对角相等;从对角线看:有且只有一条对角线被另一条对角线垂直平分.判定:结合性质定理,可得出:方法二:从对角线看:有且只有一条对角线被另一条对角线垂直平分.结合方法二可知缺少的条件为:AC垂直平分BD于O点,且AO≠CO.证明:按照题意,画出图形1.(第8题答图)∵AC垂直平分BD,∴AB=AD,CB=CD.又∵AB=,BC=,AO≠CO,∴AB≠BC,∴由筝形定义得,四边形ABCD是筝形.应用:筝形面积为对角线乘积的一半;∵S筝形ABCD=S△ABD+S△CBD=BD•AO+BD•CO=BD(AO+CO)=BD•AC,∴筝形面积为对角线乘积的一半.9.解:(1)AB∥CD.理由如下:在△ABD和△BAC中.∴△ABD≌△BAC(SAS).∴∠OAB=∠OBA,BD=AC.∴OA=OB.∴AC﹣OA=BD﹣OB.∴OD=OC.∴∠ODC=∠OCD.∵∠ODC+∠OCD+∠COD=180°,∠OAB+∠OBA+∠AOB=180°,∴2∠ODC+∠COD=180°.2∠OBA+∠AOB=180°.又∠COD=∠AOB,∴∠CDO=∠OBA.∴AB∥CD.(2)四边形ABCD是轴对称图形.理由如下:延长AD、BC交于点P,∵∠DAB=∠CBA,∴AP=BP.∴点P在AB的垂直平分线上.又OA=OB,∴点O在AB的垂直平分线上.∴OP垂直平分线段AB,∴点A与点B关于直线OP对称①.∵AB∥DC,∴∠PDC=∠PAB∠PCD=∠PBA.∴∠PDC=∠PCD.∴DP=CP,∴点P在DC的垂直平分线上.又OD=OC,∴点O在DC的垂直平分线上.∴OP垂直平分线段DC.∴点C与点D关于直线OP对称②.所以,综上①②所述,四边形ABCD是轴对称图形.(第9题答图)10.解:△ABC是轴对称图形.∵∠BCD=20°,∴∠B=90°﹣∠BCD=70°,∴∠ACB=∠B=70°,∴△ABC是等腰三角形,∴△ABC是轴对称图形.11.解:(1)△ABC的周长=AB+BC+AC=2a2﹣a﹣7+10﹣a2+a=a2+3.(2)当a=2.5时,AB=2a2﹣a﹣7=2×6.25﹣2.5﹣7=3,BC=10﹣a2=10﹣6.25=3.75,AC=a=2.5,∵3+2.5>3.75,∴当a=2.5时,三角形存在,周长=a2+3=6.25+3=9.25;当a=3时,AB=2a2﹣a﹣7=2×9﹣3﹣7=8,BC=10﹣a2=10﹣9=1,AC=a=3,∵3+1<8.∴当a=3时,三角形不存在.(3)∵△ABC与△DEF成轴对称图形,点A与点D是对称点,点B与点E是对称点,∴EF=BC,DF=AC,∴10﹣a2=4﹣b2,即a2﹣b2=6;a=3﹣b,即a+b=3、把a+b=3代入a2﹣b2=6,得3(a﹣b)=6 ∴a﹣b=2.12.解:五边形ABCDE是轴对称图形,△ABE与△CDE,△ABD与△CDB成轴对称.。
七年级数学下册第五章生活中的轴对称1轴对称现象导学案(无答案)(新版)北师大版

轴对称现象学习目标:1.了解轴对称图形的概念,会判断一个图形是不是轴对称图形;2.了解两个图形成轴对称的概念,会判断两个图形是否成轴对称;3.理解轴对称和轴对称图形的区别与联系。
重点:轴对称、轴对称图形的概念及其识别难点:轴对称和轴对称图形的区别与联系。
学习新知:活动一:看一看观察:图形有什么特征?寻找:你能发现生活中具有同样特征的例子吗?活动二;观察同桌的图片归纳轴对称的定义:如果________沿一条直线折叠,直线两旁的部分能够 ______,那么这个图形叫做__________,这条直线叫这个图形的________________活动三:试一试1.下列常见的几何图形哪些是轴对称图形?如果是,你能找出他们的对称轴吗?正方形平行四边形等腰梯形一般梯形矩形圆活动四:做一做取一张长方形的纸;将纸对折;在纸的一面,用笔尖扎出不在同一条直线上的三个点,将纸打开铺平,画出折痕,用笔连接折痕两侧的三个点,形成⊿ABC和⊿DEF.观察:两个三角形有什么关系?寻找:你能发现生活中具有同样关系的两个图形吗?归纳两个图形成轴对称的定义:把 _______ 沿着某一条直线折叠,如果它能够与 _____ 图形 ____ ,那么就说这两个图形 ______________ 或者说这两个图形_________ 。
同样,我们把这条直线叫做 ______.折叠后重合的点是对应点,叫做 ______.活动五:看一看,找一找观察下图中的每组图案,它们成轴对称吗?如果是,试着找出它们的对称轴,并找出一对对称点。
思考:1.成轴对称的两个图形全等吗?2.全等的两个图形一定成轴对称吗?活动六:比一比活动七:想一想1.欣赏下面这幅风景画(图1),它是轴对称图形吗?你能找出两个成轴对称的图形吗?2.图2中的两个脚丫成轴对称吗?如果把两个脚丫看作一个整体,那么下面的图形又具有什么特征呢?图1 图2思考:把成轴对称的两个图形看成一个整体,它就是一个_______图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线 _________。
北师大版数学七年级下册《轴对称现象》生活中的轴对称1

剪纸艺术
车标设计
国旗欣赏
知识讲解
请你想一想:将上图中的每一个图形沿某条直线对折, 直线两旁的部分能完全重合吗? 我们能不能给具有这样特征的一个图形起一个名称呢?
如果一个平面图形沿一条直线折叠后,直线两旁的 部分能够互相重合,那么这个图形叫做轴对称图形 (axially symmetric figure) ,这条直线叫做对称轴(axis of symmertry).
5.找出下文中成轴对称的文字:
一叶孤舟,坐着两三个骚客,启用四桨 五帆, 经过六滩七湾,历尽八颠九簸,可叹 十分来迟。 十年寒窗,进了九八家书院, 抛却七情六欲, 苦读五经四书,考了三番 两次,今天一定要中。
一; 三; 个; 八; 十; 来; 苦; 天; 中。
当堂检测
1.在下列“禁毒”、“和平”、“志愿者”、“节 水”这四个标志中,属于轴对称图形的是( B )
2.正方形是轴对称图形,它的对称轴有( B )
A.2条 B.4条
C.6条 D.8条
3.如图,成轴对称的有( A )
A.1个 B.2个
C.3个 D.4个
4.下列图表是由我们熟悉的一些基本数学图 形组成的,其中是轴对称图形的 是 ①②③④ (填序号)
3.想想看:圆有几条对称轴? 啊!圆有无数条对称轴!
课堂小结
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特殊形状 两个全等图形的特殊的位置关系
1.沿某直线翻折后都能够互相重合
2.都有对称轴 3.如果把一个轴对称图形看成沿对称轴分成的两个图形, 那么这两个图形关于这条直线成轴对称,如果把成轴对称 的两个图形看成一个图形,那么它就是一个轴对称图形。
《轴对称现象》生活中的轴 对称1
七年级数学下册 轴对称现象学案(无答案) 北师大版

7.1轴对称现象学习目标:1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.2.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛运用和它的丰富文化价值.教学重点:通过实例理解轴对称的概念.教学难点:通过观察、折纸、图形欣赏、印墨汁等数字活动过程,提高空间观念.教学准备:宣纸、墨水、剪刀、生活中的一些轴对称图形(如:剪纸、图片等)、常见几何图形。
一,设问导读阅读课本第216——218页,完成下列问题。
1,(1)画出课本216页的图形的对称轴。
(2 ) 这些美丽的图形来自生活.认真观察这些图形有什么共同特征?用自己的语言来描述.学生从图形中抽象出它们的共同特征.2.通过动手实验,你发现这些对称图形有什么共同特征?用自己的语言说一说.3 你能将图中的窗花沿某条直线对折,使直线两旁的部分完全重合。
二、动手操作,相互交流1.做“扎纸”活动(1)动手实践将一张纸对折后,用一根大头针在纸上任意扎出一个图案,将纸打开后铺平,观察、欣赏各自所得到的图案.(2)观察探究,相互交流观察图案,位于折痕两侧的部分有什么关系?与同伴进行交流.2.定义展示轴对称图形形是﹙)。
对称轴是一条﹙﹚。
3学过的几何图形哪些是轴对称图形,你能找出它们的对称轴吗?4.做“印墨迹”实验(1)动手实践取一张质地较软、吸水性能好的纸,在纸的一侧滴一滴墨水,将纸迅速对折、压平,并用手指压出清晰的折痕,再将纸打开后铺平,观察所得到的图案.(2)观察探究,相互交流位于折痕两侧的墨水迹图案彼此之间有什么关系?与同伴交流.5(1)课本“想一想”中成轴对称的图形有()个(2)找出“印墨迹”,“想一想”中的每幅图片的对称轴。
6轴对称与轴对称图形的区别:轴对称是指()个图形之间的形状和位置关系。
轴对称图形是对()个图形而言的,轴对称图形是一个具有特殊形状的图形。
它们都有沿某条直线()的特征。
三自我检测1如下图案是我国几种汽车的标志,其中轴对称图形有()A B C D2观察下面的英文字母,其中是轴对称图形的有()个。
北师大版数学七年级下册第七章生活中的轴对称轴对称现象精品教案附教学反思

第七章生活中的轴对称7. 1 轴对称现象一、教学目标:知识与技能目标1、在丰富的现实情景中,经历观察生活中的轴对称现象、探索轴对称现象的共同特征等活动,进一步发展空间观念。
2、通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴。
过程与方法目标1、通过认真观察,学会用自己的语言概括出轴对称图形的共同特征2、鼓励学生从自己的生活经验出发举出符合对称特征的图形3、培养学生对轴对称图形的体验和理解情感与态度目标1、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值2、欣赏生活中的对称美,增强美感。
二、教材分析教材中提供了建筑物、枫叶、蝴蝶、窗花等图片,目的是使学生从这些图形中抽象它们的共同特征。
教材在安排上通过学生观察图片,鼓励学生探索轴对称现象的共同特征,动手操作,亲自实践,体验活动的乐趣。
教材给学生自主探索留有很大空间,学生可以充分的发挥想象,以促进学生对轴对称的体验和理解。
b5E2RGbCAP教学重点:了解轴对称图形和轴对称的概念。
教学难点:能正确的区分轴对称图形和轴对称。
三、教学设计:教学建议:1、通过展示生活中丰富的的轴对称的图案,让学生在经历观察生活中的轴对称现象,来探索轴对称现象的共同特征2、学生在课前收集一些轴对称的实例、图片在课堂上展示,使学生对轴对称现象有一个初步的认识。
3、学生在一张对折了的纸片上用圆规的针尖扎出一个图案然后展开观察或让学生在对折了的纸片上刻出一个图案然后展开观察、或取一张质地较软吸水性较好的纸,在纸的一侧滴上墨水,然后对折再打开观察等一系列的动手活动中使学生感受轴对称现象。
p1EanqFDPw4、通过对一些例题的分析识别简单的轴对称图形和对称轴。
5、学生自己设计具有轴对称图形的图案,体会轴对称在现实生活中的广泛应用和丰富的文化价值。
教学设计示例;四、背景材料:生活中的实物图和多媒体图片五、习题精选四、习题精选: 一、选择题: 1、下列平面图、、⑴下面的希腊字母或图形中,那些是轴对称图形,哪些不是轴对称图形?(2)下面哪一个选项的右边图形与左边图形成轴对称?,整个图形有______ 条对称轴。
北师大版七年级数学下册教学设计利用轴对称进行设计

《利用轴对称进行设计》◆模式介绍“探究式教学”是以自主探究为主的教学。
它是指教学过程是在教师的启发诱导下,以学生独立自主探究或合作讨论为前提,以现行教材为基本探究内容,以学生周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的一种教学形式。
学生对当前教学内容中的主要知识点进行自主学习、深入探究并进行小组合作交流,以自我获取,自我求证的方式深化知识的理解和运用。
从而较好地达到课程标准中关于认知目标与情感目标要求的一种教学模式。
其中认知目标涉及与学科相关知识、概念、原理与能力的掌握;情感目标注重科学素养与道德品质的培养。
探究式教学的课程环节:创设情境——启发思考——自主探究——协作交流——总结提高◆思路说明学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
本节课学习利用轴对称进行设计、关键在于利用轴对称图形的性质进行设计图案,结合学生的年龄特征,学法上采用让学生自主探究与合作交流的学习方式。
本节课由优美的轴对称图案导入,然后通过小组合作进行探究这一知识点,最后师生共同总结,得出结论。
◆教材分析利用轴对称进行设计是义务教育课程标准实验教科书(北师版)《数学》七年级下册第五章第四节内容,本章主要研究图形的轴对称及轴对称的性质;本节要求进一步理解轴对称及其性质;利用轴对称进行图案设计;所以本节的重点是利用轴对称分析图形的形成过程、进行图案设计,发展学生的空间观念。
◆教学目标【知识与能力目标】1.进一步理解轴对称及其性质;2.利用轴对称进行图案设计;【过程与方法目标】1.学生通过观察猜想、操作验证、分析归纳,经历折叠、剪纸和利用轴对称进行图案设计的过程,积累数学活动经验,发展空间观念;2.经历动手实践、自主探索、合作交流、成果展示的过程中探究知识与培养能力融为一体;【情感态度价值观目标】1.了解轴对称在现实生活中的广泛应用和丰富的文化价值,感受对称美;2.增强数学学习的兴趣,养成合作、分享等良好的个性品质;◆教学重难点【教学重点】利用轴对称分析图形的形成过程、进行图案设计,发展学生的空间观念【教学难点】从数学角度理解生活中的轴对称现象、进行图案设计◆课前准备教师准备课件、多媒体;学生准备;练习本;◆教学过程一、创设情境“对称是一种思想,通过它,人们毕生追求,并创造次序、美丽和完善…”在我们生活的世界中,许多美丽的事物都是利用轴对称设计的,它们不仅装点了我们的生活,更让我们感受到了自然界的美与和谐.下面就让我们动脑动手发现美、感受美、创造美.【设计说明】通过学生优美的图案进行导入,学生不觉得突兀,更容易引起学生探究知识的兴趣.二、启发思考剪纸在生活中经常见到,你知道它是利用图形的轴对称性进行设计的吗?通过现场展示剪纸,激发学生的探究兴趣,呈现剪纸的图片,让学生感受里面的轴对称现象和中国古老剪纸艺术的魅力.做一做1.取一张长30cm、宽6cm 的纸条,将它每3cm一段,一反一正像“手风琴”那样折叠起来. 在折叠好的纸上画出字母E,并用小刀把画出的字母E挖去. 拉开“手风琴”纸条,你就可以得到一条以字母 E 为图案的花边.在上面的活动中,如果先把纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.准备让学生用长30cm,宽6cm的纸条,一反一正象“手风琴”对折,让学生在折好的纸上画出字母E,刻去字母E,要求学生先画出猜想,再拉开“手风琴”纸条,和猜想进行对比.在猜想时,有的学生能猜出来,有的学生猜想不出来,学生猜想的结果也各不相同.在学生猜想的基础上,让学生动手拉开后去验证,和刚才的猜想进行比对.2.如图5-23所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿底边上的高线对折.将得到的角形纸沿图中的黑色线剪开,去掉含90°角的部分.打开折叠的纸,并将其铺平.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称知识试一试.(3)如果将正方形纸按上面方式对折 3 次(如图 5-24 所示),然后沿圆弧剪开,去掉较小部分,展开后结果又会怎样?为什么?(4)当纸对折 2 次后,剪出的图案至少有几条对称轴?3 次呢?在这个环节中,整个活动内容由浅入深,难度逐渐加大,而我继续采用让学生先把猜想画下来,再与操作验证进行对比,主要是为了进一步引导学生将“直观认识”过渡到“数学角度的思考”,从实际的教学效果来看,学生一开始大多是借助直观经验形成的、粗略的的猜想,而到这里绝大多数学生都学会利用轴对称的性质来进行较为准确的猜想.引导的到位使学生逐渐学会了用数学思考代替直观来解决问题,这就为学生运用轴对称进行设计作了较充分的铺垫.做一做生活中还有很多具有轴对称性质的图案,如:【设计说明】通过测量、猜想、验证,让学生首先在动手探索的过程中感知轴对称图形的完美,使学生对知识的认识从感性上升到理性.三、自主探究你知道下面的数字图案是怎样剪出的吗?你能剪出类似的图案吗?把你的作品与同伴进行交流.这个设计需要学生先观察到图案是以数字1,2,3,4为基础经过对称得到的,根据这一规律在脑海中勾勒出下一幅图,再利用轴对称将脑海中的图案呈现出来.【设计说明】通过两个难易程度不同题目的练习,让学生更加理解全等三角形的判定定理。
七年级下册数学《轴对称现象》省优质课一等奖教案
《轴对称现象》教学设计教学目标:1、在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念。
2、通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴。
3、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛运用和它的丰富文化价值。
教学重点:通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴。
教学难点:轴对称现象的特征。
教学准备:多媒体、生活中的一些轴对称图形、报纸或宣纸、墨水、剪刀等。
教学过程设计:一、由生活实例引入课题1我们生活在一个充满对称的世界之中,从人体到植物花果树叶;从小巧精致的艺术珍宝到雄伟壮丽的建筑;甚至小到肉眼难见的原子结构,对称的现象随处可见。
对称的形式被认为是和谐、美丽并且真实的。
从今天开始,我们就来探索《生活中的轴对称》。
这节课,先来认识《轴对称现象》。
(板书:轴对称现象)二、创设情境,激发兴趣1、欣赏生活中的轴对称现象在生活中,许多事物与图形紧密联系在一起,今天老师给大家带来一些生活中的图案,首先请大家来欣赏。
(多媒体配乐展示。
)欣赏的图片,可以是教材上的枫叶、蝴蝶、剪纸、故宫的建筑,教师还可以从生活中提炼出大量的图形。
如:法国的凯旋门,印度的泰姬陵,生活中的“喜喜”字,各式各样漂亮的剪纸、工艺品、脸谱等。
(本环节,教师列举尽可能多的轴对称图形,使学生通过丰富的生活实例,欣赏并体会轴对称图形,发展学生的审美能力、鉴赏能力。
)2、这些美丽的图形来自生活,认真观察,这些图形有什么共同特征?用自己的语言来描述。
学生从图形中抽象出它们的共同特征。
教学时,教师应鼓励学生充分观察,用自己的语言概括出这些图形的共同特征。
23、举出几个生活中具有对称特征的物体,并与同伴交流。
(教学时,要给学生一定思考、交流的时间,鼓励学生从自己的生活经验出发,举出符合对称特征的物体,并进行广泛的交流,体会轴对称现象在现实生活中的广泛运用。
七年级数学下册《轴对称变换》教案、教学设计
2.提高题:设计一个具有轴对称性质的图案,可以是剪纸、建筑图案或商标等,要求创意新颖,美观大方。
要求:学生将设计过程和作品拍照或扫描,附上设计说明,以电子版形式提交。
3.实践题:在生活中寻找至少3个具有轴对称变换的实例,说明其应用场景和美学价值。
要求:学生以小组为单位,进行实地考察和调研,形成书面报告,并在课堂上进行分享。
4.拓展题:运用轴对称变换的知识,解决以下几何问题:
(1)已知一个三角形ABC,求作一个轴对称变换,使得变换后的三角形与原三角形重合。
(2)已知一个正方形ABCD,求作一个轴对称变换,使得变换后的图形与原正方形关于某条线对称。
要求:学生独立思考,给出解题过程和答案,教师进行评价和指导。
5.创新题:运用轴对称变换的知识,设计一个独特的图案或造型,可以是立体图形或平面图形,要求具有美观性和实用性。
要求:学生发挥创意,将设计稿和实物作品带到课堂,与其他同学分享创作过程和心得。
4.教师反馈:教师对学生的练习情况进行及时反馈,指出错误,讲解解题方法。
(五)总结归纳
1.教学内容:教师对本节课的知识点进行梳理和总结,强调轴对称变换的重要性。
2.学生活动:学生回顾本节课所学内容,与同桌交流心得,巩固知识。
3.教师总结:教师对本节课的教学效果进行评价,了解学生的学习情况,为后续教学提供参考。
4.教师指导:教师巡回指导,关注每个小组的讨论进度,给予适当的提示和引导。
(四)课堂练习
1.教学内容:教师布置一些具有代表性的练习题,巩固学生对轴对称变换的理解和应用。
2.练习题目:包括判断轴对称图形、坐标平面上的轴对称变换、运用轴对称性质解决几何问题等。
北师大版初一下册数学 简单的轴对称图形 教案(教学设计)
3 简单的轴对称图形(第1课时)课时安排:3课时课型:新授第1 课时三维目标:批注1.知识技能目标:掌握等腰三角形的轴对称性、相关性质及判定。
2.数学思考目标:掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。
3.问题解决目标:应用等腰三角形的概念和性质解决生活中的实际问题。
4.情感态度目标:在丰富的现实情景中,观察生活中的轴对称现象,体会了轴对称在现实生活中的广泛应用和丰富的文化价值。
重点难点:教学重点:1、等腰三角形的相关概念。
2、通过学生的操作与观察,使学生掌握等腰三角形的轴对称性、有关性质及判定。
教学难点:应用等腰三角形的概念和性质解决等腰三角形各内角的问题.教具准备:教师:多媒体课件学生:找一些通过报纸、杂志、广告等剪下一些等腰三角纸片教学方法:导启发教学过程教学环节:一、巧妙设疑、复习引入1、观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?2、请同学们以小组为单位,拿出你的等腰三角形纸片相互交换观察,他们从形状上有什么不同?(就学生展示的等腰三角形对等腰三角形进行分类,培养学生的分类思想。
当然可能有的同学会拿出等边三角形来,此时应注意解释他们之间的关系,同时给出三角形按边的分类。
)3、它们的形状虽然有所不同,但是他们有很多组成部分的名称是一样的,你都知道哪些?二、动手操作,探索新知1. 问题1:等腰三角形是:轴对称图形吗?有几条对称轴?你能在你准备的等腰三角形纸片上画出来吗?(多数学生可能会通过折叠的方法得到对称轴)问题2:以小组讨论,怎样去描述这条对称轴?你们最多能找到几种描述法?(学生大胆表述,注意纠错。
)问题3:由此你能发现等腰三角形的哪些特征?(学生大胆发言,教师总结)2. 总结(1)等腰三角形是轴对称图形。
(2)∠B =∠C(3)∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5)BD=CD,AD为底边上的中线。
北师大版初中七年级数学下册第五章集体备课教案教学设计含教学反思
第五章生活中的轴对称1轴对称现象【知识与技能】通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的对称图形的对称轴,了解轴对称和轴对称图形的联系和区别.【过程与方法】通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴.【情感态度】通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用,体会数学来源于生活.【教学重点】正确理解轴对称图形以及轴对称的概念.【教学难点】能正确区分轴对称图形和轴对称.一、情景导入,初步认知从各小组收集的图片中有代表性的选择一些,用投影仪演示.使学生能够形象直观地感受图形的对称.【教学说明】通过幻灯片演示.使学生能够形象直观地感受图形的对称.使学生明白对称在美学和自然界中的作用.二、思考探究,获取新知1.观察下列图片,它们有什么共同特点?【归纳结论】如果把一个平面图形沿着某条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线叫做对称轴.理解轴对称图形应注意三点:(1)轴对称图形是一个图形;(2)对折;(3)重合.2.做一做:将一张纸对折后,用笔尖扎出如图所示的图形,然后将纸打开铺平,你会得到什么图形?你还能用这样的方法得到其它的轴对称图形吗?3.议一议,观察课本(P116图5-4)中的每组图片,你发现了什么?【归纳结论】如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.理解轴对称图形应注意三点:(1)“轴对称”是两个图形;(2)对折;(3)重合.【教学说明】通过感官加深对轴对称图形和成轴对称的理解.三、运用新知,深化理解1.如图所示的几个图案中,是轴对称图形的是( A )2.如图所示,下面的5个英文字母中是轴对称图形的有( B )A.2个B.3个C.4个D.5个3.如图所示的图案中,是轴对称图形的有( B )A.1个B.2个C.3个D.4个4.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.解:(3)比较独特,它有无数条对称轴,其他图形只有两条对称轴.5.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.解:(1)2条;(2)4条;(3)5条;(4)3条.画图略.6.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?请指出这个图形,并简述你的理由.解:②不是轴对称图形7.如图所示,以虚线为对称轴画出图形的另一半.解:略【教学说明】进行适当的由浅入深,由感性到理性的一些练习,为学生的知识技能和运算能力打好基础.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题5.1”中第1、3题.2.完成同步练习册中本课时的练习.本节课通过大量生动的生活实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值.同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面学习抽象的对称图形作好铺垫工作.2 探索轴对称的性质【知识与技能】掌握轴对称的性质,学会运用轴对称性质作图.【过程与方法】通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题.【情感态度】培养独立观察思考的习惯,感受数学几何图形的美,体验设计轴对称图形带来的快乐.【教学重点】理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质.【教学难点】轴对称性质的探索及运用.一、情景导入,初步认知将一张白纸对折后用笔尖扎出“14”这个数字,将纸打开后铺平.回答几个问题:(1)图中的两个“14”有什么关系?(2)在上面扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与直线l有什么关系?点F与点F′呢?(3)线段AB与线段A′B′有什么关系?CD与C′D′呢?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.【教学说明】指导学生有目的的预习教材,培养学生的自学能力.二、思考探究,获取新知做一做:探索飞机的“奥秘”.观察图示的飞机,从这个轴对称图形中:(1)找出它的对称轴.(2)连接点A与点A′的线段被对称轴平分吗?与对称轴互相垂直吗?连接点B与点B′的线段呢?(3)线段AD与线段A′D′是否相等?线段BC与线段B′C′呢?为什么?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.【归纳结论】在轴对称或两个成轴对称的图形中:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.【教学说明】让学生在准备好的图案上动手操作,通过观察、测量、对折等解决以上问题.解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质.三、运用新知,深化理解1.下列说法错误的是( C )A.等边三角形是轴对称图形B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分2.下列说法正确的是( B )A.两个全等的三角形一定关于某条直线对称B.关于某条直线的对称的两个三角形一定全等C.直角三角形是轴对称图形D.锐角三角形都是轴对称图形3.设AB两点关于直线MN轴对称,则直线MN垂直平分线段AB.4.若直角三角形是轴对称图形,则其三个内角的度数分别为45°,45°,90°.5.已知Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称轴点 B′,如图所示,则与线段BC相等的线段是B′C,与线段AB相等的线段是BB′和AB′,与∠B相等的角是∠BAB′和∠B′,因此,∠B=60°.6.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上)解:图略(1)中(2)林(3)南(4)京(5)米(6)来(7)共(8)品(9)吉(10)木(11)釜7.找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.解:图(A)是轴对称图形.如图,若以EF为对称轴,则点A与点B、点M与点N.点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C与∠D、∠AMC 与∠BND等是对应角.8.如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2,连P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?解:画图如图所示,易知PP1,PP2关于OA、OB对称,∴PM=P1M,PN=P2N,∴△PMN的周长=P1P2,∴△PMN的周长是5cm.【教学说明】通过不同的题型加深学生对轴对称图形和对称轴的理解,对本节知识进行巩固练习.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题5.2”中第1、3、4题.2.完成同步练习册中本课时的练习.本节课应采用小组学习模式,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组讨论给予适当的指导,包括知识的启发引导.学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.根据不同学生的不同特点应注意适当增减内容以保证课堂教学的顺利完成.3 简单的轴对称图形第1课时等腰三角形的性质【知识与技能】探索并掌握等腰三角形的轴对称性及其相关性质.【过程与方法】通过探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念.【情感态度】通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念.【教学重点】掌握等腰三角形的轴对称性及其相关性质.【教学难点】探索等腰三角形的轴对称性及其性质的过程.一、情景导入,初步认知观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?【教学说明】通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形,乐于探索研究的学习品质及全面思考的能力.二、思考探究,获取新知探究1:等腰三角形1.认识等腰三角形.给出三种等腰三角形的图形,包括锐角、钝角、直角形状的图形.2.介绍等腰三角形的概念及各部分名称.给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象.如艾菲尔铁塔、埃及金字塔等.3.等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有其他一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?4.思考:(1)等腰三角形是轴对称图形吗?找出对称轴.(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?【归纳结论】等腰三角形的特征:①等腰三角形是轴对称图形②等腰三角形的顶角平分线.底边上的中线.底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.③等腰三角形的两个底角相等.【教学说明】探索等腰三角形的轴对称性及其有关性质,教学时,可以让学生先动手折一折等腰三角形纸片,自己发现有哪些结论.然后小组成员一起通过操作验证自己的结论,并由此归纳现象,探索等腰三角形的有关特征.探究2:等边三角形1.等边三角形的有关概念?2.你能发现等边三角形的哪些特征?【教学说明】教师应鼓励学生通过操作和思考分析等边三角性的轴对称性,并尽可能多的探索它的特征.探究3:你有哪些方法可以得到一个等腰三角形?与同伴交流.1.折纸:将长方形纸片对折,沿对角线折叠,再沿折痕展开.2.利用圆规.【教学说明】以动手操作的形式得出一个等腰三角形,鼓励学生充分的进行交流,充分利用等腰三角形的特征,逆向思维,达到学以致用的目的.同时充分体现了数学来源于生活,同时也更好的服务于生活的理念.三、运用新知,深化理解1.下列图形中,不是轴对称图形的是( D )A.正方形B.等边三角形C.等腰三角形D.平行四边形2.等腰三角形的一个内角等于100°,则另两个内角的度数分别为( A )A.40°,40°B.100°,20°C.50°,50°D.40°,40°或100°,20°3.下列说法正确的是( B )A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形4.填空题:(1)①如图所示,在△ABC中,①因为AB=AC,所以∠ =∠;②因为AB=AC,∠1=∠2,所以BD= ,⊥ .(2)若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为 .(3)已知等腰三角形的一个角是80°,则顶角为 .(4)在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC 的面积为 .(5)如图所示,O 为△ABC 内一点,且OA=OB=OC ,∠ABO=20°,∠BCO=30°,则∠CAO= .答案:(1)①B C ②DC (或21BC ) AD BC (2)40° (3)80°或20° (4)21cm 2(5)40°5.在等腰三角形ABC 中,AB =AC ,周长为14cm ,AC 边上的中线BD 把△ABC 分成了周长差为4cm 的两个三角形,求△ABC 各边长.解:如图,设AD =x,则DC =x,AB =2x.设BC =y.由题意可以列方程: 2x+2x+y=14,(2x+x+BD)-(BD+x+y)=4, 解之得:x=3,y=2. 或2x+2x+y=14,(BD+x+y)-(2x+x+BD)=4,解之得:x=35,y=322.显然第二种情况不符合“三角形两边之和大于第三边”,所以舍去. 所以△ABC 的三边长分别为:AB=AC=2x=6cm,BC=y=2cm.6.一个等腰三角形的两个内角度数之比为4∶1,求这个三角形各角度数.解:△ABC中AB=AC,所以∠C=∠B,若∠BAC∶∠B=4∶1,则:∠BAC+∠B+∠C=6∠B=180°,所以∠B=30°=∠C,∠BAC=120°.若∠B∶∠BAC=4∶1,则:∠BAC+∠B+∠C=9∠BAC=180°,所以∠BAC=20°,∠B=∠C=80°.7.如图,已知AB=AC,BD=DC,AE平分∠CAF,试判断AE与AD的位置关系,并说明理由.解:AE⊥AD.说理如下:因为AB=AC,BD=DC,所以AD⊥BC(等腰三角形三线合一),∠B=∠C.因为∠CAF=∠B+∠C,所以∠CAF=2∠B.因为AE平分∠CAF,所以∠CAF=2∠EAF,所以∠EAF=∠B,所以AE∥BC(同位角相等,两直线平行),所以∠EAD=∠BDA=90°,所以AE⊥AD.【教学说明】对本节内容的知识进一步的理解、巩固、提高.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题5.3”中第1、2题.2.完成同步练习册中本课时的练习.本节内容的学习包括大量的实践活动,学生空间观念的培养,推理能力的发展,对图形美的感受等都是在实践活动中发展起来的.因此,教学中应充分利用这部分内容的特点,将观察、操作等实践活动以及实践活动中的思考与交流贯穿于教学活动的始终,使学生体会所学内容与现实世界的广泛联系,体验轴对称的数学内涵,积累丰富的数学活动经验,发展良好的空间观念和一定的创新意识.第2课时线段垂直平分线的性质【知识与技能】1.探索并了解线段垂直平分线的有关性质.2.尺规作图.3.应用线段垂直平分线的性质解决一些实际问题.【过程与方法】从生活实践中探索轴对称现象的共同特征,进一步发展空间观念.【情感态度】培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感.【教学重点】线段的垂直平分线的性质及作法、应用.【教学难点】用尺规作线段的垂直平分线.一、情景导入,初步认知1.什么是轴对称图形及轴对称图形的性质?2.下列图形哪些是轴对称图形?【教学说明】使学生对小学学过的生活中的轴对称图形进一步加深印象,熟悉轴对称图形及对称轴,为本节课学习做铺垫.二、思考探究,获取新知探究1:线段的对称性1.线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?2.做一做:按下面步骤做:①用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.②把纸展开.3.观察自己手中的图形,回答下列问题:①折痕与AB有什么样的位置关系?②AO与OB相等吗?能说明你的理由吗?【归纳结论】①线段是轴对称图形.它的对称轴有两条:一条是线段AB本身所在的直线;另一条是折痕.②它的对称轴垂直于这条线段并且平分它.③垂直于一条线段且平分这条线段的直线叫这条线段的垂直平分线(简称中垂线).探究2:垂直平分线的性质动手操作:作线段AB的中垂线MN,垂足为C;在MN上任取一点P,连结PA、PB;量一量:PA、PB的长,再换别的点试试,你能发现什么?PA=PB P1A=P1B由此你能得到什么规律?【归纳结论】线段垂直平分线上的点到这条线段两个端点的距离相等.【教学说明】可以运用全等来说明.教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想.探究3:作线段的垂直平分线1.已知线段AB,请画出它的垂直平分线.作法:第一步:分别以A、B为圆心,以大于AB一半的长度为半径画弧,两弧在AB 的两侧分别相交于点M和点N;第二步:经过点M和点N画直线;直线MN就是线段AB的垂直平分线.2.各小组讨论:为什么所作的直线就是已知线段的垂直平分线?【教学说明】尺规作图能培养学生严谨的学习习惯,严密的逻辑思维和空间想象能力.尺规作图既能展现数学美,又能培养学生的学习兴趣.三、运用新知,深化理解1.见教材P124例12.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为( B )A.6B.5C.4D.33.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( C )A.80°B.70°C.60°D.50°4.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,求线段DE 的长.解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,∴ED+DC+EC=24,①BE+BD-DE=12.②①-②得,DE=6.5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.6.如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连结BE.试判断EF与DE的数量关系并说明理由.解:(1)直线l即为所求.(2)EF=2DE.理由:在Rt△ABC中,∵∠A=30°,∴∠ABC=60°,又∵l为线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°∴∠EBC=30°=∠EBA,∠FEC=60°又∵ED⊥AB,EC⊥BC∴ED=EC.在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.【教学说明】通过对不同题型的练习来对本节知识进行巩固.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题5.4”中第1、2、3题.2.完成同步练习册中本课时的练习.数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流的方式去获取数学知识.本节的教学主要是通过学生的动手实验来获取中垂线的有关知识,用纸张进行折叠活动使学生真正的经历了数学知识的形成过程,使课堂气氛变得生动而活泼.在得出实验结论后,提供典型的练习题和实际应用题,让学生经历数学知识的应用过程,同时培养他们解决实际问题的能力.第3课时角平分线的性质【知识与技能】1.掌握作已知角的平分线的尺规作图方法.2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.【过程与方法】在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉.【情感态度】使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.【教学重点】角平分线的性质.【教学难点】角平分线性质的应用.一、情景导入,初步认知不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?【教学说明】体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙打下基础.二、思考探究,获取新知探究1:角的对称性角是轴对称图形吗?把∠AOB对折,你发现了什么?【归纳结论】角是轴对称图形,对称轴是角平分线所在的直线.探究2:角平分线的性质动手操作:1.把∠BAC对折.2.在折痕(即角平分线)上任意找一点O,3.过点O折AC边的垂线,得到新的折痕OD,其中,点D是折痕与AC的交点,即垂足.4.过点O折AB边的垂线,将纸打开,新的折痕与AB边交点为E.观察:OD与OE有什么关系?改变O的位置,OD与OE还存在这种关系吗?【归纳结论】角的平分线上的点到角两边的距离相等.几何语言:∵AO是∠BAC的平分线,OE⊥AB,OD⊥AC,∴OE=OD.【教学说明】从实验探索中发现角的平分线的性质,培养学生的数学抽象概括能力及理性精神,让学生体验成功.探究3:尺规作角平分线已知:∠BOA;求作:∠BOA的角平分线.作法:1.以O为圆心,任意长度为半径作弧,分别与角的两边交于点D、E;2.分别以D、E为圆心,大于DE一半的相同长度为半径作弧,两弧在角的内部交于C;3.作射线OC,∴射线OC为∠BOA的角平分线.你能证明吗?【教学说明】从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力,让学生体验成功的乐趣.三、运用新知,深化理解1.见教材P126例22.如图所示,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是( A )A.3B.4C.5D.63.如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE ⊥AB于E,且AB=6cm,则△DEB的周长为( B )A.4cmB.6cmC.10cmD.以上都不对4.如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有( D )A.一处B.二处C.三处D.四处5.如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°.DE与DF相等吗?为什么?解:DE=DF.理由:如图,作DM⊥AB于M,DN⊥AC于N,又∵AD平分∠BAC,∴DM=DN,∵∠EAF+∠EDF=180°,∴∠AED+∠AFD=360°-180°=180°,∵∠AFD+∠CFD=180°,∴∠AED=∠CFD,∴△DME≌△DNF(AAS),∴DE=DF.6.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.AC与BC相等吗?为什么?解:AC=BC.理由:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE,∵∠DCA=∠ECB,∠ADC=∠BEC=90°,∴△ACD≌△BCE(ASA),∴AC=BC.7.如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G 在A区,到公路和铁路距离相等,且到铁路图上距离为1cm.(1)在图上标出仓库G的位置.(比例尺为1∶10000,用尺规作图)(2)求出仓库G到铁路的实际距离.解:(1)图略,仓库G在∠NOQ的平分线上,(2)仓库G到铁路的实际距离是100m.8.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.解:他这种作法对,理由如下:由作法可知:OC=OD,OB=OA,∠COB=∠DOA,∴△BCO≌△ADO(SAS),AC=BD,∴∠OCE=∠ODE,∵∠AEC=∠BED,∴△ACE≌△BDE(AAS),∴CE=DE,∵OE=OE,∴△OCE≌△ODE(SSS),∴∠COE=∠DOE,即OE平分∠MON.【教学说明】通过学生对角的平分线的知识进行独立练习,自我评价学习效果,及时发现问题.解决知识盲点,培养学生的创新精神和实践能力.四、师生互动,课堂小结我们这节课学习了哪些知识?五、教学板书1.布置作业:教材“习题5.5”中第1、2、3题.2.完成同步练习册中本课时的练习.本课题设计思路按操作、猜想、验证的学习过程,遵循学生的认知规律,体现了数学学习的必然性.教学始终围绕着问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,而后设计了第一个学生活动——折纸,让学生体验角的轴对称性,为角平分线性质做好铺垫.紧接着通过介绍简易角平分线推出了第二个学生活动——尺规作图,以达到复习全等和再次验证猜想的目的,猜想是否正确?还得进行证明,从而激发了学生学习数学的欲望和兴趣,使教学目标顺利达成.整堂课都以学生操作、探究、合作贯穿始终,在教学过程中给学生的思考留下足够的时间和空间,由学生自己去发现结论,学生在经历“将现实问题转化成数学问题”的过程中,对角平分线性质有了更深刻的认识,培养了学生动手、合作、概括能力,同时也提高了思维水平和应用数学知识解决实际问题的意识.4 利用轴对称进行设计【知识与技能】了解什么样的图形是轴对称图形及其对称轴的条数,能画出简单图形的对称轴及作出简单轴对称图形的另一半.【过程与方法】通过大量的观察分析、总结归纳和动手操作,不但对轴对称的基本知识有了充分的理解,而且体验到了轴对称的美与和谐.【情感态度】感受轴对称与生活的广泛联系和丰富的文化价值.【教学重点】通过观察、操作,进一步理解对称及其性质.【教学难点】利用轴对称的知识,描述图形经折叠剪开后的图案.一、情景导入,初步认知我们生活在一个充满美丽与和谐的空间,在这里大到有宏伟的建筑,小到有精巧的剪纸都是对称的.轴对称带给我们的美丽无时无刻不在感染着我们.今天,就让我们也为这美妙的世界添上一笔靓丽的色彩:利用轴对称进行设计.【教学说明】调动学生的积极性,激发兴趣.二、思考探究,获取新知1.请同学们取出准备好的长30cm、宽6cm的纸条.如果先把纸条纵向对折,再折成“手风琴”,然后在上面画上其他图案,会得到怎样的花边,先猜一猜,再做一做,把你得到的花边剪下来.观察展开图回答下面的问题:在“手风琴”式的折纸中,纸上的折痕是对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理初中数学
5.1 轴对称现象
三维目标: 1.知识技能目标:感知生活中的轴对称现象 ,探索轴对称的共同特征 . 2.数学思考目标:通过大量的实例初步认识轴对称 ,能识别简单的轴对称图形及其对称轴. 3.问题解决目标:初步了解对称在生活中大量存在 ,理解学习对称的必要性 . 4.情感态度目标:欣赏生活中的轴对称 ,体会其文化底蕴及价值 ,学为所用. 批 注
重点难点:
重点:在具体的情境中,认识一些基本的几何体,并能描述这些几何体的
特征.
教学难点:是描述几何体的特征,对几何体进行分类.
教具准备:
教师:多媒体课件 .
学生:分小组收集与对称相关的图片和实物
教学方法:
教 学 过 程
教学环节设计:
一.情境引入
从各小组收集的图片中有代表性的选择一些 ,用投影仪演示 。使学生能
够形象直观地感受图形的对称:
二.观察、列举、创造轴对称图形
问题1:观察下列图形:看看与刚才我们展示的图像有什么共同的特
征?:
鼓励学生大胆表述,学生基本都能说出“沿一条直线折叠能够重合”。
问题2:请同学们在书上画出这条直线。
问题3:以小组为单位,将准备好的纸、笔尖、剪刀等用具,创出一个具
有以上特点的图形或图案。例:
最新整理初中数学
问题4:再让学生描述所有图形的特点,由学生相互补充。
把一个平面图形沿着某条直线对折,直线两旁的部分能够完全重合,那么
这个图形叫做轴对称图形。这条直线叫做对称轴。
理解轴对称图形应注意什么?学生交流讨论教师归纳。
三.观察、列举、创造成轴对称的图形
问题1:观察下列图片,引导学生观察这些图形的轴对称特点,并
比较和上一环节的图形有什么不同。
通过电脑操作让一个图形沿着中间的直线翻折,通过观察得知:左边的
一个图形和右边的另一个图形能够重合,引导学生区别于与“轴对称图形”
的不同点。
对于两个平面图形,如果沿一条直线对折后能够完全重合,那么称
这两个图形成轴对称,这条直线叫做这两个图形的对称轴。
理解轴对称应注意什么?学生交流讨论教师归纳。
问题2:要求学生分组用两个相同的物体,摆成“轴对称”的位置。
问题3:思考(1)成轴对称的两个图形一定全等吗?
(2)全等的两个图形一定成轴对称吗?
巩固运用,P26随堂练习1
四.拓展思维
五.课堂小结
图形号码 1 2 3 4 5 6 7 ··· n
对称轴条数 ···