蒙特卡罗算法与matlab(精品教程)
matlab用蒙特卡洛方法进行概率和分位计算

matlab用蒙特卡洛方法进行概率和分位计算【主题】matlab用蒙特卡洛方法进行概率和分位计算【序号1】引言在概率和统计领域,计算概率和分位数一直是一个重要的课题。
传统的方法可能在计算复杂的分布时显得力不从心,而蒙特卡洛方法却能够以随机模拟的方式来解决这些问题。
本文将介绍如何使用MATLAB来进行概率和分位计算,重点讨论如何利用蒙特卡洛方法来进行模拟,以及如何在MATLAB环境中实现这一过程。
【序号2】MATLAB中的蒙特卡洛方法MATLAB作为一个强大的数值计算工具,提供了丰富的函数和工具箱,可以方便地进行概率和统计计算。
在MATLAB中,蒙特卡洛方法可以通过随机数生成函数和循环结构来实现。
我们需要生成符合指定分布的随机数样本,然后利用这些样本进行模拟计算,最终得到所需的概率和分位数结果。
【序号3】随机数生成在MATLAB中,可以利用内置的随机数生成函数来生成符合某个特定分布的随机数样本。
可以使用randn函数来生成符合正态分布的随机数样本,使用rand函数来生成在[0,1]区间均匀分布的随机数样本。
除了内置函数,MATLAB还提供了更多灵活的工具箱,可以生成更加复杂的分布样本,如指数分布、泊松分布等。
【序号4】模拟计算一旦得到了符合特定分布的随机数样本,就可以利用这些样本进行模拟计算。
以正态分布为例,我们可以利用蒙特卡洛方法来估计在某个区间内的概率,或者计算某个分位数的取值。
通过多次模拟,取平均值可以得到一个较为准确的估计结果。
在MATLAB中,可以利用循环结构和向量化的方式来高效地实现这一过程,并得到稳健可靠的结果。
【序号5】具体案例下面通过一个具体案例来展示如何在MATLAB中使用蒙特卡洛方法进行概率和分位计算。
假设我们需要计算标准正态分布的概率P(-1<Z<1)和95%的分位数。
我们可以利用randn函数生成一组标准正态分布的随机数样本,然后利用循环结构来进行模拟计算。
我们得到了P(-1<Z<1)约等于0.6827和95%的分位数约等于1.645,这些结果可以帮助我们更好地理解正态分布的性质。
matlab蒙特卡洛法求定积分

文章标题:探索matlab中的蒙特卡洛法求定积分在数学和计算科学中,求解定积分是一个常见的问题。
传统的数值积分方法中,蒙特卡洛法是一种非常有趣和强大的方法,能够对一些特殊的不易求解的定积分问题提供解决方案。
而在matlab这一强大的数学计算软件中,蒙特卡洛法同样有着广泛的应用。
1. 什么是蒙特卡洛法?蒙特卡洛法是一种基于随机采样的数值积分方法,其核心思想是利用随机抽样的方法逼近定积分的值。
具体来说,对于给定的函数$f(x)$以及区间$[a, b]$,蒙特卡洛法通过对函数在该区间上进行随机采样,并利用采样点的平均值来逼近定积分的值。
2. 在matlab中应用蒙特卡洛法在matlab中,可以利用蒙特卡洛法求解定积分问题。
通过生成服从均匀分布的随机数,并代入原函数,然后求解采样点的平均值,可以得到定积分的近似值。
matlab内置了丰富的数学计算和随机数生成函数,能够方便地实现蒙特卡洛法的计算。
3. 实例分析:使用matlab进行蒙特卡洛法求解定积分假设我们要求解函数$f(x)=x^2$在区间$[0, 1]$上的定积分,即$$\int_{0}^{1} x^2 \, dx$$我们可以在matlab中编写如下代码:```matlabN = 1000000; % 设定采样点的个数X = rand(1, N); % 生成均匀分布的随机数Y = X.^2; % 代入原函数integral_value = mean(Y); % 求解采样点的平均值```通过上述代码,我们得到了定积分的近似值integral_value。
在这个例子中,我们利用蒙特卡洛法求得了定积分的近似值。
4. 总结与展望通过本文的介绍,我们对matlab中蒙特卡洛法求解定积分的方法有了初步的了解。
蒙特卡洛法作为一种基于随机采样的数值积分方法,在matlab中有着广泛的应用。
在实际应用中,我们可以根据定积分的具体问题来灵活选择采样点的个数,并结合matlab强大的数学计算能力,在求解定积分问题中取得更加准确的结果。
蒙特卡罗方法详解与MATLAB实现

蒙特卡罗方法详解与MATLAB实现1.定义问题:首先需要明确问题的数学表达式或目标函数。
2.设计抽样方法:根据问题的特点,设计合适的抽样方法,通过生成随机数进行模拟。
3.数据生成:根据设定的抽样方法,生成一组模拟数据。
4.计算统计量:根据数据计算求解问题所需要的统计量,如均值、方差、概率等。
5.统计推断:通过统计量的计算结果,进行推断和分析,得出对问题的解答或估计。
1.定义问题函数:首先需要用MATLAB编写问题的数学表达式或目标函数。
例如,如果要判断一个点是否在一些区域内,可以定义一个函数来判断该点的坐标是否满足区域的条件。
2. 设计抽样方法:根据问题的特点,设计合适的抽样方法,通过生成随机数进行模拟。
在MATLAB中可以使用rand(或randn(等函数生成随机数。
3.数据生成:根据设定的抽样方法,生成一组模拟数据。
可以使用循环来生成多组随机数,以模拟多次试验的结果。
4. 计算统计量:根据生成的模拟数据,计算求解问题所需要的统计量。
根据具体的问题,可以使用MATLAB内置的统计函数,如mean(、var(等。
5. 统计推断:根据统计量的计算结果,进行推断和分析,得出对问题的解答或估计。
可以使用if语句或逻辑判断来判断判断是否满足条件,得到对问题的解答。
以求解圆的面积为例,详细说明蒙特卡罗方法在MATLAB中的实现:1. 定义问题函数:定义一个函数isInsideCircle(x, y)来判断点(x, y)是否在单位圆内:function inside = isInsideCircle(x, y)if x^2 + y^2 <= 1inside = true;elseinside = false;endend2. 设计抽样方法:通过rand(函数在区间[-1, 1]上生成一组随机数,表示点的横纵坐标。
x = 2 * rand(n, 1) - 1;y = 2 * rand(n, 1) - 1;4.计算统计量:根据生成的模拟数据,计算圆的面积的统计量。
matlab蒙特卡洛方法

matlab蒙特卡洛方法蒙特卡洛方法是一种基于随机数的数值计算方法,通过生成大量的随机数,利用统计学的方法来解决数学模型中的问题。
该方法在很多领域都有广泛的应用,尤其在金融、物理学、计算机科学等领域中得到了广泛的应用。
蒙特卡洛方法的核心思想是通过对随机数的大量采样来近似计算数学模型中的数值。
下面以一个简单的例子来说明蒙特卡洛方法的应用。
假设我们想要计算圆周率π的值,可以通过蒙特卡洛方法来进行估计。
我们可以在一个单位正方形内随机生成大量的点,然后统计落入单位圆内的点的个数。
根据几何关系,我们可以得到以下公式:π/4 = (单位圆内的点数) / (总点数)通过上述公式,我们可以得到π的近似值。
当我们生成的随机数越多时,估计值越接近真实值。
除了计算圆周率,蒙特卡洛方法还可以应用于其他复杂的数学模型中。
比如在金融领域中,蒙特卡洛方法被广泛用于计算期权的价格。
期权是一种金融衍生品,其价格受到很多因素的影响,包括标的资产价格、波动率、利率等。
利用蒙特卡洛方法,我们可以生成一系列符合这些因素的随机数,并利用这些随机数来模拟期权价格的变化。
通过大量的模拟,我们可以得到期权价格的分布情况,进而进行风险度量和决策分析。
在物理学中,蒙特卡洛方法也有广泛的应用。
比如在核物理中,蒙特卡洛方法可以用来模拟粒子在物质中的传输过程。
通过生成大量的随机数,模拟粒子在不同材料中的散射、吸收等过程,可以得到粒子在物质中的传输概率和路径。
这对于研究核反应、辐射治疗等具有重要意义。
除了在科学研究领域,蒙特卡洛方法还可以应用于工程设计中。
比如在航天器设计中,蒙特卡洛方法可以用于模拟航天器在大气层中的热力学过程。
通过生成大量的随机数,模拟航天器在不同高度、速度、姿态等条件下的热流分布,可以评估航天器的热防护设计。
蒙特卡洛方法是一种重要的数值计算方法,通过生成大量的随机数来近似计算数学模型中的数值。
该方法在金融、物理学、计算机科学等领域中有广泛的应用。
Matlab学习系列18-蒙特卡罗方法

Matlab学习系列18-蒙特卡罗⽅法18. 蒙特卡罗⽅法(⼀)概述⼀、原理蒙特卡罗(Monte Carlo )⽅法,是⼀种基于“随机数”的计算机随机模拟⽅法,通过⼤量随机试验,利⽤概率统计理论解决问题的⼀种数值⽅法。
其理论依据是:⼤数定律、中⼼极限定理(估计误差)。
常⽤来解决如下问题:1. 求某个事件的概率,基于“频率的极限是概率”;2. 可以描述为“随机变量的函数的数学期望”的问题,⽤随机变量若⼲个具体观察值的函数的算术平均值代替。
⼀般形式为求积分:[]()()()d ba E f X f x x x ?=? X 为⾃变量(随机变量),定义域为[a,b], f (x )为被积函数,()x ?为概率密度函数。
蒙特卡罗法步骤为:(1) 依据概率分布()x ?不断⽣成N 个随机数x , 依次记为x 1, …, x N , 并计算f (x i );(2) ⽤f (x i )的算术平均值1()Nii f x N =∑近似估计上述积分类⽐:“积分”同“求和”,“d x ”同“1/N ”,“()x ?”同“服从()x ?分布的随机数”;(3) 停⽌条件:⾄⾜够⼤的N 停⽌;或者误差⼩于某值停⽌。
3. 利⽤随机数模拟各种分布的随机现象,进⽽解决实际问题。
⼆、优缺点优点:能够⽐较逼真地描述具有随机性质的事物的特点及物理实验过程;受⼏何条件限制⼩;收敛速度与问题的维数⽆关;误差容易确定。
缺点:收敛速度慢;误差具有概率性;进⾏模拟的前提是各输⼊变量是相互独⽴的。
三、应⽤随机模拟实验,随机最优化问题,含有⼤量不确定因素的复杂决策系统进⾏风险模拟分析(⾦融产品定价、期权)。
(⼆)⽤蒙特卡罗法求事件概率⼀、著名的“三门问题”源⾃博弈论的⼀个数学游戏:参赛者⾯前有三扇关闭的门,其中⼀扇门的后⾯藏有⼀辆汽车,⽽两扇门的后⾯各藏有⼀只⼭⽺。
参赛者从三扇门中随机选取⼀扇,若选中后⾯有车的那扇门就可以赢得该汽车。
当参赛者选定了⼀扇门,但尚未开启它的时候,节⽬主持⼈会从剩下的两扇门中打开⼀扇藏有⼭⽺的门,然后问参赛者要不要更换⾃⼰的选择,选取另⼀扇仍然关着的门。
matlabbootstrapping算法

matlabbootstrapping算法
Matlab蒙特卡罗(Bootstrap)算法介绍
1. 什么是Matlab蒙特卡罗(Bootstrap)算法?
Matlab蒙特卡罗(Bootstrap)算法是一种经典的机器学习方法,它可以通过模拟人们使用蒙特卡罗法的计算方式,来从输入数据中提取有用的参数。
这种方法通常被用于有限规模的机器学习问题,并且由于反复使用既有数据集和计算法则,因此
可以在相当小的计算和空间中获得很多信息。
2. Matlab蒙特卡罗(Bootstrap)算法的工作原理
Matlab蒙特卡罗(Bootstrap)算法的工作原理是很简单的,它的基本步骤是:首先,系统从输入数据中随机采样样本数据,注意,这里采样的是最大可能量;然后,按照用户指定的规则,利用采样出来的数据构建模型;最后,根据构建出来的模型,对新输入数据进行分析,从而获得输出数据。
3. Matlab蒙特卡罗(Bootstrap)算法的优势
4. Matlab蒙特卡罗(Bootstrap)算法的应用
Matlab蒙特卡罗(Bootstrap)算法可用于多种机器学习问题,例如文本分类、图像分类、语音识别、数据挖掘等。
这一算法的处理者应用,能够有效的解决复杂的机器学习问题,并减少大量的计算成本。
综上所述,Matlab蒙特卡罗(Bootstrap)算法是一种有效且简单易操作的机器学习方法,它能够有效地从输入数据中提取有用的参数并用于模型的构建,从而实现精准的分析结果,并有效的解决复杂的机器学习问题。
因此, Matlab蒙特卡罗(Bootstrap)算法在机器学习领域非常强大,具有广泛的应用前景。
matlab解决整数规划问题(蒙特卡洛法)
matlab解决整数规划问题(蒙特卡洛法)整数规划:clc,clear;c = [-40;-90];A = [9 7;7 20];b = [56;70];lb = zeros(2,1);[x,fval]= intlinprog(c,1:2,A,b,[],[],lb);fval = -fvalx分⽀定界法或者割平⾯法求解纯或者混合整数线性规划问题;输出:当条件A,B之间不是且关系⽽是或的时候:固定成本问题(最优化函数中含有与xi⽆关的常量,相当于固定成本,优化函数可以写成总固定成本加上总可变成本之和):0-1整数规划问题(过滤隐枚举法,分枝隐枚举法)指派问题(0-1规划特殊情形:匈⽛利法)蒙特卡洛法(求解各种类型规划)下⾯主要介绍蒙特卡洛法(随机取样法):例题:如果⽤显枚举法试探,需要计算1010个点,计算量巨⼤。
但是⽤蒙特卡洛去计算106个点便可以找到满意解。
前提:整数规划的最优点不是孤⽴的奇点;⽽采集106个点后,我们有很⼤把握最优值点在106个点之中;function [f,g] = mengte(x);f = x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-...x(4)-2*x(5);g = [sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200];rand('state',sum(clock));p0 = 0;ticfor i = 1:10^6x = 99*rand(5,1);x1 = floor(x);x2 = ceil(x);[f,g] = mengte(x1);if sum(g<=0)==4if p0<=fx0 = x1;p0=f;endend[f,g] = mengte(x2);if sum(g<=0)==4if p0 <= fx0 = x2;p0 = f;endendendx0,p0toc输出:蒙特卡洛法得到的解为最优解的近似解,10^6个数据已经⽤了将近7s的时间,所以如果增加⼗倍,可能得70s时间才能得到结果。
蒙特卡洛模拟法及其Matlab案例
一蒙特卡洛模拟法简介蒙特卡洛(Mon te Ca rlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。
具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。
由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。
这个术语是二战时期美国物理学家Me tropo lis执行曼哈顿计划的过程中提出来的。
蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
二蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。
解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。
通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
用蒙特卡洛方法估计积分方法及matlab编程实现
用蒙特卡洛方法估计积分方法及matlab编程实现专业班级:材料43学生姓名:王宏辉学号:2140201060指导教师:李耀武完成时间:2016年6月8日用蒙特卡洛方法估计积分 方法及matlab 编程实现实验内容:1用蒙特卡洛方法估计积分 2sin x xdx π⎰,2-0x e dx +∞⎰和22221xy x y e dxdy ++≤⎰⎰的值,并将估计值与真值进行比较。
2用蒙特卡洛方法估计积分 21x e dx ⎰和2244111x y dxdy x y+≤++⎰⎰的值,并对误差进行估计。
要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值; (3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针 对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。
目的:(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数 及其期望、方差、协方差等;(2) 熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;(3) 能用 MATLAB 熟练进行样本的一元回归分析。
实验原理:蒙特卡洛方法估计积分值,总的思想是将积分改写为某个随机变量的数学期望,借助相应的随机数,利用样本均值估计数学期望,从而估计相应的积分值。
具体操作如下:一般地,积分⎰=bdx x g a )(S 改写成⎰⎰==bbdx f h dx f g aa )(x )(x )(x f(x))(x S 的形式,(其中为)f(x 一随机变量X 的概率密度函数,且)f(x 的支持域)(}{b f ,a 0)(x |x ⊇>),f(x))(x )(x g h =);令Y=h(X),则积分S=E (Y );利用matlab 软件,编程产生随机变量X 的随机数,在由⎩⎨⎧∉∈==)b (a,,)b (a,,01I(x) ,)(x )(x y x x I h ,得到随机变量Y 的随机数,求出样本均值,以此估计积分值。
蒙特卡罗算法及其Matlab的简单求PI
蒙特卡罗算法及其Matlab的简单求PI模拟一、蒙特卡罗算法简介也许有人不知道,位于摩纳哥的蒙特卡罗是当今世界三大赌城中,资格和牌子最老的赌城(其余两大赌城用脚趾头就能猜到是拉斯维加斯和澳门,^_^)。
蒙特卡罗算法以该城市命名,不难知道该算法肯定与赌博概率相关。
百度百科给出的介绍如下:蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
蒙特·卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
二、本文的目的本文将通过一个简单的求PI的程序来揭开蒙特卡洛算法神秘的面纱。
三、基本思路我们首先产生1000(这个可以自己设定)组随机数据对(x,y),其中<0|x|<1,0<|y|<1。
在matlab中可以通过unifrnd(-1,1,1000,2)来实现,其中每一行表示一个点。
可以想象,如果数据对足够多的话,其落在单位圆和单位正方形中的概率是相等的,由于我们设定了x,y的范围,因而这里点(x,y)总是落在正方形内的,我们只需求出落在圆内的点数,以这些点数模拟成圆的面积。
也即(pi*r^2)/(2*r)^2 = 圆内点数/ 正方形点数,通过该公式我们就可以求出pi = 4*圆内点数/正方形点数。
四、Matlab代码function y = metekaro(nums)% 蒙特卡罗算法的简单模拟,输入nums对绝对值x,y都小于1的数(x,y),通过落在圆内的点数来求pi% 产生nums对坐标数据(x,y)D = unifrnd(-1,1,nums,2);% 落在圆中的点数inCircle = 0;% 获取行数,也即nums的值rows = size(D,1);% 对每一对数据进行检测for i = 1:rows% 如果落在圆内,圆内的点数+1,落在正方形内的点数就为nums的数值if (D(i,1)^2 + D(i,2)^2) < 1inCircle = inCircle + 1;endend% 圆的面积/正方形的面积= 圆内的点数/正方形内的点数y = 4*inCircle/rows;% 输出pi值disp(['pi的近似值为:' num2str(y)])。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:Monte Carlo方法概述讲课人:Xaero Chang | 课程主页: /notes/intro2mc本章主要概述Monte Carlo的一些基础知识,另外包括一个最简单的用Monte Carlo方法计算数值积分的例子。
一、Monte Carlo历史渊源Monte Carlo方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法,基本思想是基于概率和体积间的相似性。
它和Simulation有细微区别。
单独的Simulation只是模拟一些随机的运动,其结果是不确定的;Monte Carlo 在计算的中间过程中出现的数是随机的,但是它要解决的问题的结果却是确定的。
历史上有记载的Monte Carlo试验始于十八世纪末期(约1777年),当时布丰(Buffon)为了计算圆周率,设计了一个“投针试验”。
(后文会给出一个更加简单的计算圆周率的例子)。
虽然方法已经存在了200多年,此方法命名为Monte Carlo则是在二十世纪四十年,美国原子弹计划的一个子项目需要使用Monte Carlo方法模拟中子对某种特殊材料的穿透作用。
出于保密缘故,每个项目都要一个代号,传闻命名代号时,项目负责人之一von Neumann灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称,自此这种方法也就被命名为Monte Carlo方法广为流传。
十一、Monte Carlo方法适用用途(一)数值积分计算一个定积分,如,如果我们能够得到f(x)的原函数F(x),那么直接由表达式: F(x1)-F(x0)可以得到该定积分的值。
但是,很多情况下,由于f(x)太复杂,我们无法计算得到原函数F(x)的显示解,这时我们就只能用数值积分的办法。
如下是一个简单的数值积分的例子。
数值积分简单示例如图,数值积分的基本原理是在自变量x的区间上取多个离散的点,用单个点的值来代替该小段上函数f(x)值。
常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来,用这个面积来近似函数f(x)(蓝色曲线)与x轴围成的面积。
这样做当然是不精确的,但是随着分段数量增加,误差将减小,近似面积将逐渐逼近真实的面积。
Monte Carlo数值积分方法和上述类似。
差别在于,Monte Carlo方法中,我们不需要将所有方柱的面积相加,而只需要随机地抽取一些函数值,将他们的面积累加后计算平均值就够了。
通过相关数学知识可以证明,随着抽取点增加,近似面积也将逼近真实面积。
在金融产品定价中,我们接触到的大多数求基于某个随机变量的函数的期望值。
考虑一个欧式期权,假定我们已经知道在期权行权日的股票服从某种分布(理论模型中一般是正态分布),那么用期权收益在这种分布上做积分求期望即可。
(五)随机最优化Monte Carlo在随机最优化中的应用包括:模拟退火(Simulated Annealing)、进化策略(Evolution strategy)等等。
一个最简单的例子是,已知某函数,我们要求此函数的最大值,那么我们可以不断地在该函数定义域上随机取点,然后用得到的最大的点作为此函数的最大值。
这个例子实质也是随机数值积分,它等价于求此函数的无穷阶范数(-Norm)在定义域上的积分。
由于在金融产品定价中,这部分内容用的相对较不常见,所以此课程就不介绍随机最优化方法了。
十二、Monte Carlo形式与一般步骤(一)积分形式做Monte Carlo时,求解积分的一般形式是:X为自变量,它应该是随机的,定义域为(x0, x1),f(x)为被积函数,ψ(x)是x 的概率密度。
在计算欧式期权例子中,x为期权到期日股票价格,由于我们计算期权价格的时候该期权还没有到期,所以此时x是不确定的(是一随机变量),我们按照相应的理论,假设x的概率密度为ψ(x)、最高可能股价为x1(可以是正无穷)、最低可能股价为x0(可以是0),另外,期权收益是到期日股票价格x 和期权行权价格的函数,我们用f(x)来表示期权收益。
(二)一般步骤我将Monte Carlo分为三加一个步骤:1.依据概率分布ψ(x)不断生成随机数x, 并计算f(x)由于随机数性质,每次生成的x的值都是不确定的,为区分起见,我们可以表示生成的第i个x。
生成了多少个x,就可以计算给生成的x赋予下标。
如xi出多少个f(x)的值2.将这些f(x)的值累加,并求平均值例如我们共生成了N个x,这个步骤用数学式子表达就是3.到达停止条件后退出常用的停止条件有两种,一种是设定最多生成N个x,数量达到后即退出,另一种是检测计算结果与真实结果之间的误差,当这一误差小到某个范围之内时退出。
有趣的类比:积分表达式中的积分符合类比为上式中累加符号,dx类比为1/N(数学知识告诉我们积分实质是极限意义下的累加;f(x)还是它自己,积分中的ψ(x)可类比为依据ψ(x)生成随机数4.误差分析Monte Carlo方法得到的结果是随机变量,因此,在给出点估计后,还需要给出此估计值的波动程度及区间估计。
严格的误差分析首先要从证明收敛性出发,再计算理论方差,最后用样本方差来替代理论方差。
在本课程中我们假定此方法收敛,同时得到的结果服从正态分布,因此可以直接用样本方差作区间估计。
详细过程在例子中解释。
这个步骤的理论意义很重要,但在实际应用中,它的重要性有所淡化,倘若你的老板不太懂这些知识,你报告计算结果时可以只告诉他点估计即可。
注意,前两大步骤还可以继续细分,例如某些教科书上的五大步骤就是将此处的前两步细分成四步。
十三、最简单的例子举个例子:计算从函数从0到2的定积分值。
数学方法:我们已知的原函数是,那么定积分值就是:=6.38905609893065 。
计算这个数值可以在Matlab中输入代码:exp(2)-exp(0)上面得到的值是此不定积分的真实值。
常规数值积分:在区间内取N个点,计算各个点上的函数值,然后用函数值乘以每个区间宽度,最后相加。
Matlab代码:N=100;x=linspace(0,2,N);sum(exp(x).*2/N)试着调大N的值,你会发现,最后的结果将更接近真实值。
Monte Carlo数值积分法:在内随机取N个点,计算各个点上的函数值,最后求这些函数值的平均值再乘以2(为何要乘以2在后面小节详细讲)。
看Matlab代码:N=100;x=unifrnd(0,2,N,1);mean(2*exp(x))同样的,通过增大N,这种方法得到的结果也将越来越接近真实值。
解释这个例子要求的积分形式是:,还不完全是形式,我们先做变换,,这里是f(x);1/2是ψ(x),它表示,在取值范围(0,2)区间内,x服从均匀分布。
前一例子共三条语句,逐句解释如下:N=100;设定停止条件,共做N次Monte Carlo模拟。
x=unifrnd(0,2,N,1);按照(0,2)区间均匀分布概率密度对x随机抽样,共抽取N个xi。
此句相当于第一个步骤中的前半部分。
mean(2*exp(x))2*exp(x)作用是对每个xi 计算f(xi)的值,共可得到N个值,这个相当于第一个步骤后半部分;Mean()函数的作用是将所有的f(xi)加起来取平均值,相当于第二个步骤。
这段代码中的停止条件隐含于N值设定中,它一次性生成N个x值,完成此次计算后整个程序就结束了。
十四、Monte Carlo方法的优点对比前面常规数值积分和Monte Carlo数值积分代码,同样数量的N值——也就意味这几乎相同的计算量——常规数值积分结果的精确度要高于Monte Carlo数值积分的结果。
那么,我们为何还需要用Monte Carlo来算数值积分呢?答案的关键在于,常规数值积分的精度直接取决于每个维度上取点数量,维度增加了,但是每个维度上要取的点却不能减少。
在多重积分中,随着被积函数维度增加,需要计算的函数值数量以指数速度递增。
例如在一重积分中,只要沿着x轴取N个点;要达到相同大小的精确度,在s重积分中,仍然需要在每个维度上取N 个点,s个纬度的坐标相组合,共需要计算N s个坐标对应的f()函数值。
取点越多,会占用计算机大量内存,也需要更长运算时间,最终导致这种计算方法不可行!Monte Carlo方法却不同,不管是积分有多少重,取N个点计算的结果精确度都差不多。
因此,即使在一重积分的情形下,Monte Carlo方法的效率比不过常规数值积分,但随着积分维度增加,常规数值积分的速度呈指数下降,Monte Carlo方法的效率却基本不变。
经验表明,当积分重数达到4重积分甚至更高时,Monte Carlo方法将远远优于常规数值积分方法。
现在回到金融产品定价,欧式期权理论定价公式只需要一重积分,此时Monte Carlo方法的效果不明显,但是如果我们考虑一个亚式期权:期限为1年期,期权价格基于此1年内每天某个时点时的价格,全年共252个交易日,这样此亚式期权理论定价公式是一个252重积分。
常规的数值积分方法,需要取N252个点,这个数有多大,你自己去计算一下就知道了(注意:N取值要远远大于2),常规数值积分方法不可行,只能用Monte Carlo。
综上,如果计算高维度多重积分,如路径依赖的exotic options(奇异期权)等金融产品定价,我们一般用的方法都是Monte Carlo。
十五、Monte Carlo方法原理(选读)Monte Carlo方法计算的结果收敛的理论依据来自于大数定律,且结果渐进地(Asymptotically)服从正态分布的理论依据是中心极限定理。
以上两个属性都是渐进性质,要进行很多次抽样,此属性才会比较好地显示出来,如果Monte Carlo计算结果的某些高阶距存在,即使抽样数量不太多,这些渐进属性也可以很快地达到。
这些原理在理论上意义重大,但由于我们一般遇上的Monte Carlo问题都是收敛的、结果也都是渐进正态分布,所以工作中使用时可以不加考虑。
详细推导见相关书籍。
第二章:随机数的生成讲课人:Xaero Chang | 课程主页: /notes/intro2mc本章第一节会简要复习随机变量的一些概念,但学习本章最好要有一定的数学基础。
第二节主要介绍如何生成一维概率分布的随机数,第三节介绍如何生成高维分布的随机数。
最后略提及伪随机数问题的应对策略。
由前文可知,Monte Carlo积分解决的问题形如,f(x)值只需由x值决定,因此此处最重要的就是如何生成服从ψ(x)概率分布的随机数。
可以说,正确生成随机数,Monte Carlo方法就做完了一半。
一、随机变量基本概念(一)随机变量现实世界中有很多可以用数字来衡量的事物,站在当前时间点来看,它们在未来时刻的值是不确定的。
例如,我们掷一骰子,在它停稳前,我们不可能知道掷出多少点(传说中的赌王除外,哈哈);例如某只股票在明天的股价,没有人能准确知晓第二天股票的价格(不然他就发惨了!)。