4.1.2中职数学-实数指数幂的运算法则
中职教育-数学(基础模块)上册课件:第4章 指数函数与对数函数.ppt

接下来,我们再用描点法作出函数y log 1 x 和y log 1 x
的图像.
2
3
对数函数的定义域为(0,+∞),在定义域内取若干个x 值,分别求出对应的y值,然后列表,如表4-8、表4-9所示.
表4-8
x
… 1/4 1/2 1
2
4
…
y
…
2
1
0 -1 -2 …
表4-9
x
… 1/9 1/3 1
3
9
…
y
…
2
1
0 -1 -2 …
以表中的x值为横坐标,对应的y值为纵坐标,在直角坐标
系中依次描出相应的点(x,y),然后用光滑的曲线依次连接
这些点,即可得到函数y log 1 x 和 y log 1 x 的图像,如图4-7
所示.
2
3
图4-7
一般地,对数函数 y loga x (a 0 且 a 1)具有下列性质:
第4章 指数函数与对数函数
4.1 • 实数指数幂 4.2 • 指数函数 4.3 • 对数 4.4 • 对数函数
内容简介:本章完成了由正整数指数幂到实数指数幂 及其运算的逐步推广过程,介绍了指数函数的概念、图像和 性质,引入了对数概念及运算法则,并在此基础上介绍了对 数函数的概念、图像和性质。
学习目标:理解有理数指数幂;掌握实数指数幂及其 运算法则;了解幂函数,理解指数函数的图像和性质;了解 指数函数的实际应用,理解对数的概念;掌握利用计算器求 对数值;了解积、商、幂的对数、对数函数的图像和性质及 对数函数的实际应用。
m
an
1 n am
计算器辅助求值
下面,我们以用CASIO
fx-82ES
中职数学-实数指数幂及其运算ppt课件

别的说明,底数都表示完整正版课数件 .
17
例3:用分数指数幂的形式表示下列各式:
a 2 a,a 33a 2, aa(式 中 a0 )
分析:此题应结合分数指数幂意义与有理指数幂运算性质。
解:
a2 aa2a1 2a21 2a5 2;
a33a2a3a2 3a32 3a131;
11
31 3
aa(aa2)2(a2)2a4.
我说明们:规若定a了>0分,数p指是数一幂个的无意理义数以,后则,ap表指示 数一个的确概定念的就实从数整. 数上指述数有推理广指到数有幂理的运数算指性 数质,. 上对述于关无于理整数数指指数数幂幂都的适运用算. 即性当质指,数对的 于范围有扩理大指到数实幂数也集同R样后适,用幂,的即运对算任性质意仍有然 理是下数述r,的s,3条均. 有下面的性质:
( 1) - 3 = ( 2 - 2) - 3 = 2 ( - 2 ) ( - 3 ) = 26= 64 ; 4
( 16) - 3 4= ( 2) 4 ( - 3 4) = ( 2) - 3= 27。
81
3完整版课件
3
8
14
练习:求值:
912,6432
,(
1
1
)5
32
完整版课件
15
⒋有理指数幂的运算性质
⑴ ar·as=ar+s (a>0,r,s∈Q);
⑵ (ar)s=ars (a>0,r,s∈Q);
⑶ (ab)r=ar br (a>0,b>0,r∈Q).
完整版课件
16
1.正数的正分数指数幂的意义:
m
a n na m (a 0 ,m ,n N *且 ,n 1 )
4.1实数指数幂要点

4.1实数指数幂编制说明2013-10-29新课标的理念和现代建构主义理论告诉我们,学生的学习是在三维目标指导下,建立在已有的经验的基础之上的主动建构过程。
在这一过程中,教师的作用是设计者、组织者、评估者、指导者,学生是学习活动的主体,只有充分发挥学生的积极性、主动性,才能提高建构的质量,我尝试利用这一理论来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教学目标分析、教法学法分析、教学评价分析四个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析:1.教材的地位与作用:本节内容安排在江苏省职业学校文化课教材数学第一册的第4.1节,它是继初中平方根和立方根的拓展和延续,为以后学习幂函数、指数函数打基础、做铺垫。
2.学情分析:(1)学生已基本掌握平方根与立方根概念。
(2)数学基础知识偏弱,学习缺少自信心,自学能力和自控能力都停留在较低层次上。
(3)学生学习兴趣不够浓,动力不强,学习效率较低,对数学问题的合作探究欲望不高。
(4)学生层次参次不齐,个体差异比较明显。
3.教学重点与难点:本节教学重点:n次方根以及分数指数幂的概念及性质。
本节教学难点:根式与分数指数幂的互化。
解决措施....:从学生熟悉的平方根与立方根入手,使用“任务单”让学生亲身参与,由此来引导学生对问题的思考,体验概念、公式形成过程,并逐步掌握问题的关键。
(根据教材重、难点,我制定如下教学目标)二、教学目标分析:新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程为主,同时成为学会学习和正确认识价值观为目的。
这要求我们在教学中以知识技能的培养为主线,渗透情感态度与价值观,并把这两者充分体现在教学过程中,新课标和现代建构主义指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据实数指数幂在教材内容中的地位与作用,结合学情分析,我设计如下教学目标:1.知识技能目标:⑴识记n次方根的概念,能区分奇次方根、偶次方根和n次算术根。
中职数学 实数指数幂及其运算ppt课件

;.
4
二、零指数幂
a 0 = 1(a ≠ 0 )
练习2
(1)8 0 =
;
(2)(-0.8 ) 0 =
;
(3)式子 ( a-b ) 0 =1 是否恒成立?为什么?
;.
5
如果取消 =aaammn-n(m>n,a≠0)中m>n的 限制,如何通过指数的运算来表示?
计算: 23
1
(1) 2=4
;2
=23-4
;.
17
例3:用分数指数幂的形式表示下列各式:
a 2 a,a 33a 2, aa(式 中 a0 )
分析:此题应结合分数指数幂意义与有理指数幂运算性质。
解:
a2 aa2a1 2a21 2a5 2;
a33a2a3a2 3a32 3a131;
11
31 3
aa(aa2)2(a2)2a4.
a ;. ?
18
例4:计算下列各式(式中字母都是正数)
=2-1
1
2-1 =223来自1(2) 2=6
;8
=23-6
=2-3
1
2-3 =
23
a-1= (a1≠0) a
规定 a-n= (aa1n≠0,nN+)
;.
6
三、负整数指数幂
a-1 = a-n =
(1 a ≠ 0) a (1 a ≠ 0,n N+ ) an
练习3
(1)8-2 =
;
(2)0.2-3 = ;
⑴ ar·as=ar+s (a>0,r,s∈Q); ⑵ (ar)s=ars (a>0,r,s∈Q); ⑶ (ab)r=ar br (a>0,b>0,r∈Q).
;.
高教版中职数学(基础模块)上册4.1《实数指数幂》ppt课件4

性质:
(1)(n a )n a(n N ,且n 1) (2)当n为奇数时,(n a )n a ;
当n为偶数时,(n a )n | a | a(a0), a(a0).
规定:
an (n N ) 叫做a的n次幂,a叫做幂的底数,n
叫做幂的指数。
1. m
a n n am
2.
m
4.1实数指数幂
探究:
已知 xn a,填写下表,并回答问题:
a 4 8 16 32 64 128 256 512 1024 n 2 3 4 5 6 7 8 9 10 x
(1)上表中,对于a=4,n=2,所填写的x叫做什么?对于 a=8,n=3,所填写的x呢? (2)当n=4,5, …时,所填写的x也可叫做什么?
(4)( 4 7)4;
2.将下列各分数指数幂写成根式的形式:
2
(1)75 ;
4
(2)b 3 (b 0)
3.将下列各根式写成分数指数幂的形式:
(1) 5 x4 ;
(2) 1 (x 0). 5 x3
实数指数幂及其运算法则:
(1)a m a n a mn ;
(2) a m a mn ; an
(3)(a m ) n a mn ;
(4)(ab)m ambm ;
(5)( a )n an (b 0) . b bn
其中 a 0,b 0, m, n R.
例题解析:
例3
求下列各式的值:
1
2
(1)100 2
;
(2)
-
8
3
;
(3)8
1 3
•
2
8 3.
例4 化简下列各式:
(1)aa a ; (2)3 3 • 3 3 • 6 3
中职数学基础模块上册《实数指数幂及其运算法则》 (2)ppt课件

(1
1
x3
2
2x 3
)
2
21
3、下列正确的是()
1
A、 x ( x) 2 ( x 0)
B、x
1 3
3
x
C、( x
)
3 4
4
( y )3 ( x, y 0)
y
x
1
D、6 y 2 y 3 ( y 0)
22
小结:①分数指数幂的意义及运算性质
②指数概念的扩充,引入分数指数幂概念后,
实数指数
1
一、正整数指数幂
一般地,a n(n N+)叫做 a 的 n 次幂.
幂
an
指数(nN+)
底数
规定:
a 1= a .
2
练习1 (1)2 3×2 4 =
(2)( 2 3 ) 4 = 24
(3) 23 = (4)( x y ) 3=
; aman= ;
; (am)n=
;
;
am an
=
( m > n,a ≠ 0 );
指数概念就实现了由整数指数幂向有理数指数 幂的扩充 .
而且有理指数幂的运算性质对于无理指数幂也适 用,这样指数概念就扩充到了整个实数范围。
③对于指数幂 a n ,当指数n扩大至有理数时,
要注意底数a的变化范围。如当n=0时底数a≠0; 当n为负整数指数时,底数a≠0;当n为分数时, 底数a>0。
23
13
例2:求值:
2
83,
-1
100 2
,(
1
)-3,(16
)-43
4
81
分析:此题主要运用有理指数幂的运算性质。 解:
823=(23)23=23
(完整word)高教版中职数学(基础模块)上册4.1《实数指数幂》

课题名称 4.1 实数指数幂授课班级13机电 1授课时间课题序号授课课时第到授课形式启迪、类比使用教具课件1. 识记 n 次方根的观点,能划分奇次方根、偶次方根和n 次根算式根。
教学目的 2. 能描绘分数指数幂的定义,会进行根式与分数指数幂的互化。
3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。
教学重点有理数指数幂的运算、实数指数幂的综合运算教学难点有理数指数幂的运算、实数指数幂的综合运算更新、补充、删减无内容课外作业1. P 96 习题。
实数指数幂授课主要思虑沟通例题讲堂小结观点内容或板书设计问题解决练习教学后记教课过程师生活动设计意主要教学内容及步骤图等一、复入:二、新:研究(本 90 )引学生回初中1.观点学的平方根、立方根的一般地,假如 x n a( n N , 且 n1) ,称x a桂梅观点,启学生思虑当指数分取 4,5 ,⋯,的 n 次方根。
x 的名称确立,比如:指数分取奇数和偶数底数的异同。
当n 奇数,正数的n 次方根是一个正数,数的n次方根是一个数。
, a 的 n 次方根只有一个,作n a 。
比如:当 n 偶数,正数 a 的 n 次方根有两个,它互相反数,作±n a的形式。
数没有偶次方根。
0 的任何次方根都是0.正数 a 的正的 n 次方根叫做 a 的 n 次算式根。
作n a 。
当n a 存心,把n a 叫做根式,此中n叫做根指数,a 叫做被开方数。
性:(1)(na) n(,且n1)a n N(2)当 n 奇数,(n a)n a ;当 n 为偶数时, (n a )na (a 0 ), | a |a( a 0).m(3) a nna m ;m11 (4) anmna ma n例 1 将以下各分数指数幂写成根式的形式:22(1) a 3 ;(2) b 3 .例 2 将以下各根式写成分数指数幂的形式:(1)5a 2; (2)1.3a 5思虑沟通1. 0 的正分数指数幂是。
4.1实数指数 教案-2021-2022学年人教版(山东专用)中职数学第一册

授课班级21机1、汽1 授课内容 4.1实数指数授课地点835、803 授课时间12.20-12.21教学目标知识目标1.理解整数指数幂及其运算律,并会进行有关运算.了解根式的概念和性质;2.理解分数指数幂的概念;掌握有理数指数幂的运算性质.能力目标会对根式、分数指数幂进行互化.素质目标1.培养学生的观察、分析、归纳等逻辑思维能力;2.培养学生勇于发现、勇于探索、勇于创新的精神;3.培养学生合作交流等良好品质.教学重难点教学重点零指数幂、负整指数幂的定义,分数指数幂的概念以及分数指数幂的运算性质.教学难点零指数幂及负整指数幂的定义过程,整数指数幂的运算.对分数指数幂概念的理解.教学过程教学环节教学内容学生活动教师活动设计意图一、回顾旧知,做实铺垫(情景导入)在一个国际象棋棋盘上放一些米粒,第一格放1粒,第2格放2粒,第3格放4粒……一直到第64格,那么第64格应放多少粒米?第1格放的米粒数是1;第2格放的米粒数是2;第3格放的米粒数是2×2;第4格放的米粒数是2×2×2;学生在教师的引导下观察图片,明确教师提出的问题,通过观察课件,归纳、探究答案.师:通过上面的解题过程,你能发现什么规律?那么第64格放多少米粒,怎么表示?学生回答,教师针对学生通过问题的引入激发学生学习的兴趣.课程思政:在问题的分析过程中,培养学生归纳推理的能力.2个23个2二、引课示标,明确方向三、自学质疑,合作探究第5格放的米粒数是2×2×2×2;……第64格放的米粒数是2×2×2× (2)1.分数指数幂的概念以及分数指数幂的运算性质.2.对分数指数幂概念的理解.自学范围:课本P62-P64自学时间:6分钟自学要求:1、找出正整数,负整数指数的运算法则并做标记;2、圈画出它们的运算法则字母表示方法;自学问题:1.正整数,负整数指数的运算法则2.根式有关概念3.根式的性质4.分数指数幂5.实数指数幂的运算法则自学分享一、根式1.当n是正整数时,a n叫正整指数幂.2规定:a0=1 (a≠0)3.我们规定:a-1=1a(a≠0)学生解答.全班齐读学习目标,30秒内内化学生在6分钟内自学记录自学过程中产生的疑惑完成自学要求预设问题:学生对于幂的认识不足的回答给予点评.并归纳出第64格应放的米粒数为263.教师讲解重难点,解析目标,让学生明确学习方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.2 实数指数幂及其运算法则
一、教材分析
本节课是新课标职业高中数学基础模块上册第四章实数指数幂第二课时,也是指数函数的入门课程。
指数函数对于学生来说是一个全新的函数模型,学习起来比较困难。
而实数指数幂的运算是指数函数的基础,是认识指数函数的先遣队。
我们通过初中学习整数指数幂的运算,进一步推广到实数指数幂的运算,为我们的指数函数铺路搭桥。
实数指数幂的运算是高中数学中的一类重要运算,需要理解运算对象,掌握运算法则,探究运算思路,选择运算方法,是培养学生具备运算能力的重要载体。
通过本节课的学习,可以让学生重新认识幂运算,为指数函数做铺垫。
从而更清晰,深刻地认识和理解指数函数模型,培养学生的逻辑思维能力。
二、学情分析
学生进入高中学习时间短,运算能力,逻辑思维能力,探究能力,合作学习能力还不够成熟。
需要在我们的教学过程中继续强化,引导。
初中已经学习《整数指数幂及其运算法则》。
本节课是在初中学习基础上继续深入学习,将幂指数的限定由整数推广到实数,运算法则不变,所以学生有前面的基础,我们的探究过程会显得更加从容,学生能够通过合作交流完成猜想与探究。
通过对不等式的学习,已有一定的运算基础,同时对相互转化的思想,探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究新知的认识基础,故应通过指导,教会学生独立思考、团结协作、大胆猜测和灵活运用类比、转化、归纳等学习方法。
三、教学设计
0.
,且a≠时,规定
四、板书设计:
五、课后反思
学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我采用学生独立完成加小组合作交流,分享小组成果等方式调动学生主动参与的积极性。
在教学重难点上,循序渐进、启发学生的思维,通过课堂练习、学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
在探索新知的过程中,最重要的环节是论证猜想,但由于学生知识受限,不能很好地理解证明,所以本节课没有对结论进行证明,使学生不能完整体会探索精神,科学精神。
将在以后的教学中弥补这一缺失。