黑体技术
热辐射和黑体辐射

热辐射和黑体辐射热辐射是指物体由于热运动而发射出的能量,是一种无需介质传递的辐射方式。
这种辐射的能量主要由电磁波组成,包括可见光、红外线、紫外线等。
而黑体辐射则是研究热辐射的理想模型,它是指一个能完全吸收所有辐射能量并且不反射也不透射的物体。
一、热辐射的基本原理热辐射的基本原理可以归结为两个方面:物体内部热能的分子运动和辐射能量的辐射出去。
热辐射的程度和物体的温度有关,温度越高,物体辐射的能量越多。
根据斯特藩-玻尔兹曼定律,辐射的能量与物体的绝对温度的四次方成正比。
二、黑体辐射的特点黑体辐射是指完全吸收所有入射辐射能量的物体,它可以作为热辐射的理想模型来研究。
与其他物体相比,黑体辐射有着独特的特点:1. 完全吸收:黑体可以完全吸收所有辐射能量,不进行反射和透射。
2. 完全发射:黑体可以以任意波长和任意强度发射辐射能量。
3. 理想辐射源:黑体辐射的能量分布只和温度有关,而与黑体的材料和形状无关。
三、黑体辐射的定律为了描述黑体辐射的能量分布规律,人们提出了以下两个基本定律:1. 基尔霍夫定律:一个处于热平衡状态的物体,吸收的辐射能量与它发射的辐射能量在同一波长范围内完全相等。
2. 普朗克定律:黑体辐射的能量密度与频率成正比,而且与温度的四次方成正比。
四、热辐射的应用热辐射在生活中有着广泛的应用,以下是一些常见的应用场景:1. 热能转换:热辐射可以用来转换成其他形式的能量,比如太阳能的利用、热电转换等。
2. 照明技术:可见光是热辐射的一部分,因此热辐射的研究对于改善照明技术非常重要。
3. 医学诊断:红外线辐射可以用于医学诊断,比如红外热像仪可以检测人体的热辐射情况。
4. 环境监测:红外线辐射还可以用于环境监测,比如监测地表温度、火灾预警等。
总结:热辐射是物体由于热运动发射出的能量,而黑体辐射则是研究热辐射的理想模型。
热辐射的能量与温度相关,而黑体辐射的能量分布则与温度的四次方成正比。
热辐射在生活中有着广泛的应用,包括热能转换、照明技术、医学诊断和环境监测等。
100项节能环保先进技术目录

100项节能环保先进技术目录一、节能技术(一)重点行业节能技术1、新型高效煤粉锅炉系统技术,工业锅炉预混式二次燃烧节能技术,锅炉智能吹灰优化与在线结焦预警系统技术,燃煤催化燃烧节能技术,锅炉水处理防腐阻垢节能技术2、工业炉窑黑体技术强化辐射节能技术,流态化焙烧高效节能炉窑技术,高效节能玻璃窑炉技术,高炉鼓风除湿节能技术,矿热炉节能技术3、火电厂烟气综合优化系统余热深度回收技术,纯凝汽轮机组改造实现热电联产技术4、等离子无油点火、气化小油枪、低负荷稳燃等节约和替代石油技术5、流程工业能量系统优化技术,能量转换系统效能提高及改造技术,能量梯级利用技术,仿真节能控制技术6、稀土永磁无铁芯电机节能技术,电机系统节能控制及改造技术7、高压变频调速技术,采用关键部件绝缘栅极型功率管(IGBT)以及特大功率高压变频调速技术8、对旋风机节能技术,曲叶型系列离心风机技术9、非稳态余热回收及饱和蒸汽发电技术,低热值高炉煤气燃气-蒸汽联合循环发电技术,高浓度有机废水浓缩燃烧发电技术10、矿热炉烟气余热利用技术,裂解炉空气预热节能技术,高固气比水泥悬浮预热分解技术11、脱硫岛烟气余热回收及风机运行优化技术,管束干燥机废汽回收综合利用技术,矿井乏风和排水热能综合利用技术12、机械式蒸汽再压缩技术,新型吸收式热变换器技术,热管/蒸汽压缩复合制冷技术(二)智能电网与能源清洁高效利用13、高效超超临界燃煤发电技术,智能配电、用电技术14、可再生能源规模化及高密度多接入点分布式电源并网及控制技术,电网与用户互动技术15、太阳能储热新材料技术,太阳能采暖、制冷与建筑一体化技术,中、高温太阳能发电技术16、高效率、低成本、新型太阳能光伏电池制造技术,光伏逆变并网系统技术17、兆瓦级以上风电机组关键零、部件技术,风电逆变系统的数字化实时控制技术,风电储能及电网稳定技术18、煤炭高效分选技术,煤泥水高效澄清及控制技术,水煤浆制备技术,型煤加工及利用技术19、煤层气规模开发与采煤一体化技术,煤矿瓦斯高效抽采技术20、大型煤炭气化及煤基多联产系统技术,煤整体汽化联合循环技术(IGCC)21、煤炭(直接、间接)液化技术,高效煤制气技术,合成气制甲醇、制乙二醇技术,甲醇制低碳烯烃技术(三)节能电器与办公设备22、家电智能控制节能技术,低待机能耗技术23、空调制冷剂替代技术,温湿度独立调节技术,CO2热泵技术,电子膨胀阀变频节能技术24、水源、地源、空气源热泵与采暖、空调、热水联供系统技术,冰(水)蓄冷技术,空冷机组高效节能技术25、热电冷联产联供技术,分布式热电冷联产技术,基于吸收式换热的新型热电联产集中供热技术(四)高效照明26、生产型金属有机源化学气相沉积设备(MOCVD)、氢化物气相外延(HVPE)等外延装备制造关键技术27、LED高效驱动和智能化控制技术,LED光源与灯具模块化、标准化、系列化关键技术28、高效低成本筒灯、射灯、路灯、隧道灯、球泡灯等替代型半导体照明光源技术(五)新型节能建材29、Low-E节能玻璃技术,节能镀膜玻璃技术30、烧结多孔砌块及填塞发泡聚苯乙烯烧结空心砌块节能技术,夹芯复合轻型建筑结构体系节能技术31、现有工业建(构)筑物节能改造技术(六)其他32、聚能燃烧技术,直燃式快速烘房技术33、工业冷却塔用混流式水轮机技术,工业循环水系统节能技术34、塑料注射成型伺服驱动与控制技术,高红外发射率多孔陶瓷节能燃烧器技术35、汽柴油油品加氢技术,油品精制技术36、内燃机节能技术,重型卡车废气余热利用技术37、新型生物反应器和高效节能生物发酵技术38、精滤工艺全自动自清洁节能过滤技术39、温伴沥青在道路建设与养护工程中的应用技术40、煤炭储运减损抑尘技术二、环保技术(一)大气污染治理41、燃煤工业锅炉烟气袋式除尘湿法脱硫技术,白泥-石膏法烟气脱硫技术,烧结烟气资源回收铁法脱硫技术,烟气循环流化床干法脱硫技术,半干法烟气脱硫除尘处理技术42、选择性催化还原法(SCR)烟气脱硝催化剂及再生技术,燃煤锅炉烟气SNCR 脱硝技术43、高炉煤气袋式除尘技术,第四代“OG”法转炉烟气净化及煤气回收技术,焦炉烟气净化技术44、高性能电、袋组合式除尘技术,煤粉工业锅炉清洁燃烧及烟气污染控制技术45、工业排放有毒废气控制技术,有毒、有机废气、恶臭处理技术,蓄热式有机废气热力焚化技术,恶臭气体微生物治理技术46、机动车尾气排放净化技术,汽车尾气高效催化转化技术47、室内空气污染物控制与削减技术,挥发性有机化合物(VOC)的控制技术48、碳减排及碳转化利用技术,碳捕获、存储及利用技术49、铅蓄电池行业铅粉机尾气治理技术,“吸附回收+ 处理回用”VOCs治理技术(二)水污染治理50、A2/O城市污水处理技术,氧化沟活性污泥法污水处理技术,好氧生物流化床污水处理技术,膜生物反应器污水处理技术51、高效生物曝气滤池用于污水回用技术,悬挂链曝气污水处理成套技术,微纳米曝气技术,超磁分离水体净化技术52、气流封闭循环法处理氨氮废水技术,生物移动床深度脱氮除磷技术53、火电厂烟气脱硫废水处理技术,钢铁企业综合污水处理及回用技术,焦化废水微生物处理技术54、高浓度难降解有机工业废水处理技术,印染废水生物处理-高效澄清-过滤组合处理技术,涂装工业废水处理技术,55、水生植物法湖泊生态修复技术,杀菌剂废水处理技术56、高效、低能耗污水处理与再生技术,重复用水技术(三)固体废物处理57、垃圾渗滤液处理技术,垃圾填埋防渗材料、渗滤液处理、填埋气回收技术58、污泥高压隔膜压滤脱水技术,污泥加钙干化深度脱水技术59、污泥高温好氧发酵与生态利用技术,污泥自动化堆肥综合利用技术60、污泥磁化热解处理技术,污泥干化和清洁焚烧技术61、啤酒废酵母利用技术,啤酒麦糟资源化开发和利用,丢弃酒糟无害化、效益化处理技术(四)重金属污染防治62、镀镍废水资源化技术,电镀废水处理及回用技术,电絮凝水处理技术63、低含铜废液减排处理技术,有色金属冶炼废水深度处理技术,矿山废水膜处理技术64、集成膜分离技术处理含铬、镉类重金属废水,高浓度泥浆法处理重金属废水技术65、铅酸蓄电池行业废水治理技术,干法废蓄电池资源化利用技术66、含汞废物的汞回收处理技术,废旧荧光灯管汞回收处理技术(MRT),含汞产品的替代品开发与应用(五)噪声与振动控制67、大型发电厂环境噪声综合治理技术,双曲线冷却塔噪声控制技术68、道路声屏障材料、结构及其应用技术,城市交通噪声与振动控制技术69、室内低频噪声和固体声污染控制设备及集成控制技术(六)其他70、污染土壤修复、污染水体修复、衬泥治理及富营养化防治技术,面源污染控制技术71、无组织排放污染气体净化技术,削减和控制二恶英排放的技术,消耗臭氧层物质替代品开发与利用技术72、电网、信息系统电磁辐射控制技术73、大气中污染物在线检测技术,水质及污染源在线检测技术,流动污染源(机车、船舶、汽车等)监测与防治技术74、废润滑油的环保再生技术,废弃油脂制备生物柴油成套技术75、环保基础材料制备及其应用技术,新型环保药剂制备技术三、资源综合利用技术(一)重点行业综合利用76、新型干法水泥窑协同处理城市生活垃圾技术77、煤矸石似膏体自流充填技术,泵送矸石填充技术,用粉煤灰制备活性炭技术,造气渣综合利用技术78、冶金渣返炼钢生产技术,钢渣非金属磨料技术,熔融钢渣热闷处理及金属回收技术,超细钢渣粉生产改性S95级矿渣粉技术79、鼓风炉还原造锍熔炼清洁处置重金属(铅)废料技术,含硫铅渣生产粗铅、硫酸钠技术80、矿山尾矿资源生态型管理与综合利用技术,共生、伴生矿产资源中有价元素的分离及综合利用技术,矿山尾砂与废石快速充填采空区技术81、尾矿渣制备高性能微晶玻璃技术,尾矿、高炉渣生产新型复合材料技术82、废石料规模化优质高效利用技术,利用陶瓷废料生产干挂空心陶瓷板技术(二)再生资源回收利用83、黄杂铜直接生产高精度板、带、管等技术,紫杂铜熔炼除氧、除杂技术以及轧制过程中的表面处理和精整技术84、废钢铁镀锌、镀铬等镀层的处理技术,废高合金钢的鉴定、检测和分选技术,混堆状废线材加工处理技术,废易拉罐等优质废铝的保级利用技术85、废旧家电与电子产品、汽车等拆解、废弃物资源化处理技术86、废旧橡胶常温粉碎、湿法粉碎、冷冻粉碎等生产精细胶粉技术,“预硫化和无模硫化翻新”轮胎翻新技术87、采用废瓦楞纸箱中高浓连续碎解、纤维分级处理、中高浓筛选、大直径盘磨打浆等工艺生产包装纸及纸板技术88、废塑料物理再生利用和机械化分类技术,废旧聚酯瓶生产聚酯切片技术,废旧塑料、废弃木质材料生产木塑材料及其制品技术89、废玻璃生产建筑和保温隔音等材料的间接再生利用技术(三)其它废弃物资源综合利用90、非粮作物生物燃料乙醇及副产品联产技术,生物质热解、气化燃料技术,生物质直燃、混燃和气化供热/发电技术91、城市有机废弃物高效率厌氧消化技术,餐厨废弃物资源化利用技术,垃圾、垃圾填埋气和沼气利用技术92、养殖废弃物综合利用技术(四)机电产品再制造93、激光熔覆成形技术,等离子熔覆成形技术,堆焊熔覆成形技术94、高速电弧喷涂技术,高效能超音速等离子喷涂技术,超音速火焰喷涂技术,纳米复合电刷镀技术95、金属表面强化减摩自修复技术,类激光高能脉冲精密冷补技术,金属零部件表面粘涂修复技术,再制造零部件表面喷丸强化技术96、工程机械结构件销轴与轴套无损拆解技术,液压油缸活塞杆无损拆解技术,电机轴承拆解技术四、工业节水技术97、新型高浓缩倍率循环水处理技术,多功能电化学水处理器水质稳定技术98、冷却塔水蒸气回收技术,循环水泵运行方式调节技术,循环水余热利用技术99、煤化工废水处理及回用集成技术,城市中水在工业领域再利用技术100、雨水收集利用与回渗技术。
黑体辐射什么

黑体辐射什么
黑体辐射是指一个处于热平衡状态的理想物体所发出的电磁辐射。
其名称“黑体”是因为这个物体能够完全吸收所有射入它的辐射,不反射也不透过任何辐射。
黑体辐射的研究与理解起源于19世纪,当时科学家们通过实验观察到,当一个物体被加热至足够高的温度时,它会发出一种特定的光谱,这种光谱与物体的温度有关。
根据理论推导和实验测量,经典物理学建立了黑体辐射的描述模型。
根据普朗克的理论,黑体辐射的能量与频率之间存在一定的关系,即普朗克公式。
这个公式描述了单位面积、单位时间内每个频率的辐射能量的数量。
根据普朗克公式,辐射的能量随着其频率的增加而增加,而根据维恩位移定律,辐射最强的频率对应于其温度的倒数。
黑体辐射的研究不仅对物理学有重大影响,还对天文学和热力学等其他科学领域都有重要意义。
通过观察天体的光谱,科学家们可以推断出它们的温度和成分,从而了解宇宙的起源和演化。
在热力学中,黑体辐射是理解热平衡和热传导等现象的关键。
黑体辐射理论的发展也导致了量子力学的诞生。
经典物理学无法解释黑体辐射中的紫外灾变问题,而量子理论则成功解释了这一现象。
这一发现标志着经典物理学的失败,同时也为量子力学的发展铺平了道路。
总之,黑体辐射是一个重要的物理现象,它在物理学、天文学和热力学等领域都有广泛应用。
通过对黑体辐射的研究,科学家们不仅在理论上增进了对自然界的理解,还在技术上取得了一系列重大突破,如发展了激光、红外线技术等。
黑体辐射通俗理解

黑体辐射通俗理解什么是黑体辐射?黑体辐射是指处于热平衡状态下的物体所发出的辐射,它的特点是不吸收任何辐射,同时也不反射辐射。
黑体辐射的研究对于理解物体的热辐射和热力学性质具有重要意义。
在物理学中,黑体辐射被广泛应用于热力学、量子力学、天体物理学等领域。
黑体辐射的特性黑体辐射具有以下几个特性:1. 完全吸收和完全发射黑体是完全吸收所有辐射的物体,所以它看起来是黑色的。
与此同时,黑体也是完全发射辐射的物体,不论是可见光、红外线还是紫外线等电磁辐射,黑体都能够以最大强度发射出来。
2. 频谱特性黑体辐射的频谱特性与温度有关。
根据普朗克辐射公式,黑体辐射的频谱强度与频率成正比,而与温度的四次方成正比。
随着温度的升高,黑体辐射的峰值频率也会向高频方向移动。
这就是为什么高温物体的辐射呈现为蓝色或白炽的原因,而低温物体的辐射呈现为红色或暗淡的原因。
3. 斯特凡-玻尔兹曼定律斯特凡-玻尔兹曼定律描述了黑体辐射的总功率与温度之间的关系。
根据这个定律,黑体辐射的总功率与温度的四次方成正比。
公式如下:P=σ∗T4其中,P表示黑体辐射的总功率,σ为斯特凡-玻尔兹曼常数,T为黑体的温度。
黑体辐射的应用黑体辐射在许多领域都有重要的应用,下面列举了几个常见的应用:1. 热力学研究黑体辐射是热力学研究中的基本概念之一。
通过对黑体辐射的研究,科学家们可以深入理解热力学定律和热力学性质,为能源转换、热力学系统的设计和优化提供理论基础。
2. 量子力学黑体辐射在量子力学中也有重要的应用。
根据普朗克辐射公式,科学家们可以推导出黑体辐射的频谱分布和平均能量。
这对于理解量子力学的基本原理和量子态的统计性质非常重要。
3. 天体物理学黑体辐射在天体物理学中具有重要的意义。
天体物体的辐射主要来自于它们的表面温度和组成。
通过研究黑体辐射,科学家们可以了解恒星、行星和其他天体的物理性质,例如它们的温度、亮度和组成。
这对于研究宇宙的起源和演化非常重要。
总结黑体辐射是处于热平衡状态下的物体所发出的辐射,它具有完全吸收和完全发射的特性。
热管式黑体辐射源研制与评价技术研究

最终 ,设计 的一组热 管式黑体 辐射 源 的主要 技术 指 标 为 :温度范 围 20— 10℃ ,有效辐射 面直径 4 m, 0 10 0m 黑体 腔 长 度 40m 3 m,黑 度 系 数 >09 9 .9 ,温 度 稳 定 度
Re e r h fHe t Pi e Bl c bo sg ng a s si c s a c o a p a k dy De i ni nd As e sng Te hnoog l y
ZH A N G ue ng X co
( hnee gIstt o t l y& Mesrm n , e ig10 9 , hn ) C aghn ntu f r o i e Me o g aue e t B in 0 0 5 C i j a
2 0 ~1 0 0 1 0℃ 的 系 列 热 管 式 黑体 辐 射 源 ,研 究 了黑 体 辐 射 源 的 评 价 方 法 , 测 试 了 其 温 度 分 布 性 能 指 标 , 并 使 用 蒙 特 卡 洛 法 对 其 有 效 发 射 率 进 行 了计 算 。 测 试 计 算 结 果 表 明 , 所 制 作 的 热 管 式 黑 体 辐 射 源 靶 面 均 匀 性 不 大 于 0 2C , . ̄
ta 9 5. h n 0. 99
Ke r s e tp p ;b a k o y misvt ;Mo t— al h d y wo d :h a i e l c b d ;e si i y ne C r mt o o
0 引 言
黑 体辐射源是用来 检定 、校 准各种 辐射 温度计 的专
温度 。
1 1 黑体 腔设计 .
随 着热管 技术 的发 展 ,黑体 辐 射 源 的设 计 开 始 和
认识黑体字和宋体字

05
黑体字和宋体字的未来发展
字体设计的新趋势
动态与交互性
文化与情感表达
随着数字媒体的发展,字体设计正朝 着动态和交互性方向发展,为观众提 供更加丰富和个性化的视觉体验。
字体设计正成为文化与情感表达的重 要载体。设计师通过独特的字体风格 和表现形式,传递特定的文化内涵和 情感氛围。
可读性与易读性
在信息爆炸的时代,字体设计的可读 性和易读性越来越受到重视。设计师 需关注文字的清晰度和辨识度,以帮 助观众快速获取信息。
标识制作
黑体字在标识制作中应用广泛,如企业标志、品牌形象等。
03
宋体字概述
宋体字的起源和历史
宋体字的起源可以追溯到宋朝时期,是随着印刷技术的普及而发展起来的字体样 式。
在长期的演变过程中,宋体字不断吸收楷书和隶书的书写特点,形成了独特的风 格和特点。
宋体字的特点和风格
宋体字笔画粗细适中,结构严谨,字 形方正,具有明显的中宫收紧、横竖 比例适中的特点。
目的和意义
随着印刷技术的不断发展,黑体字和宋体字的应用越来越广 泛,了解这两种字体对于提高印刷品的质量和视觉效果具有 重要意义。
通过深入了解黑体字和宋体字的特征、风格和适用场合,可 以更好地选择和使用字体,提高印刷品的整体效果,满足不 同场合的视觉需求。
02
黑体字概述
黑体字的起源和历史
起源
黑体字起源于明朝,最初是作为 官方文书和印刷字体使用。
随着数字化时代的到来,字体设计行业正面临着前所 未有的机遇和挑战。随着各种设计软件和技术的不断 发展,字体设计的表现形式和创作手段也日益丰富多 样。
此外,随着数字化技术的普及和应用,字体设计行业 也需要更加注重版权保护和知识产权的维护。设计师 需要加强自我保护意识,采取有效的措施保护自己的 创意成果,以促进整个行业的健康发展。
简述黑体辐射三大定律

简述黑体辐射三大定律黑体辐射三大定律是描述热辐射特性的基本规律,被广泛应用于物理学、天文学、气象学等领域。
它们分别是斯特藩-玻尔兹曼定律、维恩位移定律和斯腾芳-玻尔兹曼定律。
本文将对这三大定律进行简述。
第一定律,斯特藩-玻尔兹曼定律,指出黑体辐射的总辐射功率与其绝对温度的四次方成正比。
换言之,黑体辐射的强度随着温度的升高而迅速增加。
这个定律的数学表达式为:P = σT^4,其中P表示辐射功率(单位为瓦特),σ为斯特藩-玻尔兹曼常数,T为黑体的绝对温度(单位为开尔文)。
斯特藩-玻尔兹曼定律的发现在热辐射研究中具有重要意义,它揭示了热辐射与物体温度之间的密切关系。
第二定律,维恩位移定律,表明黑体辐射的波长与其绝对温度呈反比关系。
简单来说,随着黑体温度的升高,辐射的波长会变短。
维恩位移定律的数学表达式为:λmax = b / T,其中λmax表示辐射的波长(单位为米),b为维恩位移常数,T为黑体的绝对温度。
维恩位移定律的发现对于理解热辐射的性质和特征有着重要的意义,它揭示了辐射的波长与物体温度之间的关联。
第三定律,斯腾芳-玻尔兹曼定律,描述了黑体辐射的能量分布与温度的关系。
它指出,黑体辐射的能量分布与温度的四次方和波长的五次方成正比。
斯腾芳-玻尔兹曼定律的数学表达式为:B(λ, T) = (2πhc^2 / λ^5) * 1 / (e^(hc / λkT) - 1),其中B(λ, T)表示黑体辐射的辐射能量密度(单位为瓦特/平方米/立方米/波长),h为普朗克常数,c为光速,k为玻尔兹曼常数,T为黑体的绝对温度,λ为辐射的波长。
斯腾芳-玻尔兹曼定律的发现对于了解黑体辐射的分布特性和能量分布的规律具有重要意义。
黑体辐射的三大定律分别是斯特藩-玻尔兹曼定律、维恩位移定律和斯腾芳-玻尔兹曼定律。
它们揭示了热辐射与温度、波长之间的关系,对于研究热辐射的特性和规律具有重要的意义。
这些定律的发现不仅丰富了物理学和天文学的理论体系,也促进了科学技术的发展和应用。
LED封装行业分光分色标准中的色坐标、黑体轨迹、等温线等色度学概念的计算方法

LED封装行业分光分色标准中的色坐标、黑体轨迹、等温线等色度学概念的计算方法摘要在当今全球能源紧缺的环境下,节约能源已成为全人类共同的意识。
同时,国家也在大力倡导节能减排,在刚刚成功举办的2010年上海世博会和2008年的北京奥运会都不约而同的以绿色节能为主题,这就给中国LED照明产业的发展带来了巨大的历史机遇。
发光二极管(LED)作为新一代绿色光源,与传统光源(白炽灯、荧光灯和高强度放电灯等)相比,具有节能、环保、响应时间短,体积小,寿命长、抗震性好等多项优势,因而受到人们的青睐,成为各国半导体照明领域研究的热点。
本文主要是围绕LED的发光原理和LED封装行业的发展状态,重点探讨在LED封装行业分光分色标准制定过程中涉及的色坐标、等色温线、黑体轨迹曲线等色度学概念的计算方法,为LED封装行业的工程师提供非常实用的理论指导。
关键词:LED、等色温线、黑体轨迹。
第一章前言发光二极管(Light Emitting Diode,即LED)于20世纪60年代问世,在20世纪80年代以前,只有红光、橙光、黄光和绿光等几种单色光,主要作为指示灯使用,这一时期属于LED“指示应用阶段”。
20世纪90年代初,LED的亮度有了较大提高,LED的发展和应用进入了“信号和显示阶段”。
1994年,日本科学家中村修二在GaN基片上研制出了第一只蓝光LED,在1997年诞生了InGaN蓝光芯片+YAG荧光粉的白光LED,使LED的发展和应用进入了“全彩显示和普通照明阶段”。
LED作为一种固态冷光源,是一种典型的节能、环保型绿色照明光源,必将成为继白炽灯、荧光灯和高强度放电灯(HID)之后的第四代新光源。
LED芯片通常用III-V族化合物半导体材料(如GaAs、GaP、GaN)通过外延生产工艺制造而成,其发光核心是PN结,具有一般PN结的特性,即正向导通,反向截止、击穿特性等。
LED发光原理是LED在正向电压下,电子由N区注入P区,空穴由P区注入N区,电子和空穴在PN结复合,其中部分复合能转换成辐射发光,另一部分转换成热辐射,后者不产生可见光。