X射线衍射技术(XRD)
XRD考试题库及答案

XRD考试题库及答案1. 什么是X射线衍射(XRD)?A. 一种用于测量材料硬度的技术B. 一种用于分析材料微观结构的技术C. 一种用于测量材料密度的技术D. 一种用于测量材料导电性的方法答案:B2. XRD技术中,布拉格定律的公式是什么?A. \( n\lambda = 2d\sin\theta \)B. \( n\lambda = d\sin\theta \)C. \( n\lambda = d\cos\theta \)D. \( n\lambda = 2d\cos\theta \)答案:A3. 在XRD分析中,衍射峰的强度与哪些因素有关?A. 晶粒大小B. 晶体的取向C. 样品的厚度D. 所有以上因素答案:D4. 什么是XRD图谱中的2θ角?A. 入射X射线与样品表面的角度B. 衍射X射线与样品表面的角度C. 入射X射线与衍射X射线之间的角度D. 样品旋转的角度答案:C5. XRD图谱中,衍射峰的宽度与哪些因素有关?A. 晶粒大小B. 应力C. 样品的纯度D. 所有以上因素答案:D6. 如何通过XRD图谱确定晶体的晶格类型?A. 通过衍射峰的位置B. 通过衍射峰的强度C. 通过衍射峰的形状D. 通过衍射峰的宽度答案:A7. XRD分析中,如果样品是非晶态的,会观察到什么现象?A. 没有衍射峰B. 出现宽的漫反射峰C. 出现尖锐的衍射峰D. 衍射峰的位置会移动答案:B8. 在XRD分析中,如果样品中存在多种晶体结构,图谱中会如何显示?A. 出现多个尖锐的衍射峰B. 出现多个宽的漫反射峰C. 衍射峰的位置会重叠D. 衍射峰的强度会减弱答案:A9. XRD分析中,样品的制备对分析结果有何影响?A. 样品的表面粗糙度会影响衍射峰的强度B. 样品的厚度会影响衍射峰的强度C. 样品的取向会影响衍射峰的位置D. 所有以上因素都会影响分析结果答案:D10. XRD分析中,如何校准仪器以确保分析结果的准确性?A. 使用已知晶体结构的标准样品进行校准B. 调整仪器的电压和电流C. 更换X射线管D. 清洁仪器的表面答案:A结束语:通过以上题目及答案,可以对XRD技术有一个基本的了解和掌握。
xrd国标标准

xrd国标标准摘要:一、X射线衍射技术简介1.X射线衍射技术的概念2.X射线衍射技术在材料科学中的应用二、X射线衍射技术的基本原理1.X射线的产生与传播2.衍射现象的原理3.布拉格方程三、X射线衍射设备及分类1.X射线衍射设备的组成2.X射线衍射设备的分类四、X射线衍射国标标准概述1.X射线衍射国标标准的制定背景2.X射线衍射国标标准的主要内容3.X射线衍射国标标准的重要性五、X射线衍射国标标准的实际应用1.在材料研究中的应用2.在材料检测中的应用3.在其他领域的应用正文:X射线衍射技术是一种在材料科学领域广泛应用的分析技术。
它利用X射线与物质的相互作用,研究物质的内部结构、形态和排列方式等。
本文将对X 射线衍射技术的基本原理、设备及分类以及我国的相关国标标准进行概述,并探讨其实际应用。
首先,X射线衍射技术的基本原理是利用X射线与物质内部的晶体结构相互作用,产生衍射现象。
这种现象与光波的干涉现象类似,可以通过布拉格方程来描述。
布拉格方程描述了入射角、散射角和晶格常数之间的关系,为X射线衍射技术的应用提供了理论依据。
其次,X射线衍射设备是实现X射线衍射技术的关键设备。
它通常由X射线源、样品、探测器、数据处理系统等组成。
根据设备结构、功能和应用领域的不同,X射线衍射设备可以分为多种类型,如单晶衍射仪、多晶衍射仪、粉末衍射仪等。
在我国,针对X射线衍射技术制定了一系列国标标准,以确保这一技术的应用质量和水平。
这些标准涵盖了X射线衍射设备的技术要求、性能测试方法、实验操作流程等方面,为我国X射线衍射技术的研发和应用提供了重要参考。
最后,X射线衍射国标标准在实际应用中发挥着重要作用。
在材料研究领域,X射线衍射技术可以帮助研究人员分析材料的内部结构、相变、应力等;在材料检测领域,X射线衍射技术可以用于检测材料的纯度、晶粒尺寸、排列方式等。
此外,X射线衍射技术还在其他领域得到广泛应用,如生物学、医学、化学等。
总之,X射线衍射国标标准为我国X射线衍射技术的应用和发展提供了有力支持。
化学成分 xrd和xrf

化学成分 xrd和xrfXRD和XRF是化学分析中常用的两种技术手段,分别指X射线衍射和X射线荧光谱分析。
本文将分别介绍这两种技术的原理、应用和特点。
一、XRD(X射线衍射)X射线衍射是一种利用物质对入射X射线的散射进行分析的方法。
当入射X射线照射到晶体或非晶体样品上时,X射线与样品中的原子发生散射,形成衍射图案。
通过测量衍射角和相对强度,可以得到样品的晶体结构信息,如晶胞参数、晶体结构和晶体取向等。
XRD技术具有以下特点和应用:1. 非破坏性分析:XRD技术无需破坏样品,可以对样品进行全面的分析,适用于固体、液体和气体等不同形态的样品。
2. 结构表征:XRD可以确定样品的晶体结构,对于研究材料的物理性质、相变行为和晶体缺陷等具有重要意义。
3. 成分分析:通过对衍射峰的位置和强度进行定量分析,可以得到样品的成分信息,如含量、相对比例等。
4. 质量控制:XRD广泛应用于材料科学、地质学、生物学、制药等领域,用于质量控制、新材料研发和催化剂设计等。
二、XRF(X射线荧光谱分析)X射线荧光谱分析是一种利用样品中元素发射的X射线进行化学成分分析的方法。
当样品受到入射X射线的激发时,样品中的原子会发射出特定能量的X射线。
通过测量这些X射线的能量和强度,可以确定样品中的元素组成和含量。
XRF技术具有以下特点和应用:1. 快速分析:XRF技术具有高灵敏度和快速分析的特点,可以在几分钟内完成对样品的全面分析,适用于快速检测和在线监测。
2. 多元素分析:XRF可以同时分析样品中的多种元素,对于复杂样品的分析具有优势,如矿石、合金、土壤等。
3. 无需样品处理:XRF技术不需要对样品进行特殊处理,可以直接对固体、液体和气体等样品进行分析,减少了实验操作的复杂性。
4. 应用广泛:XRF广泛应用于石油化工、冶金、环境监测、食品安全和文物保护等领域,用于质量控制、环境监测和文物鉴定等。
XRD和XRF是两种常用的化学分析技术,分别用于物质的结构表征和化学成分分析。
xrd衍射原理

xrd衍射原理
X射线衍射(X-ray diffraction,XRD)是一种通过散射X射
线来研究物质的结构和性质的技术。
它基于X射线与晶体中
的原子发生散射的现象,可以获取关于晶体内原子排列的信息。
X射线是高能量的电磁波,具有很短的波长。
当X射线通过
晶体时,它们被晶体中的原子吸收,并随后重新散射出来。
由于晶体中原子的周期性排列,散射出的X射线将呈现出干涉
的现象,类似于光波通过光栅时的衍射效应。
X射线衍射的主要原理是布拉格方程,它描述了在晶体内发生衍射的条件:
nλ = 2dsinθ
其中n为正整数,λ为X射线的波长,d为晶面间的距离,θ
为入射角。
当满足布拉格方程时,散射出的X射线将会相长
干涉,产生强度峰。
X射线衍射实验通常使用粉末衍射法,将晶体粉末散布在衍射仪器上。
入射的X射线会与晶粉中的各个晶面发生散射,形
成一系列衍射峰。
通过测量和分析这些衍射峰的位置和强度,可以推断晶体的晶胞参数以及晶格结构。
通过X射线衍射技术,可以确定晶体的晶胞结构、晶格常数、晶体的对称性以及晶体内原子的相对位置。
这对于材料科学、固态物理、化学以及生物学等领域的研究都具有重要意义。
xrd的应用及原理

XRD的应用及原理引言X射线衍射(X-ray Diffraction, XRD)是一种重要的材料表征技术,广泛应用于材料科学、化学、地质学等领域。
本文将介绍XRD的应用领域以及其原理。
XRD的应用领域1.材料结构分析–XRD可以用于分析材料的晶体结构、组分和晶体缺陷等。
–通过分析材料的衍射峰的位置、强度和形状,可以确定晶体的晶格参数、晶体结构和晶体缺陷类型。
2.材料相变研究–XRD可以用于研究材料的相变行为。
相变时,晶体结构会发生变化,导致衍射峰位置和强度的变化。
–通过监测材料衍射峰的变化,可以研究材料的相变温度、相变过程和相变机制。
3.薄膜和薄片分析–XRD可以用于分析薄膜和薄片的晶体结构和厚度。
–通过分析衍射峰的宽度和位置,可以确定薄膜或薄片的晶格参数和厚度。
4.晶体定向分析–XRD可以用于分析晶体的定向性。
不同晶面的衍射峰位置和强度不同,通过分析衍射峰的特征,可以确定晶体的定向性。
–晶体定向分析在材料加工和材料性能研究中具有重要意义。
XRD的原理XRD基于布拉格衍射原理,即入射X射线与晶体的晶面间距相等时,发生衍射现象。
下面是XRD的基本原理:1.生成X射线–通过X射线发生器产生X射线。
X射线发生器通常包括X射线管和高压电源,通过加热阴极产生电子束,电子束击打阳极时会产生X射线。
2.照射样品–产生的X射线照射到待测样品上。
样品可以是粉末、薄膜或块体,关键是样品需要是晶体结构。
3.衍射现象–入射X射线与晶体的晶面相互作用,发生衍射现象。
衍射是X 射线经过晶体后,按照一定的角度改变方向而形成的。
4.检测衍射信号–使用X射线探测器检测样品的衍射信号。
常用的探测器包括点状探测器和线状探测器,可以用于测量衍射峰的位置和强度。
5.分析数据–通过分析探测到的衍射信号数据,可以确定材料的晶格参数、晶体结构、晶体缺陷等信息。
–可以使用布拉格方程和衍射峰的位置计算晶格参数,使用峰的强度和形状分析晶体结构和缺陷。
xrd的工作原理及使用方法

xrd的工作原理及使用方法
X射线衍射(X-ray Diffraction,XRD)是一种常用的材料分析技术,用于研究晶体结构、晶体学和非晶态材料的结构特征。
下面是XRD的工作原理和使用方法的概述:
工作原理:XRD利用入射X射线与样品中的原子发生衍射现象,通过测量衍射图样来推导出样品的晶体结构、晶格常数、晶格畸变等信息。
其基本原理可以概括为布拉格定律,即入射X射线在晶体中的衍射现象遵循2d sinθ = nλ,其中d是晶面间距,θ是衍射角度,n是整数倍数,λ是入射X射线的波长。
使用方法:
1.准备样品:需要准备一定数量的样品,可以是晶体样品或
非晶态材料样品。
晶体样品必须具有规则的晶体结构,而
非晶态材料样品则可以是无定型的或非晶结构的材料。
2.调节仪器参数:根据样品的特性和研究目的,调整XRD仪
器的参数,如X射线管的电流和电压、入射角范围、衍射
角范围等。
选择合适的参数可以获得更准确的结果。
3.扫描样品:将样品放置在XRD仪器中的样品台上,通过控
制仪器进行扫描。
仪器将采集到的衍射数据转换为衍射图
样或衍射强度图像。
4.分析数据:根据获得的衍射图样或衍射强度图像,使用专
业的XRD分析软件对数据进行处理和分析。
这可以包括通
过模拟与标准数据的比对来确定样品的晶体结构或晶格常
数,通过解析峰的位置和形状来研究晶体的畸变等。
XRD技术可应用于多个领域,如材料科学、地球科学、生物化学等。
它可以帮助研究者了解材料的结构和性质,发现新的材料性质,并优化材料的制备和加工工艺。
xrd工作原理

xrd工作原理
X射线衍射(X-ray diffraction,XRD)技术是一种非常常用的物质结构分析方法。
它基于光的衍射现象,利用物质晶体对X 射线的衍射进行分析,从而得出物质的晶体结构和晶格参数等重要信息。
下面将介绍XRD的工作原理。
X射线由X射线管产生,经过准直装置和样品以后,到达X 射线探测器。
X射线管产生的X射线具有较高的能量,其波长与晶格常数相当,因此能够与样品中的晶格相互作用,产生衍射现象。
当X射线与晶体结构的原子相互作用时,会发生弹性散射,使X射线发生衍射。
衍射过程中,X射线束会与晶体中的晶面相互干涉,形成衍射图样。
这些衍射图样是关于样品晶体结构和晶格参数的信息载体。
XRD仪器中的X射线探测器接收到经过样品衍射的X射线,并将其转化为电信号。
通过对这些电信号进行放大和处理,我们可以得到一幅X射线衍射图谱。
根据这幅图谱的形状、峰位和峰高等特征参数,我们可以推断出样品的晶体结构和晶格参数。
为了进行X射线衍射实验,我们通常需要一定的样品制备工作。
样品应具有一定的晶体性质,表面应平整干净,且要求尽可能避免样品结构的因杂质或缺陷等引起的衍射图样的扩展和干扰。
总结来说,XRD的工作原理是利用X射线与晶体结构发生衍射现象,通过衍射图样的特征参数来分析样品的晶体结构和晶格参数。
这种分析方法在材料科学、晶体学、化学等领域中具有广泛的应用价值。
X射线衍射仪技术XRD

X射线衍射仪技术(XRD)1、X射线衍射仪技术(XRD)X射线衍射仪技术(X-ray diffraction, XRD)。
经过对材料进行X射线衍射, 分析其衍射图谱, 取得材料成份、材料内部原子或分子结构或形态等信息研究手段。
X射线衍射分析法是研究物质物相和晶体结构关键方法。
当某物质(晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不一样程度衍射现象,物质组成、晶型、分子内成键方法、分子构型、构象等决定该物质产生特有衍射图谱。
X射线衍射方法含有不损伤样品、无污染、快捷、测量精度高、能得到相关晶体完整性大量信息等优点。
所以,X射线衍射分析法作为材料结构和成份分析一个现代科学方法,已逐步在各学科研究和生产中广泛应用。
2. X射线衍射仪技术(XRD)可为用户处理问题(1)当材料由多个结晶成份组成, 需区分各成份所占百分比, 可使用XRD物相判定功效, 分析各结晶相百分比。
(2)很多材料性能由结晶程度决定, 可使用XRD结晶度分析, 确定材料结晶程度。
(3)新材料开发需要充足了解材料晶格参数, 使用XRD可快捷测试出点阵参数, 为新材料开发应用提供性能验证指标。
(4)产品在使用过程中出现断裂、变形等失效现象, 可能包含微观应力方面影响, 使用XRD能够快捷测定微观应力。
(5)纳米材料因为颗粒细小,极易形成团粒,采取通常粒度分析仪往往会给犯错误数据。
采取X射线衍射线线宽法(谢乐法)能够测定纳米粒子平均粒径。
3. X射线衍射仪技术(XRD)注意事项(1)固体样品表面>10×10mm, 厚度在5μm以上, 表面必需平整, 能够用几块粘贴一起。
(2)对于片状、圆拄状样品会存在严重择优取向, 衍射强度异常, 需提供测试方向。
(3)对于测量金属样品微观应力(晶格畸变), 测量残余奥氏体, 要求制备成金相样品, 并进行一般抛光或电解抛光, 消除表面应变层。
(4)粉末样品要求磨成320目粒度, 直径约40微米, 重量大于5g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
5.1 X-射线的性质
① 肉眼不能观察到,但可使照相底片感光、
荧光板发光和使气体电离;
② 能透过可见光不能透过的物体;
③ 这种射线沿直线传播,在电场与磁场中不偏
转,在通过物体时不发生反射、折射现象,通过
普通光栅亦不引起衍射;
④ 这种射线对生物有很厉害的生理作用。
3
与X射线及晶体衍射有关的部分诺贝尔奖获得者名单
15
5.3.2 X射线的吸收
物质对X射线的吸收是指X射线能量在通过物 质时转变为其它形式的能量。对X射线而言, 即发生了能量损耗。有时把X射线的这种能量
损耗称为吸收。物质对X射线的吸收主要是由
原子内部的电子跃迁引起的。在这个过程中发 生X射线的光电效应和俄歇效应,使X射线的部
分能量转变成为光电子、荧光X射线及俄歇电
第五章 X-射线衍射分析(XRD)
5.1 X-射线的性质 5.2 X-射线的产生 5.3 X-射线与物质的相互作用 5.4 晶体学几何知识
5.5 X-射线衍射分析原理
5.6 X-射线衍射分析应用
1
引言 X-射线
• 1895年伦琴(W.C.Roentgen)研究阴极射线管 时,发现管的对阴极能放出一种有穿透力的肉 眼看不见的射线。由于它的本质在当时是一个 “未知数”,故称之为X射线。
5
5.2 X-射线的产生
产生X-射线的方法,是使快速移动的电 子(或离子)骤然停止其运动,则电子的动 能可部分转变成X光能,即辐射出X-射线。
6
7
特征X射线谱的产生
特征X射线的产生与阳极靶原子中的内层电子 跃迁过程有关。如果管电压足够高,即由阴极发 射的电子其动能足够大的时,那么当它轰击靶时, 就可以使靶原子中的某个内层电子脱离它原来所 在的能级,导致靶原子处于受激状态。此时,原 子中较高能级上的电子便将自发的跃迁到该内层 空位上去,同时伴随有多余的能量的释放。多余 的能量作为X射线量子发射出来。显然,这部分 多余的能量等于电子跃迁前所在的能级与跃迁到 达的能级之间的能量差。
年 份 学 科 1901 物理 1914 物理 1915 1917 1924 1937 1954 1962 1962 1964 1985 1986 1994 得奖者 伦琴Wilhelm Conral Rontgen 劳埃Max von Laue 亨利.布拉格Henry Bragg 物理 劳伦斯.布拉格Lawrence Bragg. 物理 巴克拉Charles Glover Barkla 物理 卡尔.西格班Karl Manne Georg Siegbahn 戴维森Clinton Joseph Davisson 物理 汤姆孙George Paget Thomson 化学 鲍林Linus Carl Panling 肯德鲁John Charles Kendrew 化学 帕鲁兹Max Ferdinand Perutz Francis H.C.Crick、JAMES d.Watson、 生理医学 Maurice h.f.Wilkins 化学 Dorothy Crowfoot Hodgkin 霍普特曼Herbert Hauptman 化学 卡尔Jerome Karle 鲁斯卡E.Ruska 物理 宾尼希G.Binnig 罗雷尔H.Rohrer 布罗克豪斯 B.N.Brockhouse 物理 沙尔 C.G.Shull 内 容 X射线的发现 晶体的X射线衍射 晶体结构的X射线分析 元素的特征X射线 X射线光谱学 电子衍射 化学键的本质 蛋白质的结构测定 脱氧核糖核酸DNA测定 青霉素、B12生物晶体测定 直接法解析结构 电子显微镜 扫描隧道显微镜 中子谱学 中子衍射
35
2、物相定量分析
基本原理
定量分析的任务是确定物质(样品)中各组成相的相对 含量。 由于需要准确测定衍射线强度,因而定量分析一般 都采用衍射仪法。 设样品中任意一相为j,其某(HKL)衍射线强度为Ij, 其体积分数为fj,样品(混合物)线吸收系数为;定量
分析的基本依据是:Ij 随fj的增加而增高;但由于样 品对X射线的吸收,Ij 亦不正比于fj,而是依赖于Ij与 fj及之间的关系。
25
X’pert MPD Pro
26
1、物相分析
确定物质(材料)由哪些相组成(即物
相定性分析或称物相鉴定)
确定各组成相的含量(常以体积分数或
质量分数表示,即物相定量分析)。
27
(1)物相定性分析
基本原理与方法
物质的X射线衍射花样特征:分析物质 相组成的“指纹脚印”。
制备各种标准单相物质的衍射花样并使 之规范化,将待分析物质(样品)的衍射 花样与之对照,从而确定物质的组成相。
9
10
5.3 X射线与物质的相互作用
X射线与物质相互作用时,会产生各种不同的
和复杂的过程。但就其能量转换而言,一束X射
线通过物质时,它的能量可分为三部分:其中 一部分被散射,一部分被吸收,一部分透过物 质继续沿原来的方向传播。透过物质后的射线 束由于散射和吸收的影响强度被衰减。
X射线与物质作用除散射、吸收和通过物质外,
晶体结构分析
晶体对称性(空间群)的测定 点阵常数(晶胞参数)测定
晶粒度测定 晶体定向 宏观应力分析
23
XRD制样要求
样品要干燥,研磨成均匀粉末
制样:
边长5cm左右的方形薄板 下凹圆槽
样品填入圆槽后,用光滑的玻璃板压平,压紧,轻 搓,保证样品表面平整,与槽边平齐。
注意:1.样品量较少时,可以先在槽中加垫片,再填 样品。或者保证有一个与槽面平齐的平面即可,不必填满 圆槽。 2.样品表面必须平整,否则会影响测试结果。
36
5.6 XRD应用举例分析
37
5.6.1 TiO2 晶体转晶的分析
纳米TiO2 是一种新型高功能无机产品,具有特异的力学,电和磁等性能。 例如:较高的折光系数和稳定的理化性能 颜料、涂料、纸张的增白剂
光催化作用
应用于废水处理、空气净化以及杀菌等领域
广泛应用在防晒化妆品、食品包装材料、太阳能电池材料等领域
几乎不发生折射,一般情况下也不发生反射。
11
12
5.3.1 X射线的散射
定义:X射线通过物质时,其部分光子 将会改变它们的前进方向这就是散射现 象。 散射现象:包括相干散射和不相干散射
13
相干散射或称古典散射
当入射X光子与物质中的某些电子(例如内层 电子)发生碰撞时,由于这些电子受到原子的 强力束缚,光子的能量不足以使电子脱离所在 能级的情况下,此种碰撞可以近似地看成是刚 体间的弹性碰撞,其结果仅使光子的前进方向 发生改变,即发生了散射,但光子的能量并未 损耗,即散射线的波长等于入射线的波长。此 时各散射线之间将相互发生干涉,故成为相干 散射。相干散射是引起晶体产生衍射线的 ω2 —ω1 式中ω1和ω2为原子的正常状态能量和受刺激状态 时的能量。 当打去K层电子时,所有靠外边的电子层中的电 子都可能落到那个空位上,当产生回落跃迁时就 产生K系的X射线光谱。K系线中,Kα线相当于电 子由L层过渡到K层,Kβ线相当于电子由M层过 渡到K层。当然Kβ线比Kα线频率要高,波长较短。 整个K系X射线波长最短。结构分析时所采用的 就是K系X射线。
28
PDF卡片
各种已知物相衍射花样的规范化工作于1938 年由哈那瓦特(J. D. Hanawalt)开创。 他的主要工作是将物相的衍射花样特征(位置 与强度)用d(晶面间距)和I(衍射线相对强度)数 据组表达并制成相应的物相衍射数据卡片。 卡片最初由“美国材料试验学会(ASTM)”出 版,称ASTM卡片。 1969年成立了国际性组织“粉末衍射标准联 合会(JCPDS)”,由它负责编辑出版“粉末衍 射卡片”,称PDF卡片。
24
XRD操作
扫描参数的设定: star:开始扫描的角度
stop:终止扫描的角度
扫描速度 increment: 0.02 (stepsize) scanspeed: 0.2 0.5等 cont(continue):在原图的基础上重新扫描,减少 正、负偏差,扫描曲线更光滑 广角:5--80° 小角:0.5--10°
(4)核对PDF卡片与物相判定。
34
多相物质分析
多相物质相分析的方法是按上述基本步骤逐 个确定其组成相。
多相物质的衍射花样是其各组成相衍射花样 的简单叠加,这就带来了多相物质分析(与单 相物质相比)的困难: 检索用的三强线不一定局于同一相,而且还 可能发生一个相的某线条与另一相的某线条 重叠的现象。 因此,多相物质定性分析时,需要将衍射线 条轮番搭配、反复尝试,比较复杂。
31
数值索引
以Hanawalt无机相数字索引为例。 其编排方法为:一个相一个条目,在索引中占一
横行,其内容依次为按强度递减顺序排列的8条强
线的晶面间距和相对强度值、化学式、卡片编号 和参比强度值。条目示例如下:
芬克无机数值索引与哈那瓦特数值索引相类似,
主要不同的是其以八强线条的d值循环排列,每种 相在索引中可出现8次。
32
字母索引
以物相英文名称字母顺序排列。每种相一个 条目,占一横行。 条目的内容顺序为:物相英文名称、三强线d 值与相对强度、卡片编号和参比强度号。条 目示例如下:
33
物相定性分析的基本步骤 (1)制备待分析物质样品;
(2)用衍射仪法或照相法获得样品衍 射花样; (3)检索PDF卡片;
Ti -O6八面体按顶点聚合
锐钛矿 (Anatase)
四方晶系,晶体中每个Ti -O6八 面体与其邻接的4 个Ti -O6八面
体各有一个共用棱。
低温相
Ti -O6八面体按棱边聚合
39
金红石与锐钛矿的XRD图对比