柔性直流输电与高压直流输电的优缺点

合集下载

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。

随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。

本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。

一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。

其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。

通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。

2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。

(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。

(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。

二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。

传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。

2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。

在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。

3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。

通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。

柔性直流供电

柔性直流供电

柔性直流输电适合应用的领域
一、岛屿供电和海上平台供电。以往此类供电通常 采用昂贵的本地发电系统,比如柴油机。但使用 柔性直流输电系统可以直接从大陆上直接输电, 不仅更加便利、便宜,而且没有环境污染。同时 一些偏远地区的发电系统也可以回馈电网。
二、电力系统的互连。当两个独立的电力系统互连, 柔性直流输电的好处能够得到最大的体现,特别 是对于异步的电力系统。这是由于柔性直流输电 系统可以同时控制互连的两个电力系统的无功功 率和电压。
(2)基于晶闸管的直流输电受端网络必须有足够的容 量,即必须有足够的短路比(SCR—Short Circuit Radio),受端网络较弱时容易发生换相失败,这 时会造成几个周期内没有电力传送的状况:对于 向无源网络(或孤立负荷)供电,基于晶闸管的 HVDC技术因无法换相更是无法完成。
针对这些缺陷,同时伴随大功率可自关断器件的 发展,一种全新的高压直流输电方式一一柔性直 流输电开始高速发展开始高速发展。
直流输电特点有何特点
直流线路电流和功率调节迅速、方便,短路电流 较小;在导线几何尺寸和电压有效值相等的条件 下,电晕无线电干扰较小;线路在稳态运行时没 有电容电流,沿线电压分布平稳;每个极可以作 为一个独立回路运行,健全极仍可传送一部分功 率。基于这些优势,高压直流输电(HVDC-High Voltage Direct Current)技术得以大力发展。
交流输电局限性
由于集肤效应、电晕效应以及各自本身结构,当 输电距离超过一定距离(400’700KM),交流输电 成本高于直流输电;交流线路输送功率决定于线 路两端电压相量的相位差,这个相位差随输送距 离增大而增大;交流线路电压控制复杂为了克服 线路电容充电和系统稳定性方面的问题,交流输 电需要进行补偿,直流输电不需要;交流输电无 法实现非同步联网;交流输电中的零序电流在稳 态下是不能容许的,因为大地阻抗很高,不但能 影响电能输送的效率,还会产生电话干扰。

高压直流输电的优缺点

高压直流输电的优缺点

高压直流输电的优缺点摘要:高压直流输电是将三相交流电通过换流站整流成直流电,然后通过直流输电线路或换流站送往另一个换流站,并逆变成三相交流电的输电方式。

其广泛应用于远距离大容量输电、电力系统联网、远距离海底电缆或大城市地下电缆送电、配电网轻型直流输电等。

关键字:高压直流输电、交流输电的优缺点,高压直流输电的技术特点一、高压直流输电与交流输电相比有以下优点:(1)输送相同功率时,线路造价低:交流输电架空线路通常采用3根导线,而直流只需1根(单极)或2根(双极)导线。

因此,直流输电可节省大量输电材料,同时也可减少大量的运输、安装费。

(2)线路有功损耗小:由于直流架空线路仅使用1根或2根导线,所以有功损耗较小,并且具有"空间电荷"效应,其电晕损耗和无线电干扰均比交流架空线路要小。

(3)适宜于海下输电:在有色金属和绝缘材料相同的条件下,直流时的允许工作电压比在交流下约高3倍。

2根心线的直流电缆线路输送的功率比3根心线的交流电缆线路输送的功率大得多。

运行中,没有磁感应损耗,用于直流时,则基本上只有心线的电阻损耗,而且绝缘的老化也慢得多,使用寿命相应也较长。

(4)系统的稳定性问题:在交流输电系统中,所有连接在电力系统的同步发电机必须保持同步运行。

如果采用直流线路连接两个交流系统,由于直流线路没有电抗,所以不存在上述的稳定问题,也就是说直流输电不受输电距离的限制。

(5)能限制系统的短路电流:用交流输电线路连接两个交流系统时,由于系统容量增加,将使短路电流增大,有可能超过原有断路器的遮断容量,这就要求更换大量设备,增加大量的投资。

直流输电时,就不存在上述问题。

(6)调节速度快,运行可靠:直流输电通过晶闸管换流器能够方便、快速地调节有功功率。

如果采用双极线路,当一极故障,另一极仍可以大地或水作为回路,继续输送一半的功率,这也提高了运行的可靠性。

二、直流输电的缺点(1)换流站工作时需要消耗较多无功功率,电力电子开关元件的过载能力较低;直流电流不像交流电流那样有电流波形的过零点,因此灭弧比较困难。

柔性直流输电技术概述

柔性直流输电技术概述

柔性直流输电技术概述1柔性直流输电技术简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。

与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。

详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。

这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。

2. 技术特点柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。

它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。

柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点:(1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性;(2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构成既能方便地控制潮流又有较高可靠性的并联多端直流系统,实现多端之间的潮流自由控制;(3)柔性直流输电交流侧电流可被控制,不会增加系统的短路功率;(4)对比传统直流输电方式,采用多电平技术,无需滤波装置,占地面积很小;(5)各站可通过直流线路向对端充电,并根据直流线路电压采取不同的控制策略,因此换流站间可以不需要通讯;(6)柔性直流输电具有良好的电网故障后快速恢复控制能力;(7)系统可以工作在无源逆变方式,克服了传统直流受端必须是有源网络,可以为无源系统供电。

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术是一种新兴的输电技术,其应用在电网中具有重要的意义。

本文将就柔性直流输电技术的应用探究进行介绍和分析。

一、柔性直流输电技术的基本原理柔性直流输电技术是指在输电中采用直流电而非交流电,其主要原理是通过变流器将交流电转换为直流电,然后再通过逆变器将直流电转换为可控的交流电。

柔性直流输电技术具有很多优点,比如输电损耗小、功率密度高、电压波动小,同时能有效地控制电压和频率,提高电网的稳定性和可靠性。

二、柔性直流输电技术的应用领域柔性直流输电技术在电力系统中的应用主要有以下几个方面:1. 远距离输电:柔性直流输电技术能够实现长距离的电能输送,同时保持较小的输电损耗和电压损失,适用于大规模远距离输电。

2. 新能源并网:随着新能源风电、光伏等的快速发展,柔性直流输电技术可以解决新能源并网后的电网稳定性和可靠性问题,有效地提高电网的容纳能力。

3. 电网升级改造:在现有电网升级改造过程中,柔性直流输电技术可以使电网操作更加灵活,提高电网的负载能力和供电能力,满足用户对电能的需求。

4. 大型工业用电:柔性直流输电技术应用于大型工业用电中,可以有效提高工业设备的运行效率和降低能源消耗成本。

三、柔性直流输电技术的应用案例1. 欧洲超级电网项目:欧洲超级电网项目是一个跨国电力输送项目,采用柔性直流输电技术,通过跨越欧洲多个国家,将大规模的风电和光伏电能输送到各地,提高了欧洲地区的可再生能源利用率。

2. 中国南方科技大学直流电网实验项目:作为中国首个直流电网实验项目,该项目采用柔性直流输电技术,通过模拟实验和现场实验,验证了柔性直流输电技术在电网中的可行性和应用效果。

3. 澳大利亚柔性直流电站项目:澳大利亚的柔性直流电站项目采用了柔性直流输电技术,实现了分布式能源接入电网,提高了澳大利亚地区的电能供给和能源利用率。

柔性直流输电技术的应用探究,将不断推动电力系统的发展与进步,为全球能源互联互通和可持续发展做出积极贡献。

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究一、柔性直流输电技术的原理柔性直流输电技术是一种集高压直流输电技术、电力电子技术和智能控制技术于一体的新型输电技术。

其主要原理是将交流电转换成直流电,通过高压直流输电线路进行输电,然后再将直流电转换成交流电,以满足终端需求。

柔性直流输电技术在实际应用中,可以有效地提高电网的安全性、稳定性和经济性,减少输电损耗和环保排放。

柔性直流输电技术在全球范围内得到了广泛应用。

在中国,目前已经建成了多条柔性直流输电线路,比如首都北京到河北的±800千伏柔性直流输电线路、西北地区到中东部地区的±660千伏柔性直流输电线路等。

这些柔性直流输电线路在提高电网安全性和稳定性、减少输电损耗和环保排放等方面发挥了重要作用。

在国际上,柔性直流输电技术也逐渐受到了各国的重视。

例如欧洲超高压直流工程(HVDC)是欧洲最大的海底电缆工程,是欧洲最大的HVDC工程之一,该工程成功运用了柔性直流输电技术,实现了英格兰与比利时的电力互联。

柔性直流输电技术相比于传统的交流输电技术有着诸多优势。

柔性直流输电技术可以实现不同频率和不同电压之间的电力互联,提高了电网的灵活性和互联性。

柔性直流输电技术可以减少输电损耗,提高了输电效率。

柔性直流输电技术可以实现电力质量的提高,提供更加稳定和可靠的电力供应。

柔性直流输电技术可以减少对环境的影响,降低了空间占用和环保排放。

随着电力工业的不断发展,柔性直流输电技术也在不断地完善和发展。

未来,柔性直流输电技术将在以下几个方面得到进一步发展:在技术方面,随着电力电子技术和智能控制技术的不断成熟,柔性直流输电技术将实现更高的性能和更广泛的应用。

在应用方面,随着国家电网的“智能电网”战略的推进,柔性直流输电技术将发挥更大的作用,为电网的智能化和互联互通提供更好的支持。

在国际合作方面,柔性直流输电技术将在全球范围内得到更广泛的推广和应用,为全球电力互联和资源共享做出更大的贡献。

柔性直流输电技术的现状及应用前景分析

柔性直流输电技术的现状及应用前景分析

柔性直流输电技术的现状及应用前景分析摘要:电力系统作为电力行业运转发展的重要环节,其自身输配电技术决定着电力系统整体运转的水平与质量。

而在现代科技水平不断提高的影响下,柔性直流输电技术替换了传统交流输电技术,并借助该技术的优势特点,提高电流输送的效率、质量及安全性,在另一方面,由于我国社会经济水平的不断提高,大量先进电气设备设施应用于人们工作生活中,对电能需求提高了要求标准,为此,有关部门需要组织各个电力企业单位,加强对输电技术的研发创新,在降低输送成本支出的同时,提高输送效率、距离及质量等,为社会整体发展奠定坚实基础。

下面主要对柔性直流输电技术的现状及应用前景进行分析探究。

关键词:柔性直流输电技术;应用现状;发展前景一、柔性直流输电技术的具体应用(一)应用于小型发电厂连通方面通常情况下,当柔性直流输电技术实际应用时,其首先可以应用于小型发电厂连通方面,其主要是由于这些电厂装机容量较小,且主电网与能源站之间存在较远的距离,在应用传统输电方式时,其电能输送效率较低,且电量较少,输送过程会产生较大的损耗。

而应用交流互联技术进行输电时,其成本消耗较大,影响电力企业的经济效益,为此,电厂工作人员可以借助柔性直流输电技术的应用,通过连接主电网,实现将数个分散的小型发电厂进行有效连接,在保障输电效率、质量、安全性、稳定性及可靠性的同时,避免传统并网问题的出现,为电力行业整体发展提供充分的促进作用[1]。

(二)应用于城市直流输配电网方面随着现代城市化进程的不断发展,城市内部人口数量增多,而土地资源日渐紧缺,在进行电能输送设计规划时,传统架空配电电路网的方式会占用大量的地面与空中空间资源,且线路极易受到自然气候、动植物及人为等因素的影响与破坏,由此而引起线路故障或电力火灾等问题。

为了避免这些问题的出现,电力工作人员可以加强柔性直流输电技术的应用,以柔性直流电缆对传统电缆进行替换,节省空间,同时提高电能输送的效率、质量与容量,满足城市整体用电需求。

风电并网新技术——柔性直流输电详解

风电并网新技术——柔性直流输电详解

风电并网新技术——柔性直流输电详解“通俗地讲,在现有的电网中使用了柔性直流输电系统,相当于在电网中接入了一个阀门和电源,它不仅可以有效地掌握其上面通过的电能,隔离电网故障的集中,而且还能依据电网需求,自身快速、敏捷、可调地发出或者汲取一部分能量。

”中国电科院贺之渊博士介绍道,“这对优化电网的潮流分布,增加电网稳定性,提升电网的智能化和可控性,都具有肯定的作用。

”从技术上来说,柔性直流输电是以电压源换流器为核心的新一代直流输电技术,其采纳最先进的电压源型换流器和全控器件,是常规直流输电技术的换代升级。

相比于沟通输电和常规直流输电,在传输能量的同时,还能敏捷地调整与之相连的沟通系统电压。

具有可控性较好、运行方式敏捷、适用场合多等显著优点。

沟通并网的技术瓶颈目前,使用沟通并网是绝大多数风电场并网的选择。

但是风电场通过沟通并网目前普遍存在一些技术瓶颈:首先,使用沟通并网需要风电场和所连接的沟通系统必需严格保持频率同步,而风机对并网处沟通母线电压波动较为敏感。

现有运行阅历表明,沟通系统电压波动是风机退网的主要缘由之一。

其次,在沟通系统发生故障的状况下,风电场的稳定运行往往需要在母线出线端加装无功补偿装置,从而提高风场的故障穿越力量。

但这样一来加大了风电场投资,另外补偿装置对风机的最大风能捕获及风机掌握器本身,都有可能造成不利影响。

最终,对于海上风电场来说,假如使用沟通电缆连接,当电缆长度超过肯定数值后,需要很大的感性无功补偿装置,尤其是对于距离岸边较远的风电场来说,在线路中间进行无功补偿几乎没有可能。

而使用柔性直流输电电缆理论上没有距离限制,所以当超过肯定的等价距离后,一般大于50~100千米,使用直流并网是最合理的选择。

常规直流输电存问题常规直流需要所连沟通系统供应换相电压,比较简单发生换相失败的故障,这对于风电场来说大大降低了其平安稳定运行的力量。

常规直流在传输同样容量的功率时,比沟通和柔性直流输电方案的占地面积要大得多(两倍以上),因此不适合风电场使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柔性直流输电
一、常规直流输电技术
1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备
一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保
护以及辅助系统(水冷系统、站用电系统)等。
2. 常规直流输电技术的优点。
1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最
大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。
2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背
靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。
3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。
3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如
下缺点。
1)只能工作在有源逆变状态,不能接入无源系统。
2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。
3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消
除谐波。
二、柔性直流输电技术
1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要
设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护
以及辅助系统(水冷系统、站用系统)等。
2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发
展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔
性输电还具有一些自身的优点。
1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定
性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。
2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以
是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。
3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于
扩展和实现多端直流输电等优点。
4)采用双极运行,不需要接地极,没有注入地下的电流。
3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直
流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中
的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短
路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可
以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。
三、常规直流输电技术和柔性直流输电技术的对比
1. 换流器阀所用器件的对比。
1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使
得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关
断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。
2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,
即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。
2. 换流阀的对比。
1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,
可以输送大功率。
2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,
在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,
主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装
置的容量大大减小。
3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电
抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直
流输电则采用直流电容器。
3. 换流站控制方式的对比。
1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行
适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。
2)功率反向输送能力的对比。柔性直流输电系统在潮流反转时,只需改变
电流方向,而直流电压极性不变,功率反向时系统不停运,这使得柔性直流输电
系统改变功率方向时,两端换流站的控制策略不变,更不需要投切交流滤波器或
闭锁换流器。而常规直流输电改变功率方向时需要改变电压极性,而直流电流极
性不变,功率反向时,换流站需退出运行,改变控制策略,并且需要对滤波器和
无功补偿设备的投切情况进行实时判断。
3)对交流网络的依耐性方面的对比。柔性直流输电不需要依靠交流系统的
能力来维持电压和频率稳定,无需无功补偿,换流器自身可提供无功功率。而常
规直流输电要求受端交流系统具有足够的短路容量,需要外加的换相容量,不能
向无源或弱网络送电。
4)有功和无功功率控制方面的对比。柔性直流输电的有功、无功可以独立
控制。常规直流输电的有功、无功不能独立控制,调节无功需要特殊装置和额外
费用,需交流系统或增加无功补偿设备提供换流站消耗的无功功率。
5)电压控制方面的对比。柔性直流输电本身可以起到STATCOM的作用,稳定
交流母线电压,而常规直流输电需要借助无功补偿设备稳定交流母线电压。
6)黑启动能力方面的对比。柔性直流输电有黑启动能力。即当一端交流系
统发生电压崩溃或停电时,瞬间启动自身的参考电压,向切除电源的交流系统供
电,相当于备用发电机,随时向瘫痪的电网供电。而常规直流输电无黑启动能力。
经过常规直流输电与柔性直流输电的比对发现,随着直流输电技术的飞速发
展,以及节能和绿色能源的要求,尤其在可再生能源发电并网和孤岛供电方面,
未来以IGBT为代表的柔性直流输电必将成为市场的主流,柔性直流输电尤其是基
于电压源型换流器的直流输电将会快速发展,与常规直流输电并存,甚至超过后
者。
四.运行方式
实现柔性直流输电系统的3种运行方式:
1)运行方式1
只有直流线路的运行方式。送端换流站有功类控制器选择频率控制,无功类
控制器选择交流电压控制;受端换流站有功类控制器选择直流电压控制,无功类
控制器选择交流电压控制或无功功率控制,并且交流电压控制和无功功率控制可
以手动切换。
2)运行方式2
交直流并联的运行方式。送端换流站有功类控制器选择有功功率控制,无功
类控制器选择交流电压控制或无功功率控制;受端换流站有功类控制器选择直流
电压控制,无功类控制器选择交流电压控制或无功功率控制。2个站的交流电压
控制和无功功率控制均可手动切换。
3)运行方式3
STATCOM 运行方式。2个换流站的直流连接断开,可以分别作为2
个独立的STATCOM 运行。有功类控制器选择直流电压控制,无功类控制
器选择交流电压控制或无功功率控制。交流电压控制和无功功率控制可以手动切
换。

相关文档
最新文档