2016年云南省曲靖市中考数学试卷和解析PDF版
【最新资料】云南省曲靖市2016年中考数学试卷及答案解析(word版)

最新资料•中考数学2016年云南省曲靖市中考数学试卷一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.4的倒数是()A.4 B.C.﹣D.﹣42.下列运算正确的是()A.3﹣=3 B.a6÷a3=a2 C.a2+a3=a5D.(3a3)2=9a63.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.94.实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.a>b C.a<﹣b D.|a|>|b|5.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是166.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44 7.数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个8.如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB二、填空题(共6个小题,每小题3分,共18分)9.计算:=.10.如果整数x>﹣3,那么使函数y=有意义的x的值是(只填一个)11.已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=.12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.13.如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=.14.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是.三、解答题(共9个小题,共70分)15. +(2﹣)0﹣(﹣)﹣2+|﹣1|16.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.17.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.18.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.19.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.20.根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.21.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A1,A2,A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.23.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.2016年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.4的倒数是()A.4 B.C.﹣D.﹣4【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:4的倒数是,故选:B.2.下列运算正确的是()A.3﹣=3 B.a6÷a3=a2 C.a2+a3=a5D.(3a3)2=9a6【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.【解答】解:A、由于3﹣=(3﹣1)=2≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.3.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.9【考点】合并同类项;单项式.【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选D.4.实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.a>b C.a<﹣b D.|a|>|b|【考点】实数与数轴.【分析】据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得0>a>﹣1,1<b<2.A、|a|<|b|,故本选项正确;B、a<b,故本选项错误;C、a>﹣b,故本选项错误;D、|a|<|b|,故本选项错误;故选:A.5.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是16【考点】方差;算术平均数;众数;极差.【分析】极差是指一组数据中最大数据与最小数据的差;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:(A)极差为11﹣6=5,故(A)错误;(B)根据出现次数最多的数据是10可得,众数是10,故(B)正确;(C)平均数为(10+6+9+11+8+10)÷6=9,故(C)错误;(D)方差为 [(10﹣9)2+(6﹣9)2+(9﹣9)2+(11﹣9)2+(8﹣9)2+(10﹣9)2]=,故(D)错误.故选(B)6.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44 【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5x+(9﹣5)×(x+2)=44,化简,得5x+4(x+2)=44,故选A.7.数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个【考点】正多边形和圆;平行四边形的判定.【分析】根据正六边形的性质,直接判断即可;【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形FABOD都是平行四边形,共6个,故选C8.如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB【考点】作图—基本作图;线段垂直平分线的性质;轴对称的性质.【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.【解答】解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以D选项正确;因为AD不一定等于AD,所以C选项错误.故选C.二、填空题(共6个小题,每小题3分,共18分)9.计算:=2.【考点】立方根.【分析】根据立方根的定义即可求解.【解答】解:∵23=8∴=2故答案为:2.10.如果整数x>﹣3,那么使函数y=有意义的x的值是0(只填一个)【考点】二次根式有意义的条件.【分析】根据题意可以求得使得二次根式有意义的x满足的条件,又因为整数x>﹣3,从而可以写出一个符号要求的x值.【解答】解:∵y=,∴π﹣2x≥0,即x≤,∵整数x>﹣3,∴当x=0时符号要求,故答案为:0.11.已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=2.【考点】根的判别式.【分析】首先根据原方程根的情况,利用根的判别式求出m的值即可.【解答】解:∵关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=m2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2=0,∴m=2,故答案为:2.12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是2.【考点】圆锥的计算;由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高==2.故答案为2.13.如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=.【考点】翻折变换(折叠问题);矩形的性质;解直角三角形.【分析】直接利用翻折变换的性质得出AF的长,再利用勾股定理得出BF的长,再利用锐角三角函数关系得出答案.【解答】解:∵在矩形ABCD中,AD=10,CD=6,沿AE折叠△ADE,使点D恰好落在BC边上的F处,∴AD=AF=10,∴BF==8,则sin∠ABM===.故答案为:.14.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是77.【考点】坐标与图形变化-旋转;等腰三角形的性质.【分析】根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B为参照点,第15次的坐标减去3即可的此时点C的横坐标.【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,故答案为:77.三、解答题(共9个小题,共70分)15. +(2﹣)0﹣(﹣)﹣2+|﹣1|【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解: +(2﹣)0﹣(﹣)﹣2+|﹣1|=4+1﹣4+1=2.16.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.17.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.【考点】分式的化简求值;解一元一次方程.【分析】先把分子分母因式分解和除法运算化为乘法运算,再约分得到原式=,然后利用x+1与x+6互为相反数可得到原式的值.【解答】解:原式=•+=+=,∵x+1与x+6互为相反数,∴原式=﹣1.18.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.【考点】一次函数与一元一次不等式.【分析】(1)由函数的解析式可求出点A和点B的坐标,进而可求出△AOB的面积;(2)结合函数图象即可求出y1>y2时x的取值范围.【解答】解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与x与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.19.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.【考点】分式方程的应用.【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.【解答】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.20.根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A ,B ,C ,D 四组,得到如下统计图:(1)求A 组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)利用360°乘以A 组所占比例即可;(2)首先计算出各组的组中值,然后再利用加权平均数公式计算平均数;(3)利用平均每班的载客量×天数×次数可得一个月的总载客量.【解答】解:(1)A 组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B 组;(2)各组组中值为:A :=10,B : =30;C : =50;D : =70;==38(人), 答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.21.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】(1)根据题意,可以直接写出函数y=图象上的所有“整点”;(2)根据题意可以用树状图写出所有的可能性,从而可以求得两点关于原点对称的概率.【解答】解:(1)由题意可得函数y=图象上的所有“整点”的坐标为:A1(﹣3,﹣1),A2(﹣1,﹣3),A3(1,3),A4(3,1);(2)所有的可能性如下图所示,由图可知,共有12种结果,关于原点对称的有4种,∴P(关于原点对称)=.22.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.【考点】切线的性质;菱形的判定;垂径定理.【分析】(1)连接OE,设圆的半径为r,在之间三角形ABC中,利用勾股定理求出AB的长,根据BC与圆相切,得到OE垂直于BC,进而得到一对直角相等,再由一对公共角,利用两角相等的三角形相似得到三角形BOE与三角形ABC相似,由相似得比例求出r的值即可;(2)利用同弧所对的圆周角相等,得到∠AOE=4∠B,进而求出∠B与∠F的度数,根据EF与AD垂直,得到一对直角相等,确定出∠MEB=∠F=60°,CA与EF平行,进而得到CB与AF平行,确定出四边形ACEF为平行四边形,再由∠CAB为直角,得到CA为圆的切线,利用切线长定理得到CA=CE,利用邻边相等的平行四边形为菱形即可得证.【解答】(1)解:连接OE,设圆O半径为人,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.23.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由点C的坐标以及tan∠OAC=可得出点A的坐标,结合点A、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设直线AC的解析式为y=kx+b,由点A、C的解析式利用待定系数法即可求出直线AC的解析式,设N(x,0)(﹣4<x<0),可找出H、P的坐标,由此即可得出PH关于x 的解析式,利用配方法即二次函数的性质即可解决最值问题;(3)过点M作MK⊥y轴于点K,交对称轴于点G,根据角的计算依据正方形的性质即可得出△MCK≌△MEG(AAS),进而得出MG=CK.设出点M的坐标利用正方形的性质即可得出点G、K的坐标,由正方形的性质即可得出关于x的含绝对值符号的一元二次方程,解方程即可求出x值,将其代入抛物线解析式中即可求出点M的坐标.【解答】解:(1)∵C(0,3),∴OC=3,∵tan∠OAC=,∴OA=4,∴A(﹣4,0).把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,得,解得:,∴抛物线的解析式为y=﹣x2﹣x+3.(2)设直线AC的解析式为y=kx+b,把A(﹣4,0)、C(0,3)代入y=kx+b中,得:,解得:,∴直线AC的解析式为y=x+3.设N(x,0)(﹣4<x<0),则H(x,x+3),P(x,﹣x2﹣x+3),∴PH=﹣x2﹣x+3﹣(x+3)=﹣x2﹣x=﹣(x﹣2)2+,∵﹣<0,∴PH有最大值,当x=2时,PH取最大值,最大值为.(3)过点M作MK⊥y轴于点K,交对称轴于点G,则∠MGE=∠MKC=90°,∴∠MEG+∠EMG=90°,∵四边形CMEF是正方形,∴EM=MC,∠MEC=90°,∴∠EMG+∠CMK=90°,∴∠MEG=∠CMK.在△MCK和△MEG中,,∴△MCK≌△MEG(AAS),∴MG=CK.由抛物线的对称轴为x=﹣1,设M(x,﹣x2﹣x+3),则G(﹣1,﹣x2﹣x+3),K(0,﹣x2﹣x+3),∴MG=|x+1|,CK=|﹣x2﹣x+3﹣3|=|﹣x2﹣x|=|x2+x|,∴|x+1|=|x2+x|,∴x2+x=±(x+1),解得:x1=﹣4,x2=﹣,x3=﹣,x4=2,代入抛物线解析式得:y1=0,y2=,y3=,y4=0,∴点M的坐标是(﹣4,0),(﹣,),(﹣,)或(2,0).2016年8月16日。
2016年云南省中考数学试卷及解析

2016年云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)(2016•云南)|﹣3|=.2.(3分)(2016•云南)如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.(3分)(2016•云南)因式分解:x2﹣1=.4.(3分)(2016•云南)若一个多边形的边数为6,则这个多边形的内角和为度.5.(3分)(2016•云南)如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.(3分)(2016•云南)如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)(2016•云南)据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.(4分)(2016•云南)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠29.(4分)(2016•云南)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体10.(4分)(2016•云南)以下计算,正确的是()A.(﹣2)﹣2=4B.C.46÷(﹣2)6=64D.11.(4分)(2016•云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4B.2C.1D.﹣212.(4分)(2016•云南)某校随机抽查了10名参加2016年云南省初中学业水平考试学生A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.(4分)(2016•云南)以下交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.14.(4分)(2016•云南)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15B.10C.D.5三.解答题(共9个小题,共70分)15.(6分)(2016•云南)解不等式组.16.(6分)(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.(8分)(2016•云南)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少瓶?18.(6分)(2016•云南)如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.(7分)(2016•云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成以下两幅统计图,请根据图中的信息,完成以下问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.(8分)(2016•云南)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.(8分)(2016•云南)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.(9分)(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.2016年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)[考点]绝对值.[分析]根据负数的绝对值等于这个数的相反数,即可得出答案.[解答]解:|﹣3|=3.故答案为:3.[点评]此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.(3分)[考点]平行线的性质.[分析]先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.[解答]解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.[点评]此题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.(3分)[考点]因式分解-运用公式法.[分析]方程利用平方差公式分解即可.[解答]解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).[点评]此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解此题的关键.4.(3分)[考点]多边形内角与外角.[分析]根据多边形的内角和公式求解即可.[解答]解:根据题意得,180°(6﹣2)=720°故答案为:720[点评]此题是多边形的内角和外角,主要考差了多边形的内角和公式,解此题的关键是熟记多边形的内角和公式.5.(3分)[考点]根的判别式.[分析]根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.[解答]解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.[点评]此题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.(3分)[考点]几何体的展开图.[分析]分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.[解答]解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.[点评]此题考查了展开图折叠成几何体,此题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)[考点]科学记数法—表示较大的数.[分析]科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.[解答]解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,应选:B.[点评]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以与n的值.8.(4分)[考点]函数自变量的取值范围.[分析]根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.[解答]解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.应选D.[点评]此题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.(4分)[考点]由三视图判断几何体.[分析]利用三视图都是圆,则可得出几何体的形状.[解答]解:主视图、俯视图和左视图都是圆的几何体是球.应选C.[点评]此题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.(4分)[考点]二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.[分析]依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.[解答]解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,应选C[点评]此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解此题的关键.11.(4分)[考点]反比例函数系数k的几何意义.[分析]此题应先由三角形的面积公式,再求解k即可.[解答]解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O 是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,应选:B[点评]主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.(4分)[考点]方差;加权平均数;中位数;众数.[分析]结合表格根据众数、平均数、中位数的概念求解即可.[解答]解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:=49;平均数==48.6,方差=[(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;应选:A.[点评]此题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答此题的关键.13.(4分)[考点]中心对称图形;轴对称图形.[分析]根据轴对称图形与中心对称图形的概念求解.[解答]解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.应选A.[点评]此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.(4分)[考点]相似三角形的判定与性质.[分析]首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.[解答]解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.应选D.[点评]此题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.(6分)[考点]解一元一次不等式组.[分析]分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.[解答]解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.[点评]此题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.(6分)[考点]全等三角形的判定与性质.[分析]根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.[解答]证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.[点评]此题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.(8分)[考点]二元一次方程组的应用.[分析]设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.[解答]解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.[点评]此题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是此题的关键.18.(6分)[考点]矩形的判定;菱形的性质;解直角三角形.[分析](1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.[解答](1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.[点评]此题考查了矩形的判定,菱形的性质,以与解直角三角形,熟练掌握判定与性质是解此题的关键.19.(7分)[分析](1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.[解答]解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.[点评]此题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.(8分)[考点]切线的判定;扇形面积的计算.[分析](1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.[解答]解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.[点评]此题主要考查了切线的判定以与扇形的面积计算,解(1)的关键是证明OC⊥DE,解(2)的关键是求出扇形OBC的面积,此题难度一般.21.(8分)[考点]列表法与树状图法.[分析](1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.[点评]此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(9分)[考点]二次函数的应用.[分析](1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.[解答]解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.[点评]此题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)[考点]分式的混合运算;规律型:数字的变化类.[分析](1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.[解答]解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.[点评]此题主要考查分式的混合运算与数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.11 / 11。
优秀教师推荐-2016年云南省中考数学试卷与解析

果△ ABD 的面积为 15 ,那么 △ ACD 的面积为(
)
A. 15 B. 10 C.
D. 5
三.解答题(共 9 个小题,共 70 分)
15 .( 6 分)( 2016? 云南)解不等式组
.
16.( 6 分)( 2016? 云南)如图:点 C 是 AE 的中点, ∠ A= ∠ ECD ,AB=CD ,求证: ∠B= ∠D .
(1)求 y 与 x 的函数解析式(也称关系式)
;
( 2 )设该水果销售店试销草莓获得的利润为
W 元,求 W 的最大值.
第 4 页(共 14 页)
23 .( 12 分)( 2016? 云南)有一列按一定顺序和规律排列的数:
第一个数是
;
第二个数是
;
第三个数是
;
?
对任何正整数 n,第 n 个数与第( n+1 )个数的和等于
第 2 页(共 14 页)
18 .( 6 分)( 2016? 云南)如图,菱形 ABCD 的对角线 2, BE ∥ AC , CE ∥ BD . ( 1)求 tan ∠ DBC 的值; ( 2)求证:四边形 OBEC 是矩形.
AC 与 BD 交于点 O,∠ ABC :∠ BAD=1 :
19 .( 7 分)( 2016? 云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣 爱好采购一批体育用品供学生课后锻炼使用, 因此学校随机抽取了部分同学就兴趣爱好进行调 查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
8,则可获得 50 元代金券一张;若所得的数字之和为
6,则可获得
得的数字之和为 5,则可获得 15 元代金券一张;其他情况都不中奖.
2016年云南省曲靖市中考数学试卷(解析版)

2016年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.4的倒数是()A.4 B.C.﹣D.﹣4【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:4的倒数是,故选:B.2.下列运算正确的是()A.3﹣=3 B.a6÷a3=a2 C.a2+a3=a5D.(3a3)2=9a6【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.【解答】解:A、由于3﹣=(3﹣1)=2≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.3.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.9【考点】合并同类项;单项式.【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选D.4.实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.a>b C.a<﹣b D.|a|>|b|【考点】实数与数轴.【分析】据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得0>a>﹣1,1<b<2.A、|a|<|b|,故本选项正确;B、a<b,故本选项错误;C、a>﹣b,故本选项错误;D、|a|<|b|,故本选项错误;故选:A.5.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是16【考点】方差;算术平均数;众数;极差.【分析】极差是指一组数据中最大数据与最小数据的差;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:(A)极差为11﹣6=5,故(A)错误;(B)根据出现次数最多的数据是10可得,众数是10,故(B)正确;(C)平均数为(10+6+9+11+8+10)÷6=9,故(C)错误;(D)方差为 [(10﹣9)2+(6﹣9)2+(9﹣9)2+(11﹣9)2+(8﹣9)2+(10﹣9)2]=,故(D)错误.故选(B)6.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5x+(9﹣5)×(x+2)=44,化简,得5x+4(x+2)=44,故选A.7.数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个【考点】正多边形和圆;平行四边形的判定.【分析】根据正六边形的性质,直接判断即可;【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形FABOD都是平行四边形,共6个,故选C8.如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB【考点】作图—基本作图;线段垂直平分线的性质;轴对称的性质.【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.【解答】解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以D选项正确;因为AD不一定等于AD,所以C选项错误.故选C.二、填空题(共6个小题,每小题3分,共18分)9.计算:=2.【考点】立方根.【分析】根据立方根的定义即可求解.【解答】解:∵23=8∴=2故答案为:2.10.如果整数x>﹣3,那么使函数y=有意义的x的值是0(只填一个)【考点】二次根式有意义的条件.【分析】根据题意可以求得使得二次根式有意义的x满足的条件,又因为整数x>﹣3,从而可以写出一个符号要求的x值.【解答】解:∵y=,∴π﹣2x≥0,即x≤,∵整数x>﹣3,∴当x=0时符号要求,故答案为:0.11.已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=2.【考点】根的判别式.【分析】首先根据原方程根的情况,利用根的判别式求出m的值即可.【解答】解:∵关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=m2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2=0,∴m=2,故答案为:2.12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是2.【考点】圆锥的计算;由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高==2.故答案为2.13.如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=.【考点】翻折变换(折叠问题);矩形的性质;解直角三角形.【分析】直接利用翻折变换的性质得出AF的长,再利用勾股定理得出BF的长,再利用锐角三角函数关系得出答案.【解答】解:∵在矩形ABCD中,AD=10,CD=6,沿AE折叠△ADE,使点D恰好落在BC边上的F处,∴AD=AF=10,∴BF==8,则sin∠ABM===.故答案为:.14.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是77.【考点】坐标与图形变化-旋转;等腰三角形的性质.【分析】根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B为参照点,第15次的坐标减去3即可的此时点C的横坐标.【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,故答案为:77.三、解答题(共9个小题,共70分)15. +(2﹣)0﹣(﹣)﹣2+|﹣1|【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解: +(2﹣)0﹣(﹣)﹣2+|﹣1|=4+1﹣4+1=2.16.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.17.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.【考点】分式的化简求值;解一元一次方程.【分析】先把分子分母因式分解和除法运算化为乘法运算,再约分得到原式=,然后利用x+1与x+6互为相反数可得到原式的值.【解答】解:原式=•+=+=,∵x+1与x+6互为相反数,∴原式=﹣1.18.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.【考点】一次函数与一元一次不等式.【分析】(1)由函数的解析式可求出点A和点B的坐标,进而可求出△AOB的面积;(2)结合函数图象即可求出y1>y2时x的取值范围.【解答】解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与x与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.19.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.【考点】分式方程的应用.【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.【解答】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.20.根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)利用360°乘以A组所占比例即可;(2)首先计算出各组的组中值,然后再利用加权平均数公式计算平均数;(3)利用平均每班的载客量×天数×次数可得一个月的总载客量.【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A:=10,B:=30;C:=50;D:=70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50××104(人),×104人.21.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A1,A2,A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】(1)根据题意,可以直接写出函数y=图象上的所有“整点”;(2)根据题意可以用树状图写出所有的可能性,从而可以求得两点关于原点对称的概率.【解答】解:(1)由题意可得函数y=图象上的所有“整点”的坐标为:A1(﹣3,﹣1),A2(﹣1,﹣3),A3(1,3),A4(3,1);(2)所有的可能性如下图所示,由图可知,共有12种结果,关于原点对称的有4种,∴P(关于原点对称)=.22.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.【考点】切线的性质;菱形的判定;垂径定理.【分析】(1)连接OE,设圆的半径为r,在之间三角形ABC中,利用勾股定理求出AB的长,根据BC与圆相切,得到OE垂直于BC,进而得到一对直角相等,再由一对公共角,利用两角相等的三角形相似得到三角形BOE与三角形ABC相似,由相似得比例求出r的值即可;(2)利用同弧所对的圆周角相等,得到∠AOE=4∠B,进而求出∠B与∠F的度数,根据EF与AD垂直,得到一对直角相等,确定出∠MEB=∠F=60°,CA与EF平行,进而得到CB与AF平行,确定出四边形ACEF为平行四边形,再由∠CAB为直角,得到CA为圆的切线,利用切线长定理得到CA=CE,利用邻边相等的平行四边形为菱形即可得证.【解答】(1)解:连接OE,设圆O半径为人,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.23.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由点C的坐标以及tan∠OAC=可得出点A的坐标,结合点A、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设直线AC的解析式为y=kx+b,由点A、C的解析式利用待定系数法即可求出直线AC的解析式,设N(x,0)(﹣4<x<0),可找出H、P的坐标,由此即可得出PH关于x的解析式,利用配方法即二次函数的性质即可解决最值问题;(3)过点M作MK⊥y轴于点K,交对称轴于点G,根据角的计算依据正方形的性质即可得出△MCK≌△MEG(AAS),进而得出MG=CK.设出点M的坐标利用正方形的性质即可得出点G、K的坐标,由正方形的性质即可得出关于x的含绝对值符号的一元二次方程,解方程即可求出x值,将其代入抛物线解析式中即可求出点M的坐标.【解答】解:(1)∵C(0,3),∴OC=3,∵tan∠OAC=,∴OA=4,∴A(﹣4,0).把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,得,解得:,∴抛物线的解析式为y=﹣x2﹣x+3.(2)设直线AC的解析式为y=kx+b,把A(﹣4,0)、C(0,3)代入y=kx+b中,得:,解得:,∴直线AC的解析式为y=x+3.设N(x,0)(﹣4<x<0),则H(x,x+3),P(x,﹣x2﹣x+3),∴PH=﹣x2﹣x+3﹣(x+3)=﹣x2﹣x=﹣(x﹣2)2+,∵﹣<0,∴PH有最大值,当x=2时,PH取最大值,最大值为.(3)过点M作MK⊥y轴于点K,交对称轴于点G,则∠MGE=∠MKC=90°,∴∠MEG+∠EMG=90°,∵四边形CMEF是正方形,∴EM=MC,∠MEC=90°,∴∠EMG+∠CMK=90°,∴∠MEG=∠CMK.在△MCK和△MEG中,,∴△MCK≌△MEG(AAS),∴MG=CK.由抛物线的对称轴为x=﹣1,设M(x,﹣x2﹣x+3),则G(﹣1,﹣x2﹣x+3),K(0,﹣x2﹣x+3),∴MG=|x+1|,CK=|﹣x2﹣x+3﹣3|=|﹣x2﹣x|=|x2+x|,∴|x+1|=|x2+x|,∴x2+x=±(x+1),解得:x1=﹣4,x2=﹣,x3=﹣,x4=2,代入抛物线解析式得:y1=0,y2=,y3=,y4=0,∴点M的坐标是(﹣4,0),(﹣,),(﹣,)或(2,0).2016年8月16日。
2016年云南省中考数学真题试卷含答案

2016年云南省中考数学试卷一、填空JI(本黑共6小JK,每小题3分,共18分)1.计算:|-3|=.2.如图,直线“昉,直线c与直线”,分别相交于X.8两点,若£1=60。
,则左=(第2题图)3.分解因式:F-l=.4.若一个多边形的边数为6,则这个多边形的内角和为.5.如果关于x的一元二次方程*2ga+2=0有两个相等的实数根,那么实数。
的值为—6.如果圆柱的侧面展开图是相邻两边长分别为6,I6n的长方形,那么这个圆柱的体税等于.二、选择题(本题共8小题,每小题4分,共32分)7.据《云南省生物物种名录(2016版)》的介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A. 2.5434x103B. 2.5434x[(HC. 2.5434x10-3D. 2.5434x138.函数尸一L_的自变量x的取值范围为()x-2A.x>2B.x<2C..r<2D.x^29.若一个凡何体的主视图、左视图、俯视图是半径相等的圆.则这个几何体是()A.圆柱B.圆锥C.球D.正方体10.下列计算正确的是()A.(-2)2=4B.J(-2)2—2C.4J(-2)』64D.^-^2=^611.位于第一象限的点£在反比例函数尸的图像上,点F在x轴的正半轴上,O是坐标X原点.若EO^EF,的面积等于2,则灯(A.4B.2C.ID.-212.某校随机抽查了】0名参加20】6年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩/分4647484950人数12124下列说法正确的是()A.这10名同学的体育成绩的众数为50分B.这10名同学的体育成绩的中位数为48分C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48分13.下列交通标志,是轴对称图形但不是中心对称图形的是()14.如图,D是AABC的边BC上一点,如=8,AD=4,D)AC=m如果AJ8D的面积为15,那么△XCD的面积为()A(第14题图)15~2三、解答题(本题共9小题,共70分)16.(6分)如图,点C是北•的中点,84CD,AB=CD,求证:EA B(第16题图)17.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为了提高质量,做进一步研究,某饮料加工厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料分别多少瓶?18.(6分)如图,菱形ABCD的对角线XC与8。
2016年云南省各市中考数学试卷汇总(3套)

文件清单:2016年云南省昆明市中考数学试卷(解析版)云南省2016年中考数学试卷(解析版)云南省曲靖市2016年中考数学试题(word版,含解析)2016年云南省昆明市中考数学试卷一、填空题:每小题3分,共18分1.﹣4的相反数为.2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为.3.计算:﹣=.4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为.5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是.6.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A 作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为.二、选择题(共8小题,每小题4分,满分32分)7.下面所给几何体的俯视图是()A. B. C. D.8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分)80 85 90 95那么这9名学生所得分数的众数和中位数分别是()A.90,90 B.90,85 C.90,87.5 D.85,859.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定10.不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥211.下列运算正确的是()A .(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣212.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O 于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()A.EF∥CD B.△COB是等边三角形C .CG=DG D.的长为π13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个三、综合题:共9题,满分70分15.计算:20160﹣|﹣|++2sin45°.16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)23.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年云南省昆明市中考数学试卷参考答案与试题解析一、填空题:每小题3分,共18分1.﹣4的相反数为4.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.【解答】解:﹣4的相反数是4.故答案为:4.2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为 6.73×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值是易错点,由于67300有5位,所以可以确定n=5﹣1=4.【解答】解:67300=6.73×104,故答案为:6.73×104.3.计算:﹣=.【考点】分式的加减法.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为40°.【考点】等腰三角形的性质;平行线的性质.【分析】由等腰三角形的性质证得E=∠F=20°,由三角形的外角定理证得∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.【解答】解:∵DE=DF,∠F=20°,∴∠E=∠F=20°,∴∠CDF=∠E+∠F=40°,∵AB∥CE,∴∠B=∠CDF=40°,故答案为:40°.5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.【考点】中点四边形;矩形的性质.【分析】先根据E ,F ,G ,H 分别是矩形ABCD 各边的中点得出AH=DH=BF=CF ,AE=BE=DG=CG ,故可得出△AEH ≌△DGH ≌△CGF ≌△BEF ,根据S 四边形EFGH =S 正方形﹣4S △AEH 即可得出结论.【解答】解:∵E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.在△AEH 与△DGH 中, ∵,∴△AEH ≌△DGH (SAS ).同理可得△AEH ≌△DGH ≌△CGF ≌△BEF ,∴S 四边形EFGH =S 正方形﹣4S △AEH =6×8﹣4××3×4=48﹣24=24.故答案为:24.6.如图,反比例函数y=(k ≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC=CD ,四边形BDCE 的面积为2,则k 的值为 ﹣ .【考点】反比例函数系数k 的几何意义;平行线分线段成比例.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE=BD=b,CD=DO=a∵四边形BDCE的面积为2∴(BD+CE)×CD=2,即(b+b)×(﹣a)=2∴ab=﹣将B(a,b)代入反比例函数y=(k≠0),得k=ab=﹣故答案为:﹣二、选择题(共8小题,每小题4分,满分32分)7.下面所给几何体的俯视图是()A. B. C. D.【考点】简单几何体的三视图.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分)80 85 90 95那么这9名学生所得分数的众数和中位数分别是()A.90,90 B.90,85 C.90,87.5 D.85,85【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【解答】解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故选:A.9.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.10.不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥2【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为:2≤x<4,故选:C.11.下列运算正确的是()A .(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣2【考点】同底数幂的乘法;算术平方根;立方根;完全平方公式.【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C 、=3,故错误;D、=﹣2,故正确,故选D.12.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O 于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()A.EF∥CD B.△COB是等边三角形C .CG=DG D.的长为π【考点】弧长的计算;切线的性质.【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,∴AB⊥EF,又AB⊥CD,∴EF∥CD,A正确;∵AB⊥弦CD,∴=,∴∠COB=2∠A=60°,又OC=OD,∴△COB是等边三角形,B正确;∵AB⊥弦CD,∴CG=DG,C正确;的长为: =π,D错误,故选:D.13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【考点】正方形的性质;全等三角形的判定与性质.【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选:D.三、综合题:共9题,满分70分15.计算:20160﹣|﹣|++2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据零次幂、实数的绝对值、负指数幂及特殊角的三角函数值进行计算即可.【解答】解:20160﹣|﹣|++2sin45°=1﹣+(3﹣1)﹣1+2×=1﹣+3+=4.16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【解答】解:(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(﹣3,﹣4),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是50,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中C等级所对应的圆心角为28.8°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;(2)用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;(3)由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B 等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.【考点】列表法与树状图法;概率公式.【分析】先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.【解答】解:(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,即P(两个数字之和能被3整除)=.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE ﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)【考点】切线的判定;平行四边形的性质;扇形面积的计算.【分析】(1)欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA即可.(2)根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出DE=EC=BO=BD=OA由此根据S=2•S△AOC﹣S扇阴即可解决问题.形OAD【解答】(1)证明:如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,∵EC∥OB,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA•tan60°=2,∴S=2•S△AOC﹣S扇形OAD=2××2×2﹣=2﹣.阴23.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;(2)作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;(3)画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM 利用勾股定理列方程;两方程式组成方程组求解并取舍.【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣2),把C(0,4)代入:4=﹣2a,a=﹣2,∴y=﹣2(x+1)(x﹣2),∴抛物线的解析式为:y=﹣2x2+2x+4;(2)如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,+S△PDB=m(﹣2m2+2m+4+4)+(﹣2m2+2m+4)(2﹣m),∴S=S梯形S=﹣2m2+4m+4=﹣2(m﹣1)2+6,∵﹣2<0,=6;∴S有最大值,则S大(3)如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,理由是:设直线BC的解析式为:y=kx+b,把B(2,0)、C(0,4)代入得:,解得:,∴直线BC的解析式为:y=﹣2x+4,设M(a,﹣2a+4),过A作AE⊥BC,垂足为E,则AE的解析式为:y=x+,则直线BC与直线AE的交点E(1.4,1.2),设Q(﹣x,0)(x>0),∵AE∥QM,∴△ABE∽△QBM,∴①,由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,由①②得:a1=4(舍),a2=,当a=时,x=,∴Q(﹣,0).2016年7月12日2016年云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体10.下列计算,正确的是()A .(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB 的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n表示第n数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.2016年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.【考点】多边形内角与外角.。
云南省2016年中考数学试卷及答案解析
云南省2016年中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|= 3 .【考点】绝对值.【解析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2= 60°.【考点】平行线的性质.【解析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1= (x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【解析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.【考点】多边形内角与外角.【解析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2 .【考点】根的判别式.【解析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【解析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【解析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体【考点】由三视图判断几何体.【解析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【解析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【解析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【解析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为: =49;平均数==48.6,方差= [(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【解析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【解析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【解析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【解析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan ∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【解析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【解析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC⊥DE,解(2)的关键是求出扇形OBC的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【解析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【解析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【解析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.云南省2016年中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|= .2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2= .3.因式分解:x2﹣1= .4.若一个多边形的边数为6,则这个多边形的内角和为 720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.第21 页共21 页。
2016年曲靖市数学中考题
绝密★启用前云南省曲靖市2016年初中学业水平考试数学试卷(全卷三个大题,共23小题,共6页;满分120分,考试时间120分钟) 注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号及姓名,在规定的位置贴好条形码。
2.考生必须把所有的答案填写在答题卡上,答在试卷上的答案无效。
3.选择题毎小题选出答案后,用2B 铅笔把答题卡上对应题目的答案选项框涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案选项框,不要填涂和勾划无关选项。
其它试题用黑色碳素笔作答,答案不要超出给定的答题框。
4.考生必须按规定的方法和要求答题,不按要求答题所造成的后果由本人自负。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.4的倒数是( )A .4B .41C .﹣41D .﹣42.下列运算正确的是( ) A .3﹣=3 B .a 6÷a 3=a 2C .a 2+a 3=a 5D .(3a 3)2=9a 63.单项式x m ﹣1y 3与4xy n的和是单项式,则n m的值是( )A .3B .6C .8D .94.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .|a|<|b|B .a >bC .a <﹣bD .|a|>|b|5.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是( )A .极差是6B .众数是10C .平均数是9.5D .方差是166.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x+4(x+2)=44B .5x+4(x ﹣2)=44C .9(x+2)=44D .9(x+2)﹣4×2=447.数如图,AD ,BE ,CF 是正六边形ABCDEF 的对角线,图中平行四边形的个数有( )8.如图,C ,E 是直线l 两侧的点,以C 为圆心,CE 长为半径画弧交l 于A ,B 两点,又分别以A ,B 为圆心,大于21AB 的长为半径画弧,两弧交于点D ,连接CA ,CB ,CD ,下列结论不一定正确的是( )A .CD ⊥lB .点A ,B 关于直线CD 对称C .点C ,D 关于直线l 对称 D .CD 平分∠ACB第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(题型注释)9.计算:38 = .10.如果整数x >﹣3,那么使函数y=x 2-π有意义的x 的值是 (只填一个)11.已知一元二次方程x 2+mx+m ﹣1=0有两个相等的实数根,则m= .12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是 .13.如图,在矩形ABCD 中,AD=10,CD=6,E 是CD 边上一点,沿AE 折叠△ADE ,使点D 恰好落在BC 边上的F 处,M 是AF 的中点,连接BM ,则sin ∠ABM= .14.等腰三角形ABC 在平面直角坐标系中的位置如图所示,已知点A (﹣6,0),点B 在原点,CA=CB=5,把等腰三角形ABC 沿x 轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C 的横坐标是 .三、计算题(题型注释)15.16 +(2﹣2)0﹣(﹣21)﹣2+|﹣1|四、解答题(题型注释)16.如图,已知点B ,E ,C ,F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D . (1)求证:AC ∥DE ;(2)若BF=13,EC=5,求BC 的长.17.先化简:133963222--++++÷+x x x x x x x x ,再求当x+1与x+6互为相反数时代数式的值.18.如图,已知直线y 1=﹣21x+1与x 轴交于点A ,与直线y 2=﹣23x 交于点B .(1)求△AOB 的面积;(2)求y 1>y 2时x 的取值范围.19.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.20.根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A ,B ,C ,D 四组,得到如下统计图:(1)求A 组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组; (2)求这天5路公共汽车平均每班的载客量;学记数法表示出来.21.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=x 3图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22.如图,在Rt △ABC 中,∠BAC=90°,O 是AB 边上的一点,以OA 为半径的⊙O 与边BC 相切于点E .(1)若AC=5,BC=13,求⊙O 的半径;(2)过点E 作弦EF ⊥AB 于M ,连接AF ,若∠F=2∠B ,求证:四边形ACEF 是菱形.23.如图,在平面直角坐标系中,抛物线y=ax 2+2ax+c 交x 轴于A ,B 两点,交y 轴于点C (0,3),tan ∠OAC=43.(1)求抛物线的解析式;(2)点H 是线段AC 上任意一点,过H 作直线HN ⊥x 轴于点N ,交抛物线于点P ,求线段PH 的最大值;(3)点M 是抛物线上任意一点,连接CM ,以CM 为边作正方形CMEF ,是否存在点M 使点E 恰好落在对称轴上?若存在,请求出点M 的坐标;若不存在,请说明理由.参考答案1.B .【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:根据乘积是1的两个数互为倒数,可得4的倒数是41,故答案选B .考点:倒数. 2.D .【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.选项A ,根据二次根式的加减法可得32﹣2=(3﹣1)2=22≠3,选项A 错误;选项B ,根据同底数幂的除法可得a 6÷a 3=a 6﹣3=a 3≠a 2,选项B 错误;选项,由于a 2与a 3不是同类项,不能进行合并同类项计算,选项C 错误;选项D,根据积的乘方与幂的乘方的运算法则可得(3a 3)2=9a 6,选项D 正确.故答案选D .考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;同底数幂的除法. 3.D .【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:已知得出两单项式是同类项,可得m ﹣1=1,n=3,解得m=2,n=3,所以n m =32=9,故答案选D . 考点:同类项. 4.A .【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:观察数轴可得0>a >﹣1,1<b <2.选项A ,|a|<|b|,正确;选项B ,a <b ,错误;选项C ,a >﹣b ,错误;选项D ,|a|<|b|,项错误;故答案选A . 考点:实数与数轴. 5.B.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:选项A ,极差为11﹣6=5,错误;选项B ,根据出现次数最多的数据是10可得,众数是10,正确;选项C ,平均数为(10+6+9+11+8+10)÷6=9,错误;选项D ,方差为 [(10﹣9)2+(6﹣9)2+(9﹣9)2+(11﹣9)2+(8﹣9)2+(10﹣9)2]÷6=38,错误.故答案选B.考点:方差;算术平均数;众数;极差. 6.A .【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:由题意可得,5x+(9﹣5)×(x+2)=44,化简,得5x+4(x+2)=44,故答案选A .考点:由实际问题抽象出一元一次方程. 7.C.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:如图,AD ,BE ,CF 是正六边形ABCDEF 的对角线,可得OA=OE=AF=EF ,所以四边形AOEF 是平行四边形,同理:四边形DEFO ,四边形ABCO ,四边形BCDO ,四边形CDEO ,四边形FABOD 都是平行四边形,共6个,故答案选C.考点:正多边形和圆;平行四边形的判定. 8.C .【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】 试题分析:由作法得CD 垂直平分AB ,所以A 、B 选项正确;因为CD 垂直平分AB ,所以CA=CB ,所以CD 平分∠ACB ,所以D 选项正确;因为AD 不一定等于AD ,所以C 选项错误.故答案选C .考点:作图—基本作图;线段垂直平分线的性质;轴对称的性质. 9.2.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:因为23=8根据立方根的定义可得38=2.考点:立方根.10.0(答案不唯一)【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:根据题意可以求得使得二次根式有意义的x 满足的条件为π﹣2x ≥0,即x ≤2,,又因为整数x >﹣3,从而可以写出一个符和要求的x 值即可. 考点:二次根式有意义的条件. 11.2.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:已知关于x 的一元二次方程x 2﹣mx+m ﹣1=0有两个相等的实数根,可得△=b 2﹣4ac=m 2﹣4×1×(m ﹣1)=m 2﹣4m+4=(m ﹣2)2=0,解得m=2. 考点:根的判别式. 12.23.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:设圆锥的底面圆的半径为r ,则πr 2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,根据勾股定理可计算出它的左视图的高为23. 考点:圆锥的计算;由三视图判断几何体. 13.54. 【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:已知在矩形ABCD 中,AD=10,CD=6,沿AE 折叠△ADE ,使点D 恰好落在BC 边上的F 处,由折叠的性质可得AD=AF=10,再利用勾股定理可求得BF=8,所以sin ∠ABM=54108==AF BF .考点:翻折变换(折叠问题);矩形的性质;解直角三角形. 14.77.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C 的横坐标是:(5+5+6)×5﹣3=77.考点:坐标与图形变化-旋转;等腰三角形的性质. 15.2.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:根据绝对值、算术平方根和零指数幂的意义计算. 试题解析:原式=4+1﹣4+1=2.考点:实数的运算;零指数幂;负整数指数幂. 16.(1)详见解析;(2)9.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】 试题分析:(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案. 试题解析:(1)证明:在△ABC 和△DFE 中,∴△ABC ≌△DFE (SAS ), ∴∠ACE=∠DEF , ∴AC ∥DE ;(2)解:∵△ABC ≌△DFE , ∴BC=EF ,∴CB ﹣EC=EF ﹣EC , ∴EB=CF ,∵BF=13,EC=5, ∴EB=4, ∴CB=4+5=9.考点:全等三角形的判定与性质. 17.原式=16++x x ,1. 【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】试题分析:先把分子分母因式分解和除法运算化为乘法运算,再约分后化为最简分式,然后利用x+1与x+6互为相反数可得到原式的值.试题解析:原式=))(()()(11)1(31332+--+++⨯+x x x x x x x x=1313++++x x x )( =16++x x ,∵x+1与x+6互为相反数, ∴原式=﹣1.考点:分式的化简求值;解一元一次方程. 18.(1)1.5;(2)x >﹣1.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析) 【解析】 试题分析:(1)由函数的解析式可求出点A 和点B 的坐标,进而可求出△AOB 的面积;(2)结合函数图象即可求出y 1>y 2时x 的取值范围.试题解析:(1)由y 1=﹣21x+1,可知当y=0时,x=2, ∴点A 的坐标是(2,0), ∴AO=2,∵y 1=﹣21x+1与x 与直线y 2=﹣23x 交于点B ,∴B 点的坐标是(﹣1,1.5),∴△AOB 的面积=21×2×1.5=1.5;(2)由(1)可知交点B 的坐标是(﹣1,1.5), 由函数图象可知y 1>y 2时x >﹣1.考点:一次函数与一元一次不等式.19.货车的速度是60千米/小时.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析)【解析】试题分析:设货车的速度是x 千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.试题解析:设货车速度是x 千米/小时, 根据题意得:x x 2240240-=2, 解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.考点:分式方程的应用.20.(1)72°,这天载客量的中位数在B 组;(2)38人;(3)5路公共汽车一个月的总载客量约为5.7×104人.【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析)【解析】试题分析:(1)利用360°乘以A 组所占比例即可;(2)首先计算出各组的组中值,然后再利用加权平均数公式计算平均数;(3)利用平均每班的载客量×天数×次数可得一个月的总载客量.试题解析:(1)A 组对应扇形圆心角度数为:360°×5010=72°;这天载客量的中位数在B 组;(2)各组组中值为:A : 2200+=10,B :22040+=30;C :26040+ =50;D :28060+ =70;x =50706501830161010⨯+⨯+⨯+⨯=38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.考点:频数(率)分布直方图;扇形统计图;中位数.21.(1)A 1(﹣3,﹣1),A 2(﹣1,﹣3),A 3(1,3),A 4(3,1);(2)31. 【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析)【解析】 试题分析:(1)根据题意,可以直接写出函数y=x 3图象上的所有“整点”;(2)根据题意可以用树状图写出所有的可能性,从而可以求得两点关于原点对称的概率.试题解析:(1)由题意可得,函数y=x 3图象上的所有“整点”的坐标为:A 1(﹣3,﹣1),A 2(﹣1,﹣3),A 3(1,3),A 4(3,1);(2)所有的可能性如下图所示,由图可知,共有12种结果,关于原点对称的有4种,∴P (关于原点对称)=31124=. 考点:反比例函数图象上点的坐标特征;列表法与树状图法.22.(1)310;(2)详见解析. 【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析)【解析】试题分析:(1)连接OE ,设圆的半径为r ,在之间三角形ABC 中,利用勾股定理求出AB 的长,根据BC 与圆相切,得到OE 垂直于BC ,进而得到一对直角相等,再由一对公共角,利用两角相等的三角形相似得到三角形BOE 与三角形ABC 相似,由相似得比例求出r 的值即可; 试题解析:(1)解:连接OE ,设圆O 半径为人,在Rt △ABC 中,BC=13,AC=5,根据勾股定理得:AB=12,∵BC 与圆O 相切,∴OE ⊥BC ,∴∠OEB=∠BAC=90°,∵∠B=∠B ,∴△BOE ∽△BCA , ∴BC BO AC OE =,即13125r r -=, 解得:r=310;(2)∵,∠F=2∠B ,∴∠AOE=2∠F=4∠B ,∵∠AOE=∠OEB+∠B ,∴∠B=30°,∠F=60°,∵EF ⊥AD ,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA ∥EF ,∴CB ∥AF ,∴四边形ACEF 为平行四边形,∵∠CAB=90°,OA 为半径,∴CA 为圆O 的切线,∵BC 为圆O 的切线,∴CA=CE ,∴平行四边形ACEF 为菱形.考点:切线的性质;菱形的判定;垂径定理.23.(1)y=﹣83x 2﹣43x+3;(2)23;(3)点M 的坐标是(﹣4,0),(﹣32,310),(﹣34,310)或(2,0).【来源】2016年初中毕业升学考试(云南曲靖卷)数学(带解析)【解析】试题分析:(1)由点C 的坐标以及tan ∠OAC=43可得出点A 的坐标,结合点A 、C 的坐标利用待定系数法即可求出抛物线的解析式;(2)设直线AC 的解析式为y=kx+b ,由点A 、C 的解析式利用待定系数法即可求出直线AC 的解析式,设N (x ,0)(﹣4<x <0),可找出H 、P 的坐标,由此即可得出PH 关于x 的解析式,利用配方法即二次函数的性质即可解决最值问题;(3)过点M 作MK ⊥y 轴于点K ,交对称轴于点G ,根据角的计算依据正方形的性质即可得出△MCK ≌△MEG (AAS ),进而得出MG=CK .设出点M 的坐标利用正方形的性质即可得出点G 、K 的坐标,由正方形的性质即可得出关于x 的含绝对值符号的一元二次方程,解方程即可求出x 值,将其代入抛物线解析式中即可求出点M 的坐标.试题解析:(1)∵C (0,3),∴OC=3,∵tan ∠OAC=43,∴OA=4,∴A (﹣4,0).把A (﹣4,0)、C (0,3)代入y=ax 2+2ax+c 中,得,解得:,∴抛物线的解析式为y=﹣83x 2﹣43x+3.(2)设直线AC 的解析式为y=kx+b ,把A (﹣4,0)、C (0,3)代入y=kx+b 中, 得:,解得:,∴直线AC 的解析式为y=43x+3.设N (x ,0)(﹣4<x <0),则H (x ,43 x+3),P (x ,﹣83x 2﹣43x+3),∴PH=﹣83x 2﹣43x+3﹣(43x+3)=﹣83x 2﹣23x=﹣83(x ﹣2)2+23, ∵﹣83<0,∴PH 有最大值,当x=2时,PH 取最大值,最大值为23.(3)过点M 作MK ⊥y 轴于点K ,交对称轴于点G ,则∠MGE=∠MKC=90°,∴∠MEG+∠EMG=90°,∵四边形CMEF 是正方形,∴EM=MC ,∠MEC=90°,∴∠EMG+∠CMK=90°,∴∠MEG=∠CMK .在△MCK 和△MEG 中,,∴△MCK ≌△MEG (AAS ),∴MG=CK . 由抛物线的对称轴为x=﹣1,设M (x ,﹣83x 2﹣43x+3),则G (﹣1,﹣83x 2﹣43x+3),K (0,﹣83x 2﹣43x+3),∴MG=|x+1|,CK=|﹣83x 2﹣43x+3﹣3|=|﹣83x 2﹣43x|=|83x 2+43x|,∴|x+1|=|83x 2+43x|, ∴83x 2+43x=±(x+1),解得:x 1=﹣4,x 2=﹣32,x 3=﹣34,x 4=2,代入抛物线解析式得:y 1=0,y 2=310,y 3=310,y 4=0,∴点M 的坐标是(﹣4,0),(﹣32,310),(﹣34,310)或(2,0). 考点:二次函数综合题.。
云南省2016年中考数学真题试题(含答案)
2016年云南省初中学业水平考试数学试题(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷的答题卡一并交回。
一、填空题(本大题共6个小题,每小题3分,满分18分)1.- 3 = .2.如图,直线a ∥b,直线c 与直线a 、b 分别相交于A 、B 两点,若∠1=60°则∠2= .3.因式分解:21x - = .4.若一个多边形的边数为6,则这个多边形的内角和为度5.如果关于x 的一元二次方程22 20x a x a +++=有两个相等的实数根,那么实数a 的值为 .6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于 .二、选择题(本大题共9小题,每小题只有一个正确选项,每小题3分,满分27分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为8.函数12y x =- 的自变量x 的取值范围为9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是 圆锥1011.位于第一象限的点 E 在反比例函数ky x=的图象上,点F 在x 轴的正半轴上,O 是坐标原点,若EO=EF ,△EOF 的面积等于2,则k =.12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如下表:47下列说法正确的是A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是14. 如图, D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,若果△ABD的面积为15,那么△三.解答题(共9个小题,共70分)15.(本小题满分6分)解不等式组2(3)10 21xx x+>⎧⎨+>⎩16.(本小题满分6分)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D17.(本小题满分8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.(本小题满分6分)如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC ,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.(本小题满分7分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你在答题卡上补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.(本小题满分8分)如图, AB为⊙O的直径,C是⊙O 上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.(本小题满分8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.(本小题满分9分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,下图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W得最大值。
2016年云南省曲靖市中考数学试卷(解析版)
23.(12 分)如图,在平面直角坐标系中,抛物线 y=ax2+2ax+c 交 x 轴于 A,B 两点,交 y 轴于点 C(0,3),tan∠OAC= . (1)求抛物线的解析式; (2)点 H 是线段 AC 上任意一点,过 H 作直线 HN⊥x 轴于点 N,交抛物线于点 P,求 线段 PH 的最大值; (3)点 M 是抛物线上任意一点,连接 CM,以 CM 为边作正方形 CMEF,是否存在点 M 使点 E 恰好落在对称轴上?若存在,请求出点 M 的坐标;若不存在,请说明理由.
17.(7 分)先化简: ÷
+
,再求当 x+1 与 x+6 互为相反数时代数式的
值. 18.(7 分)如图,已知直线 y1=﹣ x+1 与 x 轴交于点 A,与直线 y2=﹣ x 交于点 B.
(1)求△AOB 的面积; (2)求 y1>y2 时 x 的取值范围.
19.(7 分)甲、乙两地相距 240 千米,一辆小轿车的速度是货车速度的 2 倍,走完全程, 小轿车比货车少用 2 小时,求货车的速度.
第 1 页(共 13 页)
点,又分别以 A,B 为圆心,大于 AB 的长为半径画弧,两弧交于点 D,连接 CA,CB, CD,下列结论不一定正确的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年云南省曲靖市中考数学试卷一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.(4分)4的倒数是()A.4 B.C.﹣ D.﹣42.(4分)下列运算正确的是()A.3﹣=3 B.a6÷a3=a2C.a2+a3=a5 D.(3a3)2=9a63.(4分)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.94.(4分)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b|B.a>b C.a<﹣b D.|a|>|b|5.(4分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是166.(4分)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44D.9(x+2)﹣4×2=447.(4分)如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个 B.4个 C.6个 D.8个8.(4分)如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称 D.CD平分∠ACB二、填空题(共6个小题,每小题3分,共18分)9.(3分)计算:=.10.(3分)如果整数x>﹣3,那么使函数y=有意义的x的值是(只填一个)11.(3分)已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=.12.(3分)如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.13.(3分)如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin ∠ABM=.14.(3分)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是.三、解答题(共9个小题,共70分)15.(5分)+(2﹣)0﹣(﹣)﹣2+|﹣1|16.(6分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.17.(7分)先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.18.(7分)如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.19.(7分)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.20.(8分)根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.21.(9分)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A1,A2,A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22.(9分)如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.23.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.2016年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.(4分)4的倒数是()A.4 B.C.﹣ D.﹣4【解答】解:4的倒数是,故选:B.2.(4分)下列运算正确的是()A.3﹣=3 B.a6÷a3=a2C.a2+a3=a5 D.(3a3)2=9a6【解答】解:A、由于3﹣=(3﹣1)=2≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.3.(4分)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.9【解答】解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选D.4.(4分)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b|B.a>b C.a<﹣b D.|a|>|b|【解答】解:由点的坐标,得0>a>﹣1,1<b<2.A、|a|<|b|,故本选项正确;B、a<b,故本选项错误;C、a>﹣b,故本选项错误;D、|a|<|b|,故本选项错误;故选:A.5.(4分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是16【解答】解:(A)极差为11﹣6=5,故(A)错误;(B)根据出现次数最多的数据是10可得,众数是10,故(B)正确;(C)平均数为(10+6+9+11+8+10)÷6=9,故(C)错误;(D)方差为[(10﹣9)2+(6﹣9)2+(9﹣9)2+(11﹣9)2+(8﹣9)2+(10﹣9)2]=,故(D)错误.故选(B)6.(4分)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44D.9(x+2)﹣4×2=44【解答】解:由题意可得,5x+(9﹣5)(x+2)=5x+4(x+2)=44,故选A.7.(4分)如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个 B.4个 C.6个 D.8个【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形FABOD 都是平行四边形,共6个,故选C8.(4分)如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称 D.CD平分∠ACB【解答】解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以D选项正确;因为AD不一定等于AC,所以C选项错误.故选C.二、填空题(共6个小题,每小题3分,共18分)9.(3分)计算:=2.【解答】解:∵23=8∴=2故答案为:2.10.(3分)如果整数x>﹣3,那么使函数y=有意义的x的值是0(只填一个)【解答】解:∵y=,∴π﹣2x≥0,即x≤,∵整数x>﹣3,∴当x=0时符合要求,故答案为:0.11.(3分)已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=2.【解答】解:∵关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=m2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2=0,∴m=2,故答案为:2.12.(3分)如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是2.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高==2.故答案为2.13.(3分)如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=.【解答】解:∵在矩形ABCD中,AD=10,CD=6,沿AE折叠△ADE,使点D恰好落在BC边上的F处,∴AD=AF=10,∴BF==8,则sin∠ABM===.故答案为:.14.(3分)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是77.【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:﹣3+(3+5+5+3)×5=77,故答案为:77.三、解答题(共9个小题,共70分)15.(5分)+(2﹣)0﹣(﹣)﹣2+|﹣1|【解答】解:+(2﹣)0﹣(﹣)﹣2+|﹣1|=4+1﹣4+1=2.16.(6分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.17.(7分)先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.【解答】解:原式=•+=+=,∵x+1与x+6互为相反数,∴原式=﹣1.18.(7分)如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.【解答】解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.19.(7分)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.【解答】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.20.(8分)根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A:=10,B:=30;C:=50;D:=70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.21.(9分)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A1,A2,A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.【解答】解:(1)由题意可得函数y=图象上的所有“整点”的坐标为:A1(﹣3,﹣1),A2(﹣1,﹣3),A3(1,3),A4(3,1);(2)所有的可能性如下图所示,由图可知,共有12种结果,关于原点对称的有4种,∴P(关于原点对称)=.22.(9分)如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.【解答】(1)解:连接OE,设圆O半径为r,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.23.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵C(0,3),∴OC=3,∵tan∠OAC=,∴OA=4,∴A(﹣4,0).把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,得,解得:,∴抛物线的解析式为y=﹣x2﹣x+3.(2)设直线AC的解析式为y=kx+b,把A(﹣4,0)、C(0,3)代入y=kx+b中,得:,解得:,∴直线AC的解析式为y=x+3.设N(x,0)(﹣4<x<0),则H(x,x+3),P(x,﹣x2﹣x+3),∴PH=﹣x2﹣x+3﹣(x+3)=﹣x2﹣x=﹣(x+2)2+,∵﹣<0,∴PH有最大值,当x=﹣2时,PH取最大值,最大值为.(3)过点M作MK⊥y轴于点K,交对称轴于点G,则∠MGE=∠MKC=90°,∴∠MEG+∠EMG=90°,∵四边形CMEF是正方形,∴EM=MC,∠MEC=90°,∴∠EMG+∠CMK=90°,∴∠MEG=∠CMK.在△MCK和△MEG中,,∴△MCK≌△MEG(AAS),∴MG=CK.由抛物线的对称轴为x=﹣1,设M(x,﹣x2﹣x+3),则G(﹣1,﹣x2﹣x+3),K(0,﹣x2﹣x+3),∴MG=|x+1|,CK=|﹣x2﹣x+3﹣3|=|﹣x2﹣x|=|x2+x|,∴|x+1|=|x2+x|,∴x2+x=±(x+1),解得:x1=﹣4,x2=﹣,x3=﹣,x4=2,代入抛物线解析式得:y1=0,y2=,y3=,y4=0,∴点M的坐标是(﹣4,0),(﹣,),(﹣,)或(2,0).。