初一数学《正数和负数》知识点解析新人教版

合集下载

人教版七年级数学上册:1.1《正数和负数》说课稿3

人教版七年级数学上册:1.1《正数和负数》说课稿3

人教版七年级数学上册:1.1《正数和负数》说课稿3一. 教材分析《正数和负数》是人教版七年级数学上册的第一课时内容,本节课主要介绍正数和负数的概念,以及它们的性质。

通过本节课的学习,学生能够理解正数和负数的含义,掌握它们的表示方法,以及会进行简单的正负数运算。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的概念已经有了一定的认识。

但是,对于正数和负数的概念以及性质可能还比较陌生,需要通过本节课的学习来逐步理解和掌握。

三. 说教学目标1.知识与技能目标:学生能够理解正数和负数的概念,掌握它们的性质,以及会进行简单的正负数运算。

2.过程与方法目标:通过观察、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 说教学重难点1.教学重点:正数和负数的概念,以及它们的性质。

2.教学难点:正负数的运算方法,以及如何解决实际问题中的正负数问题。

五. 说教学方法与手段本节课采用讲授法、讨论法、探究法等多种教学方法,结合多媒体教学手段,引导学生主动参与,积极思考,通过观察、实践、交流等方式,培养学生的抽象思维能力和解决问题的能力。

六. 说教学过程1.导入:通过生活中的实例,如温度、海拔等,引出正数和负数的概念,激发学生的学习兴趣。

2.新课导入:讲解正数和负数的概念,以及它们的性质,通过例题和练习,让学生理解和掌握。

3.课堂练习:进行一些简单的正负数运算,让学生巩固所学知识。

4.应用拓展:通过解决实际问题,让学生运用所学知识,提高学生的应用能力。

5.课堂小结:总结本节课的主要内容,强调正数和负数的性质和运算方法。

6.布置作业:布置一些相关的练习题,让学生进一步巩固所学知识。

七. 说板书设计板书设计要简洁明了,能够突出本节课的主要内容。

可以设计成两个部分,一部分是正数和负数的概念和性质,另一部分是正负数的运算方法。

博罗县九中七年级数学上册第一章有理数1.1正数和负数课件新版新人教版

博罗县九中七年级数学上册第一章有理数1.1正数和负数课件新版新人教版


k-m1.00
8. 假设将50计为0 , 那么可以将49计-为1 为.
, +2 52
拓展延伸 教科书习题1.1第7题 某地一天中午12时的气温是7 ℃ , 过5 h 气温下降了4 ℃ , 又过7 h气温又下降了4 ℃ , 第二天0 时的气温是多少 ?
答案 : -1℃.
教科书习题1.1第8题 某年 , 一些国家的服务出口额比上年的增长率如下 :
法国-2.4% , 英国-3.5% , 意大利0.2% , 中国7.5%.
深入思考
减少 6.4%
从上面的例题中看到增长 -1就是减少1 , 那
么增长 -6.4%是什么意思呢 ?什么情况下增长
率是0 ?减少 -1又是什么意思呢 ?
不增不减 增加 1
灵活应用
你能从例题的解答过程中 , 总结一下如何用正 数、负数表示实际问题中具有相反意义的量吗 ?
0的意义仅仅表示〞没有”吗 ?你対它还有什 么新的认识 ?
不仅仅. 0℃表示一个确定的温度 , 海拔 0 m 表示海平面的平均高度.
4600表示该地海拔高 于海平面4600 m.
-100 表示该地海拔 低于海平面100 m.
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
∴ ∠1 =∠2=90° 〔垂直的定义〕 ∴b∥c 〔同位角相等 , 两直线平行〕
平行线判定1的推论 :
在同一平面内,垂直于同一条直 线的两条直线互相平行
推理格式 : ∵b⊥a , c⊥a ∴b∥c
如下图 : 在以下条件下可判定哪两 直线平行 , 并说明根据。 〔1〕∠1=∠2 ; 〔2〕 ∠3=∠A ; 〔3〕 ∠A+∠2 +∠4=180°.

最新人教版初中数学七年级上册《1.1 正数和负数》精品课件 (10)

最新人教版初中数学七年级上册《1.1 正数和负数》精品课件 (10)

1
,- 5
,-7;零:0.
解法二:按照“整”和“分”来分3 : 6
整分数数有有::-7,30.,4,--70;.5,-1 ,0.86,8.7,-5 .
3
解法三:非正数有:-3.4,-0.5,-
1
6
,0,-
5
,-7;
正数有:0.86,8.7,7; 解法四:负数有:-3.4,-0.5,-
3 1
,-
5
6
,-7;
最新人教版初中数学精品课
7.下列说法正确的是( C )
A.正整数、正分数、0统称有理数
B.正整数、负整数统称整数
C.正有理数、0、负有理数统称有理数
D.0不是整数
8.下列语句正确的是( C )
A.0℃表示没有温度 B.0表示什么也没有
C.0是非正数
D.0既可以看作是正数又可以看作是负数
9.对于-3.271,下列说法不正确的是( C )
A.是负数不是整数
B.是分数不是自然数
C.是有理数不是分数
D.是负有理数且是负分数
最新人教版初中数学精品课
10.下列各数中,哪些是正整数?哪些是负整数?哪些是正分数?
哪 -些9,是18负,-分1数,-?2.17,0.58,-8.884,0,-15%. 解:负整数:3 -9
正整数:18 负分数:- 1,-2.17,-8.884,-15% 正分数:0.538
-28,20,0,5,0.23,- 3 ,-3 1 ,-3.2%,25%,3.14,
0.62.
42
正数集合:{ 20,5,0.23,25%,3.14,0.62 …};
负数集合:{ -28,- 3,- 3 1 ,-3.2% …}.

人教版初一数学上册知识点总结

人教版初一数学上册知识点总结

人教版初一数学上册知识点总结【篇一:人教版初一数学上册知识点总结】人教版初一数学上册知识点归纳散文吧>>,>人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

(新)人教版七年级上册数学《正数和负数》教学讲解课件

(新)人教版七年级上册数学《正数和负数》教学讲解课件

人教版七年级数学上册教学讲解课件
引入课题
我们把大于零的数叫做正数。有时
在正数前面也加上“+”(正)号。 如+2.5、+5、 +1/2……“+”号可以省略。
我们把在正数(0除外)前面加上 负号“-”的数叫做负数。如-4、-1.5、
-2/3……
一个数前面的“+”、“-”号叫做它的符号。 “-”号读作 “负”,如:“-4”读作“负4”;“+”号读作“正”,如: “+2”读作“正2”。“+”号可以省略。
人教版七年级数学上册教学讲解课件
技能训练
在横线上填写适当的词,使前后具有相反意
义的量. (1)电视台预报当天的温度为零上7℃,
零下 5℃; (2) 亏损 2万元,盈利5万元; (3) 运进 8.8吨,运出7.6吨.
人教版七年级数学上册教学讲解课件
探究活动 怎样理解具有相反意义的量
说明
在同一问题中,用正、负数表示具有相反意 义的量。收入200元和支出400元,零上5℃和零 下3℃,向东20米和向西30米等等,如果正数表 示某种意义,那么负数表示它的相反的意义,反 之亦然。
人教版七年级数学上册教学讲解课件
知识回顾
问题一:我们在小学学过哪些数?你能按 照某一标准将它们分类?
自然数:0、1、2、3……
分数(小数):1/2、0.36、5%……

人教版七年级数学上册教学讲解课件
知识回顾
随着社会的发展,小学学过的自然数、分数和小 数已不能满足实际的需要 。
数的产生和发展离不开生活和生产的需要
人教版七年级数学上册教学讲解课件
例题讲解
例1.一个月内,小明体重增加2kg,小华体重减少 1kg,小强体重无变化,写出他们这个月的体重增 长值。

初中数学正数和负数

初中数学正数和负数

初一数学第1章有理数知识点:正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

初一数学第1章有理数知识点:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视) 负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数初一数学第1章有理数知识点:数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

[最新]人教版七年级上册数学1.1正数与负数知识点与练习题部分含答案5份汇总

第一章正数和负数1、正数和负数(附答案)建议用时:45分钟总分50分一选择题(每小题3分,共18分)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃3.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是()A.30mm B.30.03mm C.30.3mm D.30.04mm4.如图某用户微信支付情况,3月28日显示+150的意思()A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包5.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.6.下面对“0”的说法正确的个数是()①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定意义;④0是正数;⑤0是自然数.A.3 B.4 C.5 D.0二、填空题(每小题3分,共9分)7.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作:.8. 某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为__.9.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.三、解答题(共23分)10.(7分)有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?11.(8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6天,仓库里的货品是(填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?12.(8分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?正数和负数参考答案一选择题1.A2.A3.B4.B5.C6.B二、填空题(每小题3分,共9分)7.﹣3.8.-39.49.3kg.三、解答题(共23分)10.解:﹣0.1+0.5﹣0.8+0﹣0.2﹣0.3+0.1=﹣0.8.答:水库的水位没有超过警戒线.11.解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6天仓库里的货品减少了40吨,所以6天前仓库里有货品460+40=500吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6天要付860元装卸费.12.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.人教版七年级数学上册第一章第1节正数与负数(附答案)一、选择题1.气温上升,记作,那么下降记为A. B. C. D.2.飞机上升了米,实际上是A. 上升80米B. 下降米C. 先上升80米,再下降80米D. 下降80米3.2019年内,甲同学的体重增加了记为,乙同学的体重减少了,应记为A. B. 3 C. D.4.一个物体做左右方向的运动,规定向右运动6m记做,那么向左运动8m记做A. B. C. D.5.小红设计了一个游戏规则:先向南走5米,再向南走米,最后向北走5米,则结果是A. 向南走10米B. 向北走5米C. 回到原地D. 向北走10米6.下列不是具有相反意义的量是A. 前进5米和后退5米B. 收入30元和支出10元C. 向东走10米和向北走10米D. 超过5克和不足2克7.给出下列各数:,0,,,,,2004,其中是负数的有A. 2个B. 3个C. 4个D. 5个8.下列各组数中,具有相反意义的量是A. 节约汽油10公斤和浪费酒精10公斤B. 向东走5公里和向南走5公里C. 收入300元和支出500元.D. 身高180cm和身高90cm9.下列各数一定是负数的是.A. B. C. D.10.一袋大米的质量标识为“千克”,则下列大米中质量合格的是A. 千克B. 千克C. 千克D. 千克11.向东行进米表示的意义是A. 向东行进30米B. 向东行进米C. 向西行进30米D. 向西行进米12.如果将“收入50元”记作“元”,那么“支出20元”记作A. 元B. 元C. 元D. 元13.在0,,,5这四个数中,正数是A. 0B.C.D. 514.若存入2500元记做“”,则支出3000元记做A. B. C. D.15.某图纸上注明:一种零件的直径是,下列尺寸合格的是A. B. C. D.二、计算题16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数:星期一二三四五六日增减辆生产量最多的一天比生产量最少的一天多生产多少辆?本周的总生产量和原计划相比___________填“增加”或“减少”了_____辆.17.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312(1)这10筐西红柿一共重多少千克?(2)若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?三、解答题18.某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是一周的生产情况超过每天计划量记为正、不足每天计划量记为负.星期一二三四五六日与计划量的差值该厂星期四生产自行车________辆;产量最多的一天比产量最少的一天多生产自行车________辆;求该厂本周实际平均每天生产多少辆自行车?19.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况增产为正,减产为负,单位:个星期一二三四五六日增根据记录可知前三天共生产____个;产量最多的一天比产量最少的一天多生产____个;该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?答案1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C12.【答案】A13.【答案】D14.【答案】B15.【答案】D16.【答案】解:辆;答:生产量最多的一天比生产量最少的一天多生产17辆;减少;4.17.【答案】【1】解:因为,所以这10筐西红柿一共重千克.【2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.18.【答案】解:辆,所以该厂星期四生产自行车213辆,故答案为:213;辆,所以产量最多的一天比产量最少的一天多生产自行车24辆,故答案为:24;19.【答案】解:;故答案为298;;故答案为23;这一周多生产的总辆数是:个;元;答:该厂工人这一周的工资是35390元.课题 1.1正数与负数(无答案)学生姓名班级日期一.选择题(共7小题)1.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个B.2个C.3个D.4个2.下列各组数中,负数的个数是()﹣2,33.2,0.75,﹣37.5%,,0,﹣0.6,﹣7.A.1个B.2个C.3个D.4个3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数4.下面四个选项中,不具有相反意义的量的是()A.借贷5万元与还贷6万元B.高出海平面8888米与低于海平面188米C.亏损2万元与盈利8万元D.增产10吨粮食与减产﹣10吨粮食5.“—a”表示()A.负数B.正数C.正数或负数D.以上都不对6.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m7.下列说法中正确的有()①海拔﹣73米表示比海平面低73米;②温度0℃表示没有温度;③0是最小的自然数;④若向东走5米记作+5米,则0米表示原地不动.A.1个B.2个C.3个D.4个二.填空题(共7小题)8.如果向东走18米记为+18,那么向西走18米记为.9.若气温为零上10℃记作+10℃,则﹣3℃表示气温为.10.如果80m表示向东走80米,那么—60m表示_____________________11.如果水位升高3m时记作+3m,那么水位下降3m应记作____________人教版七年级上册数学课堂小测 1.1正数和负数(附解析)1.如果温度上升10C °记作10C +°,那么温度下降5C °记作( )A.10C +°B.10C -°C.5C +°D.5C -°2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在数12,0,π---,中,负数有( )A.1个B.2个C.3个D.4个3.向北走12-米的意义是( )A.向北走12米B.向南走12米C.向西走12米D.向东走12米4.在下列说法中,正确的是( )A. 带“-”号的数是负数B.0℃表示没有温度C.0前加“+”号为正数,0前加“-”号为负数D. -108是一个负数5.6,2005,,0,-3,+1, ,-6.8中,正整数和负分数共有…( ) A .3个 B .4个C .5个D .6个 6.如果向南走5米,记作+5米,那么向北走8米应记作___________.7.如果温度上升3℃记作+3℃,那么下降5℃记作____________.8.海拔高度是+1356m ,表示________,海拔高度是-254m ,表示______.9.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.10.把下列各数分别填在相应的大括号里:+9,-1,+3,,0, ,-15,,1.7.正数集合:{ …}, 负数集合:{ …}.11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.12.如果把+210元表示收入210元,那么-60元表示______________.13.粮食产量增产11%,记作+11%,则减产6%应记作______________.14.如果把公元2008年记作+2008年,那么-20年表示______________.15.如果向西走12米记作+12米,则向东走-120米表示的意义是___.16.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.17..举出一个数字“0”表示正负之间分界点的实际例子,如__________.18.在下列各对量中:①向东走3千米与向北走3千米;②购进200千克苹果与卖出180-千克苹果;③收入20元与支出30元;④上升3米与前进7米.具有相反意义的量的是 .19.下面的数中,哪些是正数?哪些是负数?18-,16,0,0.15,131,4,120%,0.8,4-+--答案以及解析1.答案:D解析:如果温度上升10C °记作10C +°,那么下降5C °记作5C -°;故选D .2.答案:C解析:在数1,2,0,π---中,负数有1,2,π---,共3个.故选C.3.答案:B解析:向北走12-米的意义是向南走12米,故选B.4.答案:D解析:不是带“-”号的数是负数,要看化简后的结果,故A 错误;0℃表示温度为0℃,不表示没有温度,故B 错误;0既不是正数, 也不是负数,故C 错误;-108是一个负数,正确,故选D.5.C6.-8米7.-5℃8.超出海平面1356m ,低于海平面254m 。

初一数学正数和负数知识点解析新人教版

初一数学《正数和负数》知识点解析新人教版正数、负数和零的概念正数:像1、2.5、48等大于零的数叫正数。

负数:-1、-2.5、-48等在正数前面加上负号“-”小于零的数叫负数。

零:0叫做零,0既不是正数也不是负数。

正数与负数概念的理解对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。

例如:-a一定是负数吗?答案是不一定。

因为字母a可以表示任意的数,若a表示正数时,-a是负数;当a表示0时,-a就在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,-a就不是负数了,它是一个正数。

引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但通常把有理数分为三类:正数、、负数。

0.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

正数负数的判断方法具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

含字母的数:如-a要看a本身的符号,如a是负的,则-a 是正数,如a是正的则-a是负数,如a是0则-a是0。

0的含义①0表示起点。

②0表示没有。

③0表示一种温度。

④0表示编号的位数。

⑤0表示精确度。

⑥0表示正负数的分界。

⑦0表示海拔平均高度。

正负数的作用在同一问题中,用正负数表示的量具有相反的意义。

如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们。

相反意义的量包含两个含义:一是相反意义,二是在相反意义的基础上要有量,但量的大小可以不一样。

习惯上把向东、盈利、运进、增加记为正的,把与它们意义相反的量记为负的。

具有相反意义的量必须是同类量,如盈利1000元与出口1000包就不是相反意义的量,不具有相反意义的量不能用不具有相反意义的量不能用正、负数来表示,如向东走10米记作+10米,但是向南走20米就不能记作-20米。

专题01第一讲11正数与负数【暑假辅导班】2021年新七年级数学暑假精品课程(人教版)(解析版)

第一讲 1.1正数和负数【学习目标】1.通过生活实例认识正数和负数。

2.会用正数、负数表示相反意义的量。

【基础知识】一、正数与负数的概念我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-2,-2.7%,-4.5,-1.2这样在正数前加上符号“-”(负)的数叫做负数.0既不是正数,也不是负数.注意:1.形式:符号+数字;2.判断的时候只和符号有关,和数字的形式无关;3.注意“0”是独立的,既不是正数也不是负数.二、用正数与负数表示相反意义的量把0以外的数分为正数和负数,它们表示具有相反意义的量.随着对正数、负数意义认识的加深,正数和负数在实践中得到了广泛应用.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0m),通常用正数表示高于海平面的某地的海拔高度,用负数表示低于海平面的某地的海拔高度.注意:1.0是正数与负数的分界.0℃是一个确定的温度,海拔0m表示海平面的平均高度0的意义已不仅是表示“没有”。

2.常见的具有相反意义的量:运进、运出;收入、支出;增加、减少;上升、下降;高于、低于;向东、向西;向北、向南;零上、零下等;3.注意“单位”问题,视具体题目定加不加单位。

【考点剖析】考点一:正数、负数的概念辨析例1.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C .零既是正数也是负数D .不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A 、C 错误,B 正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D 错误,故选B .考点二:正数、负数的分类例2.下列各数:23-,101.1-,13,13-,0.1-,2.8,38,0,1+,其中正数有________,负数有_______. 【答案】1,2.8,38,13+ 123,101.1,,0.13----【分析】根据正数和负数的定义分别进行解答即可,正数都大于0,负数都小于0.【详解】 正数有1,2.8,38,13+; 负数有123,101.1,,0.13----.故答案为:①1,2.8,38,13+;②123,101.1,,0.13----.【点睛】此题考查了正数和负数,掌握正数和负数的定义是本题的关键,正数都大于0,负数都小于0,0既不是正数也不是负数.考点三:正数、负数表示相反意义的量例3.下列各组数中,不是互为相反意义的量的是( )A .收入200元与支出20元B .上升10米和下降7米C .超过0.05mm 与不足0.03mD .增大2岁与减少2升【答案】D【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.岁与升不能比较.【详解】解:A. 收入200元与支出20元,是互为相反意义的量;B. 上升10米和下降7米,是互为相反意义的量;C. 超过0.05mm 与不足0.03m ,是互为相反意义的量;D. 增大2岁与减少2升不是互为相反意义的量.故选:D .【点睛】此题主要考查有理数的意义,解题的关键是熟知正数、负数的意义.考点四:正数、负数在生活实际中的运用例题4.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.【答案】(1)505 g ; (2)495 g【解析】分析:根据“(500±5)g 表示这袋食用盐的质量最多比500g 多5g ,最少比500g 少5g”进行分析解答即可.详解:∵这种食用盐包装袋上标有(500±5)g ,∵这袋食用盐的质量不超过:500+5=505(g ),这种食用盐的质量不少于:500-5=495(g ).故答案为:(1)505g ;(2)495g.点睛:知道:“表示物体质量的标识()a b g ±的意义是:表示这种物体的质量最多不超过()a b g +,质量最少不低于()a b g -.”是解答本题的关键.【真题演练】1.下列语句正确的是( )A .“+15米”表示向东走15米B .0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数【答案】C【分析】根据正负数的意义进行选择即可.【详解】A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0∵不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选C.【点睛】本题考查的是正数及负数的定义,正确的理解正负数的定义是关键.2.下列各组量中,不具有相反意义的是()A.向东走5米和向西走2米B.收入100元和支出20元C.上升7米和下降5米D.长大一岁和减少2千克【答案】D【分析】利用“具有相反意义的量:用相反意义表示的量”,即可解答.【详解】A. 向东走5米和向西走2米,具有相反意义;B. 收入100元和支出20元,具有相反意义;C. 上升7米和下降5米,具有相反意义;D. 长大一岁和减少2千克,不具有相反意义;故选D【点睛】本题考查具有相反意义的量,难度低,熟练掌握该知识点是解题关键.3.在下列各数中:-(+5),-12,(13-)2,-234,(-1)2007,-|-3|;负数的个数有()A.2个B.3个C.4个D.5个【答案】D【分析】根据正数和负数的定义进行求解.【详解】-(+5)=-5<0,-12=-1<0,(13-)2=19>0,-234=-94<0,(-1)2007=-1<0,-|-3|=-3<0,∵分数有:-(+5),-12,-234,(-1)2007,-|-3|,共5个,故选D.【点睛】此题主要考查正数和负数的概念,比0大的数是正数,比0小的数是负数,0即不是正数,也不是负数. 4.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃【答案】A【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:∵零上15∵记作+15∵,∵零下3∵可记作﹣3∵.故选:A.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.5.下列说法:①带正号的数是正数,带负号的数是负数;②任意一个正数,前面加上负号就是一个负数;③0是最小的正数;④大于0的数是正数;⑤0只表示没有.其中正确的是()A.①②B.②④C.①②④D.③⑤【答案】B【分析】根据正负数的意义可判断①②④,根据0的意义可判断③⑤,进而可得答案.【详解】解:带正号的数不一定是正数,带负号的数也不一定是负数,所以①错误;任意一个正数,前面加上负号就是一个负数,所以②正确;0既不是正数,也不是负数,所以③错误;大于0的数是正数,所以④正确;0可以表示没有,也可以表示某种量的基准,所以⑤错误.故选:B.【点睛】本题考查了正数和负数,明确正数大于0、负数小于0,0既不是正数又不是负数是关键.6.如果“收入500元”记作“ +500元”,那么“支出100元”记作________元.【答案】-100【解析】试题分析:因为“收入500元”记作“+500元”,即“收入”用正数表示,所以“收入”的相反意义“支出”用负数表示,所以“支出100元”记作-100元,故答案为-100.点睛:本题考查了用正负数表示具有相反意义的量,若规定的一个意义的量用正数表示,则它的相反意义用负数表示.7.某袋装牛奶的标准质量为100克,现抽取5袋进行检测,质量超过标准的克数记为正数,不足的克数记为负数,结果如下表所示:其中质量最接近标准的是__________(填序号),最大质量的那袋牛奶比最小质量的那袋牛奶重________克.【答案】④ 15【分析】先求出每袋牛奶的质量,再找出最接近标准质量的和差距最大的即可.【详解】由题意知①的质量是95克,②的质量是103克,③的质量是109克,④的质量是99克,⑤的质量是94克,所以最接近100克的是④,-=(克).最大质量的那袋牛奶比最小质量的那袋牛奶重1099415【点睛】此题主要考查了正数与负数,正确理解正负数的意义是解题关键.8.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差____________________kg.【答案】0.6【分析】先根据题意得出两袋大米的最高质量和最低质量,相减即可得出答案.【详解】由题意可得,大米的最高质量为25+0.3=25.3kg,大米的最低质量为25-0.3=24.7kg,所以最多相差=25.3-24.7=0.6kg,故答案为0.6.【点睛】本题考查的是正负数的应用,比较简单,解题关键是需要理解正负数在实际题目中的意义.9.潜水艇的高度是海面下50米,记作-50米,一鲨鱼在潜水艇上方10米处,则鲨鱼的高度应记作________.【答案】-40米【解析】【分析】已知一潜水艇在高度为-50米,一条鲨鱼在潜水艇上方10米处,要求鲨鱼所在的高度,用加法计算,列式为:-50+10,计算即可.【详解】-50+10=-40(米);故答案是:-40.【点睛】考查正数与负数的运算,运算时要注意运算符号.10.判断下列各数哪些是正数,哪些是负数.2-,123+,0,135,204,-0.02,+3.65,157-,-8%,227-,3.14,2019.正数:________________________________;负数:________________________________.【答案】123+,135,204,+3.65,3.14,2019;-2,-0.02,157-,-8%,227-.【解析】【分析】根据正数和负数的定义进行分类即可.【详解】解:大于0的数是正数,∵正数有:123+,135,204,+3.65,3.14,2019;小于0的数是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学《正数和负数》知识点解析新人教

正数、负数和零的概念
正数:像1、2.5、48等大于零的数叫正数。

负数:-1、-2.5、-48等在正数前面加上负号“-”小于零的数叫负数。

零:0叫做零,0既不是正数也不是负数。

正数与负数概念的理解
对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。

例如:-a一定是负数吗?答案是不一定。

因为字母a可以表示任意的数,若a 表示正数时,-a是负数;当a表示0时,-a就在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,-a就不是负数了,它是一个正数。

引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但通常把有理数分为三类:正数、0、负数。

通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

正数负数的判断方法
具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。

0的含义
①0表示起点。

②0表示没有。

③0表示一种温度。

④0表示编号的位数。

⑤0表示精确度。

⑥0表示正负数的分界。

⑦0表示海拔平均高度。

正负数的作用
在同一问题中,用正负数表示的量具有相反的意义。

如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们。

相反意义的量包含两个含义:一是相反意义,二是在相反意义的基础上要有量,但量的大小可以不一样。

习惯上把向东、盈利、运进、增加记为正的,把与它们意义相反的量记为负的。

具有相反意义的量必须是同类量,如盈利1000元与出口1000包就不是相反意义的量,不具有相反意义的量不能用正负数来表示。

不具有相反意义的量不能用正、负数来表示,如向东走10米记作+10米,但是向南走20米就不能记作-20米。

例题讲解:某面包包装上印有“350±5”,它的含义是什么?若此袋面包的实际质量是354克,则它是合格产品吗?若是349克呢?
分析:“±5”表示的是允许误差,即最多可超出标准质量5克,最低可低于标准质量5克,看指定的产品质量是否在此范围内。

解:“350±5”的含义是:这袋面包的标准质量为350克,在克-克的范围内,它都是合格的,即质量在345克~355克之间都是合格的。

若此袋面包的实际质量是354克,则是合格的;若为344克,则是不合格的。

同步练习题
一、练习题
既不是正数,也不是负数。

非负数包括和;非正数包括和。

解析:本题主要考查的知识点是“0”的特殊性,这是学生的易错点。

0既不是正数,也不是负数
答案:0;0、正数;0、负数。

温度上升-5℃的实际意义是。

解析:本题主要考查的知识点是相反意义的量分别用正
数和负数表示。

答案:温度下降5℃。

一种零件的内径尺寸在图纸上是10±0.05,表示这种零件的标准尺寸是10毫米,加工要求最大不超过标准尺寸,最小不小于标准尺寸。

解析:本题考查的知识点是相反意义的量分别用正数和负数表示。

答案:0.05毫米0.05毫米。

二、选择题
下面是关于0的一些说法,其中正确说法的个数是。

①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数。

A.0B.1c.2D.3
解析:本题主要考查”0”的特殊性。

①是对的。

②是对的。

③是错的,由①可得。

④是对的,非负数就是正数和0。

⑤是错的,0是偶数。

答案:D
文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在。

A.文具店
B.玩具店c.文具店西40米处D.玩具店西60米处
解析:本题考查的知识点是用正负数来表示一对相反意义的量,并需要通过找到一个基准点和简单的图形来解决问题。

以书店为基准,沿街向东走了40米,接着又向东走了-60米,说明此时在书店以西20米,即在文具店。

答案:A。

相关文档
最新文档