排列组合和排列组合计算公式

合集下载

排列组合的生成算法

排列组合的生成算法

2.组合的生成: 递归 由上一个组合生成下一个组合
program zuhe; const n=6;m=4; var a:array[0..m] of integer; i,j:integer; procedure print; var i:integer; begin for i:=1 to m do write(a[i]); writeln; end; procedure try(dep:integer); var i:integer; begin for i:=a[dep-1]+1 to n-(m-dep) do begin a[dep]:=i; if dep=m then print else try(dep+1); end end; begin a[0]:=0; try(1); end.
字典序法 按照字典序求下一个排列的算法 例字符集{1,2,3},较小的数字较先,这样按字典序生成的 全排列是:123,132,213,231,312,321。 生成给定全排列的下一个排列 所谓一个全排ห้องสมุดไป่ตู้的下一个排列就是这一个排列与下一个排列之间没有其他的排列。 这就要求这一个排列与下一个排列有尽可能长的共同前缀,也即变化限制在尽可能短的后 缀上。 (1)求满足关系式pj-1<pj的j的最大值,设为i,即 i=max{j| pj-1<pj} (2)求满足关系式pi-1<pk的k的最大值,设为j,即 j=max{k| pi-1<pk} (3)将pi-1与pj互换 (4)将互换后的排列,从i开始到n之间的数逆转。
下一个组合的概念 给定集合S={1,2,…,n},如何找出S的所有k—组合? 因为组合无顺序,所以对S的任何一个k—组合{a1a2…ak},我们恒假定a1<a2<…<ak. 在这个假定下恒有ai≤n-k+i,并称n-k+i为ai的最大值. 设{a1a2…ak} 和{b1b2…bk}是S的两个不同的k—组合.如果(a1a2…ak)(b1b2…bk), 并且不存在异于{a1a2…ak}和{b1b2…bk}的k—组合{c1c2…ck},使得 (a1a2…ak) (c1c2…ck) (b1b2…bk) 则称{b1b2…bk}为{a1a2…ak} 的下一个组合. 组合生成算法: 步骤1 置{a1a2…ak}={1,2,…,k}; 步骤2 设已有一个k—组合{a1a2…ak}. 置i:=k: ① 若ai<n-k+i,则令 bi=ai+1 bj+1=bj+1,j=i, i+1, …,k-1 并置 {a1a2…ak}:={a1a2…ai-1bibi+1…bk} 返回步骤2; ② 若ai=n-k+i: 如果i>1,置i:=I-1,返回①; 如果i=1,终止. 这样,所有k—组合即可数遍.

排列组合公式公式解释

排列组合公式公式解释

排列组合是数学中的一个重要概念,用于计算不同元素的组合方式。

它在组合数学、概率论、统计学等领域中经常被应用。

本文将详细介绍排列组合的概念以及相关公式,并给出一些实际应用的例子。

1. 排列的概念及公式排列是指从n个元素中选取r个元素进行排序的方式。

这个过程中,每个元素只能使用一次,并且顺序不同即为不同的排列。

排列通常用P(n, r)表示,计算公式如下:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * … * 2 * 1。

n的阶乘表示从n个元素中选取所有元素进行排列的总数,而(n-r)!表示剩余元素的阶乘,即可以从n个元素中选取r个元素进行排列的总数。

排列的计算公式可以帮助我们高效地计算大量元素的排列情况。

例如,从10个数中选取3个数进行排列,即P(10, 3),可以通过计算10! / 7!得到结果。

2. 组合的概念及公式组合是指从n个元素中选取r个元素进行组合的方式。

与排列不同,组合不考虑选取元素的顺序,因此不同顺序的元素组合被视为同一种组合方式。

组合通常用C(n, r)表示,计算公式如下:C(n, r) = n! / (r! * (n-r)!)其中,n!仍表示n的阶乘,r!表示r的阶乘,(n-r)!表示剩余元素的阶乘。

组合的计算公式可以帮助我们统计不同元素组合的数量。

例如,从10个数中选取3个数进行组合,即C(10, 3),可以通过计算10! / (3! * 7!)得到结果。

3. 排列组合的应用排列组合在实际问题中有广泛的应用。

以下是一些例子:3.1. 抽奖问题假设有10个人参加抽奖,每个人的抽奖号码是从1到10之间的整数。

如果我们想要知道抽取出来的3个人的号码的所有可能情况,可以使用组合的方法计算。

结果为C(10, 3) = 120。

3.2. 选课问题假设有10门课程可以选择,每个人可以选择其中的5门进行学习。

如果我们关心的是不同学生选择不同课程的情况,可以使用排列的方法计算。

排列组合的基本概念与计算

排列组合的基本概念与计算

排列组合的基本概念与计算排列组合是数学中的一个重要概念,它涉及到物体的排列和组合方式。

在许多问题中,我们需要计算排列和组合的数量,以解答问题或得出结论。

本文将介绍排列组合的基本概念和计算方法。

一、排列的基本概念与计算排列是指从一组物体中按照一定的顺序选取若干个物体进行排列。

在排列中,每个物体只能使用一次。

考虑以下例子:例1:有A、B、C三个物体,从中选取两个进行排列。

解:从A、B、C三个物体中选取两个进行排列,可以有以下六种结果:AB、AC、BA、BC、CA、CB。

这些结果是不相同的。

因此,从三个物体中选取两个进行排列,共有6种可能。

根据以上例子,可以总结出排列的计算公式。

设有n个物体,从中选取m个进行排列。

则排列的总数为P(n,m)。

根据计算公式,有: n!P(n,m) = ------(n-m)!其中,"!"表示阶乘运算,即将一个数从1乘到它本身的连乘积。

二、组合的基本概念与计算组合是指从一组物体中按照一定的顺序选取若干个物体进行组合。

在组合中,物体的顺序不重要,只考虑选取的物体是否相同。

考虑以下例子:例2:有A、B、C三个物体,从中选取两个进行组合。

解:从A、B、C三个物体中选取两个进行组合,可以有以下三种结果:AB、AC、BC。

由于AB和BA是同一种组合的情况,因此这三种结果是相同的。

因此,从三个物体中选取两个进行组合,共有3种可能。

根据以上例子,可以总结出组合的计算公式。

设有n个物体,从中选取m个进行组合。

则组合的总数为C(n,m)。

根据计算公式,有: n!C(n,m) = ------m!(n-m)!其中,"!"表示阶乘运算。

总结:排列和组合是数学中的基本概念,用以描述物体的排列和组合方式。

排列和组合的计算公式分别为P(n,m)和C(n,m)。

在实际问题中,我们需要根据具体情况来确定使用排列还是组合的计算公式,并根据公式计算出对应的结果。

通过掌握排列组合的基本概念与计算方法,我们能够更好地解决实际问题,拓宽数学思维,提高解决问题的能力。

公务员考试--行测-排列组合问题及计算公式

公务员考试--行测-排列组合问题及计算公式

排列组合公式/排列组合计算公式排列A------和顺序有关(P和A是一个意思)组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排例组合计算公式

排例组合计算公式

排例组合计算公式
排列组合是高中数学中非常重要的概念,它涉及到许多实际问题的解决。

在这里,我们将介绍排列组合计算的基本公式。

1. 排列公式
排列是指从n个不同的元素中选取m个不同元素的所有可能性的总数,所得到的不同的排列数称为n个不同元素中选取m个元素的排列数,用P(n,m)表示。

排列公式如下:
P(n,m) = n! / (n-m)!
其中,n!表示n的阶乘,即n×(n-1)×(n-2)×...×2×1。

2. 组合公式
组合是指从n个不同元素中选取m个元素,不考虑它们的排列顺序,所得到的不同组合的总数,称为n个不同元素中选取m个元素的组合数,用C(n,m)表示。

组合公式如下:
C(n,m) = n! / (m!(n-m)!)
3. 补充说明
在排列和组合的计算中,需要注意以下几点:
a. 当m>n时,P(n,m)=0,C(n,m)=0。

b. 当m=n时,P(n,m)=n!,C(n,m)=1。

c. 当m=1时,P(n,m)=n,C(n,m)=n。

d. 对于重复元素的排列组合,需要先将元素分类,再分别计算。

e. 在实际问题中,需要根据具体情况选择使用排列或组合公式。

精选小学数学排列组合公式

精选小学数学排列组合公式

精选小学数学排列组合公式数学在人的生活中处处可见,息息相关。

下面是查字典数学网为大家分享的小学数学排列组合公式,希望大家认真学习!1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

排列组合计算公式怎么算

排列组合计算公式怎么算排列组合是概率和统计中的一个基本概念。

它与对象的排列和组合方式有关,用于计算可能的结果的数量。

在实际应用中,排列组合常被用于数学、计算机科学、工程等领域。

本文将介绍排列和组合的基本概念,以及如何计算排列组合的公式。

排列是指从给定的对象集合中选取若干对象,按照一定的顺序进行排列。

组合是指从给定的对象集合中选取若干对象,不考虑其顺序。

下面将详细介绍这两种概念。

一、排列:排列是指从给定的对象集合中选取若干对象,按照一定的顺序进行排列。

假设有n个不同的对象,要从中选取r个对象进行排列,可以得到排列的公式为:P(n,r) = n! / (n-r)!其中,P(n,r)表示从n个对象中选取r个对象进行排列的可能性,n!表示n的阶乘,即n×(n-1)×(n-2)×...×2×1。

例如,假设有5个不同的球,要从中选取3个进行排列,那么可计算得到:P(5,3) = 5! / (5-3)!= 5! / 2!= 5×4×3×2×1 / 2×1= 5×4×3= 60所以,从5个不同的球中选取3个进行排列的可能性有60种。

排列也可以用数学符号表示为P(n,r)。

二、组合:组合是指从给定的对象集合中选取若干对象,不考虑其顺序。

假设有n个不同的对象,要从中选取r个对象进行组合,可以得到组合的公式为:C(n,r) = n! / (r!(n-r)!)其中,C(n,r)表示从n个对象中选取r个对象进行组合的可能性,n!表示n的阶乘,r!表示r的阶乘。

例如,假设有5个不同的球,要从中选取3个进行组合,那么可计算得到:C(5,3) = 5! / (3!(5-3)!)= 5! / (3!×2!)= 5×4 / (2×1)= 10所以,从5个不同的球中选取3个进行组合的可能性有10种。

4个字母的排列组合计算公式

排列组合是数学中的一个基本概念,用于计算在给定集合中选择元素的不同方式数量。

对于4个字母的排列组合,我们可以分别考虑排列和组合两种情况。

排列是指从给定集合中取出一定数量的元素,并按照一定的顺序排列起来。

对于4个不同的字母,其排列数为4的阶乘,即4!=4×3×2×1=24种。

组合则是指从给定集合中取出一定数量的元素,不考虑元素的顺序。

对于4个不同的字母中取出2个的组合数,可以使用组合公式C(n,m)=n!/[m!(n-m)!]计算,其中n为集合中元素的总数,m为取出的元素数量。

因此,4个字母中取出2个的组合数为C(4,2)=4!/[2!(4-2)!]=6种。

综上所述,4个字母的排列数为24种,而取出其中2个字母的组合数为6种。

在实际应用中,我们可以根据具体需求选择不同的排列组合方式。

排列组合的计算公式

排列组合的计算公式排列组合是高中数学中的一个重要概念,它涉及到许多实际问题的计算。

排列和组合的计算公式是学习排列组合的基础,下面详细介绍排列组合的计算公式及其应用。

一、排列的计算公式排列是一种从n个不同的元素中选出r个进行排成一个有序的序列的方法,用符号A(n,r)表示。

计算公式为:$A(n,r) = n(n-1)(n-2)\\cdots(n-r+1) = \\dfrac{n!}{(n-r)!}$其中n表示元素个数,r表示选取元素个数,n>r。

例如,从1, 2, 3, 4, 5中选取3个元素进行排列,可以有5×4×3种不同的排列方式,即A(5,3)=5×4×3=60种。

二、组合的计算公式组合是一种从n个不同的元素中选取r个元素的方式,不考虑元素的顺序,用符号C(n,r)表示。

计算公式为:$C(n,r) = \\dfrac{n!}{r!(n-r)!}$其中n表示元素个数,r表示选取元素个数,n≥r。

例如,从1, 2, 3, 4, 5中选取3个元素进行组合,不考虑元素的顺序,可以有C(5,3) = 5×4×3/(3×2×1) = 10种不同的组合方式。

三、排列与组合的关系排列和组合是有很大关系的。

排列中考虑元素的顺序,而组合不考虑元素的顺序。

由于元素的顺序的变化会导致不同的排列方式,因此排列的计算公式中是用乘法原理计算的。

而组合只考虑元素的选取,不考虑元素的顺序,因此组合的计算公式中需要用到除法原理。

如果要从n个不同的元素中选取r个元素进行排列,不考虑元素的顺序,就是从n个不同的元素中选取r个元素进行组合,注意这样排列的个数一共有C(n,r)种不同的组合方式。

如果再考虑元素的顺序,则排列的个数是A(n,r)=n×(n-1)×(n-2)×⋯×(n-r+1)=n!/(n-r)! 。

排列组合公式举例

排列组合公式是数学中的基本公式之一,用于计算在一定条件下,不同元素的不同组合数。

以下是排列组合公式的举例说明:
1、排列公式P(n,r):表示从n个不同元素中取出r个元素进行排列,有多少种不同的排列方式。

举例:
•P(5,3):从5只猫中选出3只猫排成一排,有多少种不同的排列方式?
根据排列公式P(n,r) = n!/(n-r)!,P(5,3) = 5!/(5-3)! = 5×4×3/(2×1) = 60种。

2、组合公式C(n,r):表示从n个不同元素中取出r个元素进行组合,有多少种不同的组合方式。

举例:
•C(6,3):从6只猫中选出3只猫组成一个团队,有多少种不同的组合方式?
根据组合公式C(n,r) = n!/(r!×(n-r)!),C(6,3) = 6!/(3!×(6-3)!)= 6×5×4/(3×2×1) = 20种。

这些例子可以帮助理解排列组合公式的应用和计算方法。

需要注意的是,排列和组合是不同的概念,排列考虑了元素的顺序,而组合不考虑元素的顺序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个 D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种 D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种 C.18种 D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

相关文档
最新文档