第四章-生物质制氢技术
生物质综合能源系统中的制氢与利用技术研究

生物质综合能源系统中的制氢与利用技术研究概述:生物质综合能源系统是一种以生物质为原料,通过生物催化和化学转化,将生物质转化为高效、清洁能源的系统。
其中,制氢与利用技术是生物质综合能源系统的重要组成部分,能够实现对生物质资源的高效利用和减少二氧化碳排放。
本文将对生物质制氢与利用技术进行深入研究,探讨其在可持续发展和能源转型中的重要作用。
一、生物质制氢技术的研究与应用1. 生物质制氢技术原理生物质制氢技术是利用生物质作为原料,通过生物催化和化学转化,将其转化为氢气的过程。
常用的生物质制氢技术包括生物质气化、微生物发酵和生物光合制氢。
生物质气化是将生物质在高温条件下转化为气体,进而产生氢气。
微生物发酵主要依靠细菌、真菌等微生物的代谢活动,通过发酵产生氢气。
生物光合制氢则是利用光能对植物进行光合作用,产生氢气。
2. 生物质制氢技术的优势生物质制氢技术相对于传统石油制氢技术具有诸多优势。
首先,生物质作为可再生资源,具有可持续利用的特点,可减少对有限化石能源的依赖。
其次,生物质制氢过程中产生的副产物,如生物质灰渣和废液,可作为肥料和有机肥料,实现资源的综合利用。
最后,生物质制氢过程中的二氧化碳排放较少,有助于减少环境污染,降低温室气体的排放。
3. 生物质制氢技术的挑战与解决方案生物质制氢技术在实际应用中仍然面临一些挑战。
首先,生物质的含水率和灰分对制氢效率有一定影响,需要选择合适的生物质原料进行研究与开发。
其次,制氢过程中产生的废水和废气需要进行有效处理,以避免对环境造成污染。
此外,生物质制氢技术的经济性也是一个需要解决的问题,需要降低生产成本并提高制氢的效率。
针对这些挑战,我们可以通过优化生物质制氢反应条件、提高生物质质量和处理废水废气的技术手段等途径来解决。
二、生物质氢能的利用技术研究与应用1. 生物质氢能的利用方式生物质氢能的利用方式多种多样,包括氢能燃料电池、氢气燃料和氢气作为化工原料等。
其中,氢能燃料电池广泛应用于交通工具、家用电器等领域,是一种高效、清洁的能源利用方式。
生物质合成气制氢数据

生物质合成气制氢数据引言:生物质合成气制氢是一种新兴的能源转换技术,通过将生物质经过热解和气化等过程,得到合成气,再经过适当的催化反应,将合成气中的一氧化碳转化为氢气。
本文将介绍生物质合成气制氢的相关数据,包括生物质种类、氢气产率、能源效率等方面的内容。
一、生物质种类及其适用性生物质包括木材、秸秆、废弃农作物等可再生资源。
根据不同的生物质种类,其适用于生物质合成气制氢的效果也有所差异。
目前研究表明,木材和秸秆是常见的生物质来源,其在生物质合成气制氢中表现出较好的效果。
木材具有较高的碳含量和较低的灰分含量,能够提供较高的氢气产率和较好的能源效率。
秸秆作为农作物的副产品,具有广泛的资源和较低的成本,也成为生物质合成气制氢的理想材料之一。
二、氢气产率氢气产率是衡量生物质合成气制氢效果的重要指标之一。
根据研究数据,生物质合成气制氢的氢气产率通常在70%以上。
其中,木材作为生物质原料时,其氢气产率可达到80%以上。
而秸秆作为生物质原料时,其氢气产率一般在70%左右。
这些数据表明,生物质合成气制氢具有较高的氢气产率,可以有效地提供清洁能源。
三、能源效率能源效率是指生物质合成气制氢过程中能源利用的效果。
根据研究数据,生物质合成气制氢的能源效率通常在60%以上。
其中,木材作为生物质原料时,其能源效率可达到70%以上。
而秸秆作为生物质原料时,其能源效率一般在60%左右。
这些数据表明,生物质合成气制氢具有较高的能源效率,能够有效地利用生物质资源。
四、环境效益生物质合成气制氢具有显著的环境效益。
首先,生物质作为可再生资源,其利用不会产生额外的温室气体排放,有利于减少碳排放和减缓气候变化。
其次,生物质合成气制氢过程中可以利用废弃物和农作物剩余物,减少了废弃物的处理和农作物的浪费。
此外,生物质合成气制氢还可以减少对传统能源的依赖,实现能源结构的多样化和可持续发展。
五、挑战与展望尽管生物质合成气制氢具有许多优点,但仍然面临一些挑战。
生物制氢技术

厌氧微生物发酵产 氢主要有甲酸分解 产氢和通过NADH 的再氧化产氢等两 条途径。
葡萄糖到丙酮酸的途径 是所有发酵的通用途径。
NADH--氢化还原酶 (烟酰胺腺嘌呤二核苷 酸) Fd--铁氧还蛋白
厌氧微生物法制氢原理
厌氧发酵微生物为异养微生物。在这类微生物群体中,由 于缺乏典型的细胞色素系统和氧化磷酸化途径,厌氧生长 环境中的细胞面临着产能氧化反应造成电子积累的特殊问 题。
热化学转化法制氢原理
生物质热裂解制氢
生物质热裂解是在隔绝空气或供给少量空气的条件下使生 物质受热而发生分解的过程。 一般生物质热解产物有可燃气体、生物油和木炭。根据工 艺的控制不同可得到不同的目标产物。
生物质热裂解制氢就是对生物质进行加热使其分解为可燃 气体和烃类。 为增加气体中的氢含量,需要对热解产物再进行催化裂解, 使烃类物质继续裂解,对热解气体进行重整,将甲烷和一 氧化碳也转化为氢气。 最后采用变压吸附或膜分离的方式分离出氢气。
混合产氢系统中发酵细菌和光合 细菌利用葡萄糖产氢的生物化学 途径和自由能变化如右图:
从图中所示自由能可以看出,由于反应只能向自由能降低的方向进行,在分解所得有机酸 中,除甲酸可进一步分解出H2和CO2外,其他有机酸不能继续分解。 这是厌氧细菌产氢效率很低的原因所在,产氢效率低是厌氧细菌产氢实际应用面临的主要 障碍。 然而光合细菌可以利用太阳能来克服有机酸进一步分解所面临的正自由能堡垒,使有机酸 得以彻底分解,释放出有机酸中所含的全部氢。 另一方面由于光合细菌不能直接利用淀粉和纤维素等复杂的有机物,只能利用葡萄糖和小 分子有机酸,所以光合细菌直接利用废弃的有机资源产氢效醇制氢 石油制氢等
生产成本主要取决于原料价格,制气成本高,应用受到限制。
生物质能制氢技术路线

生物质能制氢技术路线你知道吗,氢气这种东西看起来离我们远得很,仿佛只有在科幻电影里才会出现,结果,它正悄悄地进入我们的生活,甚至有可能改变我们未来的能源格局。
不过,要说它是从哪里来的,咱们就得聊聊生物质能制氢这个话题了。
这个名字听起来高大上,但其实简单来说,就是利用自然界的一些“废料”来生产氢气,说白了就是变废为宝。
不过,先别急着拍手叫好,这背后的过程可没你想得那么简单。
生物质指的是那些能生长、能再生的有机物,比如农业废弃物、林业废弃物,甚至是一些植物垃圾。
咱们把这些东西拿来处理,经过一系列化学反应,就能从中提取出氢气。
这就像是大自然给了我们一笔“资源宝藏”,只等我们聪明的脑袋瓜去挖掘。
你会觉得这是不是有点神奇?没错,就是这么神奇!不过呢,这个过程可不像随手一捡那么简单。
得选择合适的原料。
你要是用一堆腐烂的枯枝烂叶,能提取出来的氢气估计也不怎么样;但如果用新鲜的植物废料,那可就能“最大化”地释放出氢气的能量了。
要让这些生物质变成氢气,可不是把它们丢进一个大锅里烧一烧就行的,得经过“气化”这个步骤。
啥是气化?简单来说,就是通过高温把生物质“蒸发”成气体,这个过程里,化学反应可就开始了,产生的气体里有一部分就是氢气。
不过,这种气化过程不仅要高温高压,而且还得用上特定的催化剂。
要是催化剂不给力,那你熬个半天,可能还只是蒸发出一堆普通的气体,氢气屁影儿都看不见。
这时候,有的人可能会问了:“那是不是只要让生物质气化完了,氢气就出来了?”哎,别着急,还远远没有这么简单。
气化后的气体中除了氢气,还有一些其他杂七杂八的成分,比如一氧化碳、二氧化碳,还有一些氮气。
这些可都不是咱们要的目标。
为啥呢?一氧化碳和氮气可能会影响氢气的纯度,甚至在某些时候,它们还可能跟氢气“发生化学反应”,导致氢气的收成大打折扣。
这个时候,得有个叫“水煤气反应”的过程,简而言之,就是通过水蒸气把这些杂质“踢”出去,最终让氢气“独立出来”。
生物质能和生物制氢——生物质气化技术

产物为干物料和水蒸气
水蒸气随着下面三个反应区的产热排除气化炉
干物料进入裂解区
2.热分解区(裂解区)
温度大约为300~600℃
产物为炭、H2、水蒸气、CO、CO2、CH4、焦油及其他烃类物质
热气体上升进入干燥区
炭进入还原区 3.还原区(吸热)
温度大约为700~900℃ 产物为CO、CO2、 H2 热气体上升进入裂解区 未反应炭进入氧化区 4.氧化区(放热) 温度大约为1000~1200℃ 产物为CO、CO2 热气体上升进入还原区 灰进入灰室
• 1839年世界上第一台上吸式气炉问世 • 20世纪30-40年代(二战期间),用于内
燃机的小型气化装置得到广泛使用 • 20世纪70年代,受石油危机影响,有了
新的发展
1.2 生物质气化的特点
• 与煤不同,生物质原料主要成分为:木质素、 纤维素、半纤维素。气化温度比煤低
• 气化产物与煤的也不同:N2含量高,主要成分 为CO、H2,少量的甲烷,基本不含其它烃类。 所以热值低
• 纤维素呈结晶状拧合成纤维束 • 半纤维素和其他多聚糖缠绕着纤维束 • 木质素像胶水一样覆盖和凝合着各种物质 • 水解酶或其他化学物质很难渗透到纤维素表面
Cellul素 •果胶质 •其他多聚糖
•Hemicellulose •Lignin •Pectin •Other polysaccharides
生物气的净化处理
目的:去除焦油和其他杂志。
生物气的用途
• 供热
生物质气化供气技术是指气化炉产出的生物质燃气,通过 相应的配套装备,完成为居民供应燃气的技术。
• 发电
以生物质气为燃料使蒸汽锅炉、燃气轮机或内燃机带动发电 机发电的技术。
生物质能制氢方法原理和经济性

生物质能制氢方法原理和经济性导读:1、生物质制氢气方法;2、生物质生物发酵制氢原理;3、光合细菌产氢示意图;4、黑暗厌氧发酵产氢示意图;5、生物制氢应用到工业中的经济性。
生物质是一种复杂的材料,主要由纤维素、半纤维素和木质素组成,以及少量的单宁酸、脂肪酸、树脂和无机盐。
这种可再生的原材料具有很大的潜力,可用于发电和生产高附加值化学品。
生物质能源作为一种新型可再生能源用于制氢,是绿色氢气的重要来源。
生物质制氢的主要途径为生物质发电,然后用电解水制氢;或者生物质发酵制氢;或者用生物质化工热裂解制氢;还可以利用生物质制成乙醇,再进行乙醇重整制氢。
可表示为表4-2。
表4-2生物质制氢气方法生物质发电,再用此电电解水制氢,与通常的电解水制氢并无不同。
这里主要介绍生物质生化发酵制氢、生物质化工热裂解制氢和生物质制乙醇、乙醇制氢。
生物质生物发酵制氢原理根据所用的微生物、产氢底物及产氢机理,生物制氢可以分为3种类型:①绿藻和蓝细菌(也称为蓝绿藻)在光照、厌氧条件下分解水产生氢气,通常称为光解水产氢或蓝、绿藻产氢;②光合细菌在光照、厌氧条件下分解有机物产生氢气,通常称为光解有机物产氢、光发酵产氢或光合细菌产氢;③细菌在黑暗、厌氧条件下分解有机物产生氢气,通常称为黑暗(暗)发酵产氢或叫发酵细菌产氢。
(1)光解水产氢(蓝、绿藻产氢)蓝细菌和绿藻的产氢在厌氧条件下,通过光合作用分解水产生氢气和氧气,所以通常也称为光分解水产氢途径。
其作用机理和绿色植物光合作用机理相似,这一光合系统中,具有两个独立但协调起作用的光合作用中心:接收太阳能分解水产生H+、电子和O2的光合系统Ⅱ(PSⅡ)以及产生还原剂用来固定CO2的光合系统I(PsI)。
PSⅡ产生的电子,由铁氧化还原蛋白(Fd)携带经由PSn和PSI到达产氢酶,H+在产氢酶的催化作用下在一定的条件下形成H2。
产氢酶是所有生物产氢的关键因素。
绿色植物由于没有产氢酶,所以不能产生氢气,这是藻类和绿色植物光合作用过程的重要区别所在,因此除氢气的形成外,绿色植物的光合作用规律和研究结论可以用于藻类新陈代谢过程分析。
生物质制氢技术

从表1可见,气化产物中,有相当一部分是CO。因此在生物质气化中,为了提 高氢气产出量,需在气化介质中加入水蒸气。通常认为,在蒸汽流态化条件下 发生下述反应:
上述反应导致床灰中的残炭含量减少,气体产物中的CO2和H2含量增多。生物质 炭与水蒸气的气化反应的反应式及平衡常数如表2所示。
从表2可见,只有在相当高的温度下,炭的气化反应才可能发生。因此,如何设计 催化剂降低炭的气化反应温度,促进炭的气化反应的发生是催化气化制氢的一个重 要研究内容。
用水制氢 化石能源制氢 生物质制氢 热化学转化技术:有生物 质热解制氢、气化制氢超 临界气化制氢等方法。产 氢率和经济性是选择工艺 的关键
水电解制氢:产品纯度高, 煤制氢:生产投资大,易 操作简便,但电能消耗高 排放温室气体,新型技术 正在研发
热化学制氢:能耗低,可 大规模工业化生产,可直 接利用反应堆的热能,效 率高,反应过程不易控制 高温热解水制氢:过程复 杂,成本高
• 研究进展 5.1 生物质气化技术 我国的生物质气化技术已达到工业示范 和应用阶段。中国科学院广州能源所多年 来进行了生物质气化技术的研究,其气化 产物中氢气约占10%,热值达11MJ/m3。在 国外,由于转化技术水平较高,生物质气 化已能大规模生产水煤气,且氢气含量也 较高。
• 水蒸气催化变换 国外对生物质的水蒸气催化气化进行了实验研究,其单 位kg生物质产氢率从30~80g不等。美国夏威夷大学和天 然气能源研究所合作建立的一套流化床气化制氢装置在水 蒸气和生物质的摩尔比为1.7的情况下,每千克生物质 (去湿、除灰)可产生128g氢气,达到该生物质最大理论 产氢量的78%. • 表3是以焦煤、橄榄壳以及向日葵杆为原料进行的水蒸 气催化气化实验结果。从表3可以看出,在催化剂作用下, 即使气化温度比较低(450度),也可得到较高的氢含量 (34.7%)。另外氢气的产出也随气化原料和催化剂的不 同而不同。
生物质制氢技术的研究现状与展望

一、引言在当前全球能源形势严峻的背景下,生物质制氢技术作为一种可持续发展的新型能源技术备受关注。
本文将对生物质制氢技术的研究现状和展望进行深入探讨,帮助读者全面了解这一领域的进展。
二、生物质制氢技术概述生物质是指植物在生长过程中固定的光能,可以通过热化学和生物化学方法转化为燃料、化学品等有机化合物。
生物质制氢技术是利用生物质资源生产氢燃料的技术,其优势在于可再生、低碳排放和资源广泛。
随着能源危机和环境污染问题的日益突出,生物质制氢技术受到了广泛关注。
三、生物质制氢技术的研究现状1. 生物质气化制氢技术生物质气化是将生物质物质在高温条件下进行分解,生成一氧化碳、氢气等气体。
通过气化反应,可将生物质转化为合成气,再通过水煤气变换反应制备氢气。
目前,生物质气化制氢技术在实验室和工业化生产中取得了一定进展。
2. 微生物发酵制氢技术生物质可通过微生物发酵产生氢气,这是一种相对环保的生产方法。
随着生物技术的发展,一些特殊菌株的应用使得生物质发酵制氢技术逐渐成熟。
生物质发酵制氢技术在实验室阶段已取得了较好的效果,但在工业化应用中还存在一定的技术难题。
3. 生物质光解制氢技术生物质光解制氢技术利用太阳能作为能源,将生物质中的水分子分解为氢气和氧气。
这是一种潜在的清洁能源制备方式,其研究目前处于实验室阶段,尚未进行工业化应用。
四、生物质制氢技术的展望生物质制氢技术具有巨大的发展潜力,但在实际应用中仍然存在许多挑战。
首先是生物质资源的可持续供应问题,需要建立可持续的生物质供应链;其次是高效的氢气生产技术,需要进一步提高生产效率和降低成本;最后是氢气的应用技术,需要配套发展氢燃料电池等技术。
个人观点与理解生物质制氢技术是未来能源发展的重要方向,具有可持续发展和环境友好的特点。
我认为,在今后的研究中,应当优先考虑改进氢气生产技术,并加大对生物质资源可持续利用和环境友好性的研究。
需要政府、企业和科研机构的共同努力,推动生物质制氢技术的实际应用和商业化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 各种矿物燃料制氢如天然气催化蒸汽重整等,但其作为非可再生能源, 储量有限,且制氢过程会对环境造成污染。
化炉需要研究的。
• 水蒸气气化、合成气催化变换 表1是在图2所示的下吸式气化炉条件下,以混合木块为气化原料,
气化介质为空气,燃烧区温度为840℃时气化产物的组成。
从表1可见,气化产物中,有相当一部分是CO。因此在生物质气化中,为了提 高氢气产出量,需在气化介质中加入水蒸气。通常认为,在蒸汽流态化条件下 发生下述反应:
2、气化反应器
• (1)上吸式气化炉:气固呈逆向流动。在运行过程中湿物 料从顶部加入后被上升的热气流干燥而将水蒸气带走,干 燥后的原料继续下降并经热气流加热而迅速发生热分解反 应。物料中的挥发分被释放,剩余的炭继续下降时与上升 的CO2及水蒸气发生反应产生CO和H2。在底部,余下的炭 在空气中燃烧,放出热量,为整个气化过程供热。上吸式 气化炉具有结构简单,操作可行性强的优点,但湿物料从 顶部下降时,物料中的部分水分被上升的热气流带走,使 产品气中H2含量减少。
• (1)金属氢化物分离法 氢同金属反应生成金属氢化物的反应是可逆反
应。当氢同金属直接化合时,生成金属氢化物, 当加热和降低压力时,金属氢化物发生分解,生 成金属和氢气,从而达到分离和纯化氢气的目的。 利用金属氢化物分离法纯化的氢气,纯度高且不 受原料气质量的影响。
• 利用可再生能源,如太阳能、海洋能、地热能、生物质能来制取氢气 是极具有吸引力和发展前途的。
氢的存在形式及制取途径
• 地球上的氢主要以其化合物,如水和碳氢化合物、石油、天然气 等形式存在
用水制氢
化石能源制氢
生物质制氢
水电解制氢:产品纯度高, 煤制氢:生产投资大,易 操作简便,但电能消耗高 排放温室气体,新型技术
正在研发
热化学转化技术:有生物 质热解制氢、气化制氢超 临界气化制氢等方法。产 氢率和经济性是选择工艺 的关键
热化学制氢:能耗低,可 大规模工业化生产,可直 接利用反应堆的热能,效 率高,反应过程不易控制
高温热解水制氢:过程复 杂,成本高
气体原料制氢:是化石能 微生物转化技术:对于光 源制氢工艺中最为经济合 合细菌产氢,如何提高光 理的方法,主要有四种方 能转化效率是关键;厌氧 法,工艺过程仍需改进 发酵制氢产率较低,先进 液体石化能源制氢:甲醇、 的培养技术有待开发 乙醇、轻质油及重油制氢 过程各有利弊
硅
• 着火点低,易爆炸(体积分数
镁
为18-65%时)
硫
10,000 5,000 1,300 1,100 1000 700 600 500
氢能的特点
• 氢是最洁净的燃料(产物为水) • 可储存的二次能源 • 氢能效率高
• 氢是一种理想的新能源,具有资源丰富,燃烧热值高,清洁无污染, 适用范围广的特点。
• (3) 循环流化床气化炉(CFBG)
物料被加进高温流化床后,发生快速热分解,生成气体、焦炭和焦油,焦炭随上升气流与CO2和 水蒸气进行还原反应,焦油则在高温环境下继续裂解,未反应完的炭粒在出口处被分离出来,经循
环管送入流化床底部,与从底部进入的空气发生燃烧反应,放出热量,为整个气化过程供热。由上
§4.2 生物质热化学转换法制氢
• 为化学工程过程 • 以生物质为原料,以氧气(空气)、水蒸气或氢气等作为
气化剂,在高温条件下通过热化学反应将生物质中可以燃 烧的部分转化为可燃气的过程 • 产物的有效成分有:H2、CO、CH4、CO2等→需进行气体 分离以得到纯氢
1、生物质催化气化制氢技术
• 生物质催化气化制氢的主要流程如下,三个过程决定最终 氢气的产量和质量,即生物质气化过程、合成气催化变换 过程和氢气分离、净化过程。
Байду номын сангаас
生物质气化
• 生物质热化学气化是指将预处理过的生物质在气化介质中 如:空气、纯氧、水蒸气或这三者的混合物中加热至 700℃以上,将生物质分解为合成气。
• 生物质气化的主要产物为H2、CO2、CO、CH4 • 混合气的成分组成比因气化温度、压力、气化停留时间以
及催化剂的不同而不同 • 气化反应器的选择也是决定混合气组成的一个主要因素。
• (2)下吸式气化炉 气固呈顺向流动。运行时物料由上部储料仓向下移动,边移动边进行干燥与热分解的过程。在
经过缩嘴时,与喷进的空气发生燃烧反应,剩余的炭落入缩嘴下方,与气流中的CO2, 和水蒸气发生 反应产生CO和H2。可以看出,下吸式气化炉中的缩嘴延长了气相停留时间,使焦油经高温区裂解, 因而气体中的焦油含量比较少;同时,物料中的水分参加反应,使产品气中的H2含量增加。但由图 3可见,下吸式气化炉结构比较复杂,当缩嘴直径较小时,物料流动性差,很容易发生物料架接, 使气化过程不稳定。对气化原料尺寸要求比较严格。
第四章 生物质制氢技术
• §4.1 概述
• §4.2 生物质热化学转换法制氢 以值量计在宇宙中最普通的10种元素
• §4.3 微生物法制氢
§4.1 概述
元素 氢 氦
百万分比 750,000 230,000
氧
• 氢的性质
碳
• 含量为最丰富的元素
氖
• 最环保、洁净的能源
铁
• 所有气体中最轻的
氮
• 热值为汽油的3倍
上述反应导致床灰中的残炭含量减少,气体产物中的CO2和H2含量增多。生物质 炭与水蒸气的气化反应的反应式及平衡常数如表2所示。
从表2可见,只有在相当高的温度下,炭的气化反应才可能发生。因此,如何设计 催化剂降低炭的气化反应温度,促进炭的气化反应的发生是催化气化制氢的一个重 要研究内容。
3、氢气分离、净化
述分析可知,CFBG的热解反应处于高温区,并且CFBG的传热条件好,加热速率高,可操作性强,
产品气的质量也较高,其中H2的含量也较高。
•
综合分析上述三种气化炉可知,下吸式气化炉在提高产品气的氢气含量方面具有其优越性,但其
结构复杂,可操作性差,因而如何改进下吸式气化炉的物料流动性,提高其气化稳定性是下吸式气