18题高考数学概率与统计知识点(可编辑修改word版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n ⎪
n n ⎪
高考数学第 18 题(概率与统计)
1、求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
card ( A ) m (1) 等可能性事件(古典概型)的概率:P(A)=
card (I ) = n ; 等可能事件概率的计算步骤:
计算一次试验的基本事件总数n ;
设所求事件 A ,并计算事件 A 包含的基本事件的个数m ;
P ( A ) = m
依公式
n 求值; 答,即给问题一个明确的答复.
(2) 互斥事件有一个发生的概率:P(A +B)=P(A)+P(B);
特例:对立事件的概率:P(A)+P( A )=P(A + A )=1.
(3) 相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B);
特例:独立重复试验的概率:Pn(k)= C k p k (1 - p )n -k
.其中 P 为事件 A 在一次试验中发生的
概率,此式为二项式[(1-P)+P]n 展开的第 k+1 项.
(4) 解决概率问题要注意“四个步骤,一个结合”:
求概率的步骤是:
⎧ 等可能事件 ⎪
互斥事件 ⎨
⎪独立事件 第一步,确定事件性质⎪
⎩n 次独立重复试验
即所给的问题归结为四类事件中的某一种.
⎧和事件 ⎨
第二步,判断事件的运算⎩积事件
即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
⎧
等可能事件: P ( A ) = m n ⎪
⎨互斥事件:P ( A + B ) = P ( A ) + P (B ) ⎪ 独立事件:P ( A ⋅ B ) = P ( A ) ⋅ P (B ) ⎪
第三步,运用公式⎪
⎩ n 次独立重复试验:P (k ) = C k p k (1- p )n -k
求解 第四步,答,即给提出的问题有一个明确的答复.
2.离散型随机变量的分布列
1.随机变量及相关概念
①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η 等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
n 一般地,设离散型随机变量可能取的值为 x 1 , x 2 ,……, x i ,……,取每一个值 x
i (
i = 1,2,……)的概率 P (= x i )= P i ,则称下表.
x 1
x 2
… x i
… P
P1
P2
…
P i
…
为随机变量的概率分布,简称的分布列.
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:
(1) P i ≥ 0 , i = 1,2,…;(2)
P 1 + P 2 + …=1. ②常见的离散型随机变量的分布列: (1) 二项分布
n 次独立重复试验中,事件 A 发生的次数是一个随机变量,其所有可能的取值为 0,1,
P = P (= k ) = C k p k q n -k
q = 1 - p
2,…n ,并且
k n
,其中0 ≤ k ≤ n ,
,随机变量 的分布列如下:
1
… k
…
n
P
C 0 p 0 q
n
n C 1 p 1q
n -1
n …
C k p k q n -k n
C n p n q 0
n
称这样随机变量 服从二项分布, 记作 ~ B (n , p ) , 其中 n 、 p 为参数, 并记:
C k p k q n -k = b (k ; n , p ) . (2) 几何分布
在独立重复试验中,某事件第一次发生时所作的试验的次数是一个取值为正整数的离散型随机变量,“= k ”表示在第 k 次独立重复试验时事件第一次发生. 随机变量的概率分布为:
1 2 3
… k
… P
p
qp
q 2 p
…
q k -1 p
…
3. 离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望: E = x 1 p 1 + x 2 p 2 + …;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差: D = (x 1 - E )2 p + (x 2 - E )2 p + … + (x n - E )2 p + …;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质: E (a + b ) = aE + b ; D (a + b ) = a 2
D .
(4)若~B(n ,p),则
E = np ; D =npq (这里 q=1-p ) ;
1 2 n
e E = 1
q
如果随机变量服从几何分布, P (= k ) = g (k , p ) ,则
4. 抽样方法与总体分布的估计
抽样方法
p ,D = p 2
其中 q=1-p. 1. 简单随机抽样:设一个总体的个数为 N ,如果通过逐个抽取的方法从中抽取一个样本,
且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和
随机数表法.
2. 系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取 1 个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).
3. 分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.
总体分布的估计
由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.
总体分布:总体取值的概率分布规律通常称为总体分布.
当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.
当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.
总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.
5.正态分布与线性回归
1.正态分布的概念及主要性质
(1)正态分布的概念
如果连续型随机变量 的概率密度函数为
f (x ) = 1
2
-( x -)2
22
,x ∈ R
其中、为常
数,并且>0,则称服从正态分布,记为~ N (, 2
).
(2)期望 E =μ,方差D = 2
.
(3) 正态分布的性质
正态曲线具有下列性质:
①曲线在 x 轴上方,并且关于直线 x =μ对称.
②曲线在 x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.
③曲线的对称轴位置由μ确定;曲线的形状由确定,越大,曲线越“矮胖”;反之越“高 瘦”.
三 σ 原则即为
数值分布在(μ—σ,μ+σ)中的概率为 0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为 0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为 0.9974 (4) 标准正态分布 当=0,=1 时服从标准的正态分布,记作~ N (0,1)